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To the author’s knowledge, only three photographs of Ramanujan are extant. Vari-
ations of his passport photo appear in our books, Parts I and IV. A group photo
with Ramanujan appearing in cap and gown can be found as the frontispiece of the
publication of Ramanujan’s lost notebook [11], and has been excised in several
cropped versions, often with Ramanujan standing alone. The photograph above is
also one of several renditions, the most frequent being one with Ramanujan sitting
alone.



Preface

During the years 1903~1914, Ramanujan recorded most of his mathematical dis-
coveries without proofs in notebooks. Although many of his results had already
been published by others, most had not. Almost a decade after Ramanu jan’s death
in 1920, G. N. Watson and B. M. Wilson began to edit Ramanujan’s notebooks,
but, despite devoting over ten years to this project, they never completed their task,
An unedited photostat edition of the notebooks was published by the Tata Institute
of Fundamental Research in Bombay in 1957.

This book is the fifth and final volume devoted to the editing of Ramanujan’s
notebooks. Parts I-iI, published, respectively, in 1985, 1989, and 1991, contain
accounts of Chapters 1-21 in the second notebook, a revised enlarged edition of
the first. Part IV, published in 1994, contains results from the 100 unorganized
pages in the second notebook and the 33 unorganized pages comprising the third
notebook. Also examined in Part IV are the 16 organized chapters in the first
notebook, which contain very little that is not found in the second notebook. In
this fifth volume, we examine the remaining contents from the 133 unorganized
Ppages in the second and third notebooks, and the claims in the 198 unorganized
pages of the first notebook that cannot be found in the succeeding notebooks. In
contrast to the organized portion of the first notebook, the unorganized material
in the first notebook contains several results, particularly about class invariants,
singular moduli, and values of theta-functions, which are not recorded in the
second and third notebooks.

As in the first four volumes, either Pproofs are provided for claims not previously
established in the literature, or citations are given for results already proved in the
literature.

Urbana, Illinois Bruce C. Berndt
September, 1997
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Introduction

Knowledge comes, but wisdom lingers.
Alfred, Lord Tennyson, Locksley Hall

This book constitutes the fifth and final volume of our attempts to establish all
the results claimed by the great Indian mathematician Srinivasa Ramanujan in his
Notebooks, first published in a photostat edition by the Tata Institute of Fundamen-
tal Research in 1957 [9). Although each of the five volumes contains many deep
results, perhaps the average depth in this volume is greater than in the first four. As
will be seen in the following paragraphs, several mathematicians made important
contributions to the completion of this volume. However, 1 particularly extend
my deepest gratitude to Heng Huat Chan and Liang—Cheng Zhang without whose
contributions this volume would have been woefully deficient. This volume, how-
ever, should not be regarded as the closing chapter on Ramanujan’s notebooks.
Instead, it is just the first milestone on our journey to understanding Ramanujan’s
ideas. Many of the proofs given here and in other volumes certainly do not reflect
Ramanujan’s motivation, insights, proofs, and wisdom. It is our fervent wish that
these volumes will serve as springboards for further investigations by mathemati-
cians intrigued by Ramanujan’s remarkable ideas. As in the other four volumes,
for each correct claim, we either provide a proof or cite references in the literature
where proofs can be found. We emphasize that Ramanujan made extremely few
errors, and that most “mistakes” are either minor misprints, or, in fact, they are
errors made by the author arising from misinterpretations of Ramanujan’s claims,
which are occasionally fuzzy.

The second notebook is arevised, enlarged edition of the first, and, as withG. N,
Watson and B. M. Wilson, who made the first attempts at editing Ramanujan’s
notebooks, the second was our initial focus. It was therefore quite surprising for us
todiscover that the unorganized pages of the first notebook contain many beautiful
results, especially in the areas of class invariants, singular moduli, and explicit
values of theta—functions, that Ramanujan failed 1o record in his second notebook.
The material examined in this volume arises from the unorganized pages in all
three notebooks, and we provide now brief descriptions of the contents of each of
the eight chapters.



2 Introduction

Ramanujan loved continucd fractions, and many of his most beautiful results
involve continued fractions. Chapter 32 contains about 70 results on continued
fractions scattered among the unorganized pages in his second and third note-
books, and four evaluations of the Rogers—Ramanu Jan continued fraction from his
first notebook. Several modular equations for the Rogers—Ramanujan continued
fraction R(g) can be found; in less technical langnage these are functional equa-
tions relating R(q) at two different arguments. Other g—continued fractions were
also examined by Ramanujan in these unorganized pages. Several results arise
from Ramanujan’s beautiful continued fractions for quotients of gamma functions
found in Chapter 12 of his second notebook. The present chapter primarily con-
stitutes a reorganized and partially rewritten version of the memoir published by
G. E. Andrews, the author, L. Jacobsen, and R. L. Lamphere [2]; a preview and
discussion of some of the results was published by the four of us in [1]. The four
evaluations of the Rogers—Ramanujan continued fraction from the first notebook
first appeared in a paper with H. H. Chan (1], and in Chan’s doctoral thesis [2].

In the classical theory of elliptic functions, the ordinary hypergeometric func-
tion 2F1(2, 3 1; x) plays a very important rolc. In his famous paper [3), in the
course of stating without proofs some remarkable series representations for 1/,
Ramanujan remarked that several of his series arose from alternative theories of
elliptic functions wherem the aforementnoned hypergeomemc function is replaced
byelther1F|(3, 5 L x), 2F|(4, LX), or2F1(6 35 I; x). These theories were
never developed, but the first six pages in the unorganized section at the end of his
second notebook are devoted to these theories. This is the content of Chapter 33,
most of which was first published in a paper with S. Bhargava and F. G. Garvan
[1]. A few results from the first notebook have been added to this presentation. The
first of the three alternative theories is the most interesting and the most important,

ETY o] royniaieio toa PO LY Py | NN
and we feel that 2 !arge body of work remains to be discovered here.

Like Chapter 33, it took several years for us to satisfactorily examine all of the
material in Chapter 34, which is devoted to class invariants and singular moduli.
Most of this work has appeared in papers with Chan and L.—C. Zhang [1}-{3}], {5}
and with Chan [3], [4]. A summary, written with Chan and Zhang appears in [6),
and several results were established in Chan’s Ph.D. thesis {2]. Ramanujan did a
prodigious amount of work in calculating over 100 class invariants. For reasons
that are unclear to us, he failed to record many of these values in his second
notebook. To establish most of Ramanujan’s hitherto unproved class invariants,
we had to develop methods that were completely unknown to Ramanujan. Thus,
Ramanujan’s methods and insights into class invariants remain largely a mystery
to us. Itis also puzzling to us that, except for four values, Ramanujan did not record
in his second notebook the more than 30 representations for singular moduli found
in his first notebook. For even n, Ramanujan left us a beautiful formula to aid in
the calculation of singular moduli, although we are uncertain how he found it, but
for odd n, Ramanujan’s methods are unknown to us.

The values of the classical theta—function 3°5° __ e~27%'v" are beautiful al-
gebraic numbers when n is a positive rational number. Chapter 35 is devoted

Introduction 3

1o Ramanujan’s explicit values of theta—functions found in his first notebook.
Most of this chapter previously appeared in papers with Chan [2] and Chan and
Zhana (4]
Zhang [4].

Chapters 19-21 in Ramanujan’s second notebook contain several hundred mod-
ular equations. Surprisingly, some of his deepest results on modular equations in

L
the forms of Russell, Suh!nﬂi, or Weber appear o vul} in the first notebook. In Lnap-

ter 36 we establish all the results on modular equations found in the first notebook
but not in the second. Some are easy variations of results in the second notebook
that we proved in our third volume [3].

We return in Chapter 37 to the second notebook. All the results in this chapter
pertain to infinite series. Many were very difficult for us to prove, and we owe
our thanks to R. A. Askey, G. Bachman, P. Bialek, D. Bradley, R. J. Evans, J. L.
Hafner, and A. Hildebrand for important contributions. Although it is impossible
to summarize in one brief paragraph the contents of this long and varied chapter,
we mention just a few highlights. The first several sections of the chapter are de-
voted to interesting variants of the Abel-Plana summation formula and examples
thereof. In Section 21, we examine Ramanujan’s surprising transformation for-
mulas for two certain doubly exponential cousins of two classical theta-functions.
In Section 22, an intriguing formula for the logarithmic derivative of the gamma
function is derived. In Section 42, Ramanujan offers some very remarkable the-
orems on the explicit behavior of partial sums of certain divergent alternating
series.

In previous volumes we marveled about Ramanujan’s insights into asymptotic
analysis; see, in particular, Chapter 13 in our second book [2]. In Chapter 38, we
gather all of Ramanujan’s approximations and asymptotic expansions found in
the unorganized pages of his second and third notebooks. We are very grateful
to Askey, R. P. Brent, Evans, and M. L. Gilasser for their valuabie contributions
to this chapter. Again it is difficult to succmctly summarize this work. The first
several sections are devoted to the asymptotic analysis of series which are hybrids
of the Riemann zeta-function and hypergeometric series.

Last, in Chapter 39 we collect together results from the unorganized pages of
the first notebook which do not fall under the purviews of Chapters 32-36. Most
are from analysis, but some are elementary.

In Part IV we provided a chapter documenting each entry in the 16 organized
chapters of the first notebook. The vast majority of these results can be found in
the second and third notebooks, but for those that are not we gave proofs. At the
end of this volume, we provide a similar account for all the claims made in the 198
unorganized pages of the first notebook. Thus, for each entry we indicate where a
proof can be found in Parts [V,

Except for the massive amount of material in Chapters 33 and 34 related to
Ramanujan’s paper on modular equations and approximations to = (3], {10, pp.
23-39], in contrast to the first four volumes, very few claims in this volume pertain
to Ramanujan’s published papers and problems. The following table summarizes
these connections:
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Paper Related Material in this Volume

[1] | See final chapter on location of entries, in particular, pp. 347-349
21 Entry 18 in Chapter 37

3] Most of Chapters 33 and 34

(4] Entry 30 in Chapter 37

5] Entries 27-30 in Chapter 37

6] Entries 24-26 in Chapter 37

(7] Entry 23 in Chapter 37

(8] First section in Chapter 32

The following table gives the number of results in each of the eight chapters in
this volume:

Chapter | Number of Results

32 73
33 62
34 196
35 24
36 87
37 53
38 46
39 24

Total 565

mmarizes our reckonings of the results examir

The next table o1

the five volumes.

Volume | Number of Results
I 759
11 605
111 834
v 491
\'% 565
Total 3254

This total is in agreement with Hardy’s original estimate that Ramanujan’s
notebooks contain the statements of approximately 3W theorems.

In the sequel, equation numbers always refer to equalities in the same chapter,
unless otherwise indicated. Several references will be made to our first four vol-
umes [1]-{4], and we almost always use the abbreviations Part 1, Part 11, Part III,
and Part IV, respectively. In chapters where claims from both the first and second

notebooks are discussed, we append the abbreviations NB | or NB 2 to a page

Introduction )

number te indicate that the result is in the first or second notebook, respectively.
Throughout the text, the residue of a meromorphic function F(z) at a pole zq is
denoted by R,,.

To prove Ramanujan’s claims in Chapters 33 and 34, it was necessary to derive
many ancillary results. Thus, in contrast to the remaining chapters, the formats in
these two chapters are different.

The road through Ramanujan’s notebooks has been a long one, and many people
on this journey deserve my gratitude.

After taking a course in modular forms from my subsequent thesis advisor,
J.R. Smart, my first introduction to the work of Ramanujan came in a course on
modular forms with applications to number theory taught by Marvin Knopp at
the University of Wisconsin in the Fall of 1964. Here I learned about the Hardy-
Ramanujan asymptotic formula for the partition function p(n) and Ramanujan’s
congruences for p(n). Knopp’s book [1] arose from this course.

I learned of the existence of Ramanujan’s notebooks one day in early 1967
in Robert Rankin’s office at the University of Glasgow. However, when Rankin
asked me if I would be interested in examining his copy of the Tata Institute’s
publication of the notebooks [9], I declined.

I owe a huge debt to the late Emil Grosswald for my initial interest in the
notebooks. It was on a cold winter day in early February, 1974, while I was on leave
atthe Institute for Advanced Study, that I was reading two papers by Grosswald (1],
[2] in which he proved some formulas from Ramanujan’s notebooks. I suddenly
realized that I could also prove these formulas by using some transformation
formulas for Eisenstein series that I had proved about two years earlier. I was
naturally curious to determine if there were other formulas in the notebooks that
I could prove with my methods. Fortunately, the library at Princeton University
possesses a copy of the Tata Institute’s publication [9). I found a few more formulas
which [ could prove, but I also found a few thousand others which I could not
prove. My papers (6] and (7] contain proofs of my initial findings and several
other formulas in the same genre.

At the close of the spring semester in May, 1977, at the University of Illinois, I
decided to attempt to find proofs for all of the formulas (a total of 87) in Chapter
14 of Ramanujan’s second notebook, where the formulas which Grosswald proved
can be found. After working on this project for nearly a year, George Andrews
visited the University of Illinois and informed me that the attempts of G. N. Watson
and B. M. Wilson to edit Ramanujan’s notebooks in the late 1920s and 1930s had
been preserved in the library at Trinity Coiiege, Cambridge. Thinking that with a
copy of their notes, I could edit further chapters, I wrote Trinity College. Indeed,
Watson and Wilson's notes were very useful, and, in particular, Watson’s work
on modular equations in Chapiers 19-21 of the second notebook was invaluable.
We are pleased to record here our thanks to the Master and Fellows of Trinity
College, Cambridge, for providing us with a copy of these notes. Thus, to bring
us to the end of the story, since May, 1977, I have devoted all of my research time
to proving the claims made by Ramanujan in his notebooks.
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This work could not have been completed without the help of several people
First, C. Adiga, G. E. Andrews, S. Bhargava, A. J. Biagioli, P. Bialek, H. H. Chan
R. 1. Evans, F. G. Garvan, J. L. Hafner, P. T. Joshi, R. L. Lamphere, L. Lorenizen
J. M. Purtilo, and L.-C. Zhang collaborated with me in writing papers on chapters
or sets of formulas from the notebooks, and I extend to them my sincere gratitude
for their collaborations.

Others have made contributions in papers that they have individually written.
or in work that appeared only in our accounts. Thus, I wish to thank the following
mathematicians without whose proofs these volumes could not have been com.
pleted: G. E. Andrews, R. A. Askey, G. Bachman, J. M. Borwein, P. B. Borwein,
D. Bradley, H. Cohen, M. L. Glasser, A. Hildebrand, L. Lorentzen, R. McIntosh,
K. S. Williams, and D. Zagier. Some names appear in each of the past two para-
graphs, because these mathematicians also made contributions independent of any
collaboration with me.

Finally, I emphasize the enormous help given by three people. For several years,
when I became stymied for months or perhaps years over one of Ramanujan’s
enigmatic formulas, I turned to Ron Evans. On each occasion, he was able to
supply a proof, and some of the most difficult proofs in these five volumes are due
to Evans. Preliminary versions of many of the chapters were read by Dick Askey,
who found mistakes, supplied references, gave insights, and sometimes provided
a proof. Lastly, in recent years, Heng Huat Chan not only served as a valuable
collaborator, but he offered many additional comments and insights, supplied
further proofs, and critically read preliminary versions of several chapters.

Jaebum Schn also read in detail several chapters in this volume, and I thank
him for the several errors he uncovered.

I have given hundreds of lectures on Ramanujan's work to graduate students
and coiieagues ai the University of Tilinois during the past two decades, and I am
grateful for the many meaningful comments they have provided.

Others who offered important comments and insights are cited in the Introduc-
tions to the first four volumes [1]-[4].

Itis important that mathematicians are cited for the relevant contributions they
have made to a subject. At times, it is difficult to unearth their work, and 1 thank
Nancy Anderson, Mathematics Librarian at the University of Illinois, for helping
me locate many obscure papers.

One day in the carly 1980s Heini Halberstam called me to his office here at
Illinois to meet Springer—Verlag’s Mathematics Editor, Walter Kanfmann-Biihler,
who suggested that I compile my work on Ramanujan’s notebooks into volumes
for Springer—Verlag. Thus, I express my sincere thanks to the late Kaufmann—
Biihler and the current Mathematics Editor, Ina Lindemann, for their support of
my work.

In the early years devoted to Ramanujan’s notebooks, I received support from
the Vaughn Foundation, and I express my deep gratitude to James Vaughn for
his financial support. In more recent years, the National Science Foundation, the
Sloan Foundation, and the National Security Agency have provided grants, and
I thank these agencies for their support. I also am pleased to thank The Center

._—————a
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for A‘xdvanccd Sludy at The University of linois for three appointments which
provided me with time that I could exclusively devote to Ramanu jan’s notebooks.,

'I"he author bears the responsibility for all erors and would appreciate‘t;eving
notified of such, whether they be minor or serious.
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Continued Fractions

Chapier 12 in Ramanujan’s second notebook is devoted almost entirely to contin-
ued fractions. Further continued fractions can be found in other chapters, espe-
cially in Chapter 16. See Parts II {2] and II [3] for accounts of Chapters 12 and
16, respectively. The 100 pages of unorganized material at the end of the second
notebook and the 33 unorganized pages in the third notebook contain about 60
further results on continued fractions. These and four evaluations of the Rogers—
Ramanujan continued fraction from the first notebook will be examined in this
chapter.

We have divided the entries into five categories. Section 1 is devoted to the
famous Rogers-Ramanujan continued fraction, the only continued fraction ap-
pearing in Ramanujan’s published papers [8], [10, pp. 214-215], and certain gen-
eralizations. Other g—continued fractions are examined in Section 2. In Section
3 we establish several continued fractions arising from Ramanujan’s beautiful
continued fractions for quotients of M functions in Chapter 12 of his second note-
book. Most of the continued fractions in Section 4 arise from special functions, in
particular, hypergeometric functions. General theorems are the focus of Section
5

B We next describe a few highlights in this chapter.
Let, for jg| < 1,

1/5

2 3
9 ¢ g

R = — = —_— —
@ = T+ T+

1+ 1 +71 4+

and
S(@) := —R(—g)

denote the famous Rogers—Ramanujan continued fractions. Entries 1~6 provide
beautiful equations relating R(q) with each of R(-q), R(g*), R(g*), R(g*), and
R(g®). In both his firsi and second letters to Hardy, Ramanujan [10, pp. xxvii,
xxviii] communicated theorems about R(g) and S(g). In particular, in his first
letter, he asserted that

Re™?) = ‘,¥§ - -‘5-211 .1
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and
‘z_ =3 Ve s
S(e™") = \/3 2va B vaz— 10 ©.2)

The evaluation (0.1) follows easily from a reciprocity theorem for R(q), w
Ramanujan gave in his second letter, and which was first proved by G. N. Watson
[2]. The evaluation (0.2) follows from a similar reciprocity theorem for S(g),
which apparently Ramanujan did not communicate to Hardy, but which is found
in his notebooks [9, p. 204]; see also Part III 3, p. 83). The latter theorem was
first proved by K. G. Ramanathan [2], but (0.2) was first established by Watson
(1] in a different manner. In his second letter, Ramanujan also claimed that

Vs V5+1

52 /3 2 7
1+ (53/4{‘/3_1\ _1\|
vy z2/ )
which was also first proved in print by Watson [2]; Ramanathan [2] also estab-
lished (0.3). Entries 7-10 offer four particular evaluations of R(g) from page
311 of Ramanujan’s first notebook. Several further evaluations of R(q) and S(g)
were recorded by Ramanujan in his “lost notebook” [11], and these have been
proved by the author, H. H. Chan, and L.—C. Zhang [3]. Entry 11 is a fascinating
theorem concerning the oscillating behavior of the divergent Rogers—Ramanujan
continued fraction for g > 1. Ramanujan offers some “approximating” continued
fractions, with the most interesting results being Entries 13 and 14 involving mod-
est generalizations of the Rogers—Ramanujan continued fraction. In each case,
one continued fraction is approximated by another continued fraction. D. Zagier
(1] has discovered the proper interpretations for these fascinating results, and we
briefly describe his work. Some elegant continued fractions, for example, Entry
15, are instances of more general continued fractions found later by Ramanujan
and recorded in his “lost notebook™ [11].

Some g-continued fractions give representations for certain g~products. A few
of these results were established by A. Selberg [1], [2, pp. 1-23) in 1936. We
particularly call attentionto Entry 19. To prove this, we employ a continued fraction
found by G. E. Andrews [1] which may be the unidentified continued fraction to
which Ramanujan alludes in his first letter to Hardy [9, p. xxviii).

Ramanujan had a tremendous facility for extracting interesting, important, and
elegant special cases from his theorems. The unorganized material contains numer-
ous corollaries arising from his amazing work on continued fractions for products
of gamma functions in Chapter 12. Two of the most curious results in this vein are
Entries 41 and 42.

Before commencing our examination of Ramanujan’s continued fractions, we
must offer several remarks about notation. All “chapter” references refer to chap-
ters in Ramanujan’s second notebook [9].

hiab
L

R V%) =

0.3)

32. Continued Fractions 11

We employ the notation
a ay as

- = = 0.4)
by + byt byt

for the continued fraction

a)

a
b +

a
by + :

by+ -
Occasionally, for brevity, we shall use the notation K(a,/b,) instead of (0.4). We

let A, and B, denote the nth numerator and denominator, respectively, for (0.4).
Thus, forn > 1,

a, a az a, A,

by +by+by+ - +b, B,
where
Ay =byAnoy +a,An2 ©.5)
and
B, =b,B,_ +a,B,2, (0.6)

where A_) = 1 = By and Ap =0 = B_, (H. S. Wall (1, p. 15)]).

The set of natural numbers is denoted by N, while the set of complex numbers
is designated by C. Furthermore, set C = C U {o0}. The set of real numbers is
denoted by IR, and we set R = R U {o0). The set of integers is denoted by Z.

If ay = O for some N € N, we say that the continued fraction (0.4) terminates,
and we assign to it the value

a, a, ay s Ay
a; ay a £

T b thy o by By

f:

ifa, # Oforn < N.Ifa, #0,1 < n < 00, then the continued fraction
(0.4) converges if lim,_,,, A, /B, exists in C. Its value is then given by f =
limy o0 An/ By, and we write

f_al a) as
—b| +b2+b\ + -

(Note that (0.7) includes the case “00 = 00.”) If lim,,—. o, A,/ B, does not exist in
C(anda, # 0,1 < n < 00), we say that (0.4) diverges.

Many of Ramanujan’s continued fractions arise from equivalence transforma-
tions or from the “even parts™ of continued fractions. In contrast to many contem-
porary authors, we employ equality signs when invoking these ideas.

Several results depend upon continued fractions from Chapter 12, and so we
frequently make reference to our account [2] of this chapier. Our convergence
statements for many of the continued fractions of this chapter are based upon a

©.7)
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theorem of L. Jacobsen [4, Theorem 2.3), which is a consequence of the parabola
theorems (W. B. Jones and W. J. Thron [1]).

Several entries below concern theta—functions, and we employ the notation
Ramanujan introduced in Chapter 16 (9] (Part Il [3]). For |ab| < 1, put
00
fla, by = Z g 2pnn=1/2 (0.8)
n=-00
Also set
0(@):=flg.9). V@) =[@G.q) ad f(-q):= f(~q.-4%.
0.9)
For each nonnegative integer n, let
@ q):=(1—-a)l—-aq)---(1-ag""), (0.10)

and, if |g| < 1, set

We employ the contemporary convention for Bemoulli numbers and not that
used by Ramanujan in his notebooks. Thus, the Bernoulli numbers B, n > 0, are
here defined by

o0

X B,
= E =X, x| < 2.
n!

X
e 1 =

We always employ the principal branch of each multivalued relation such as
272, log z, and tan™' z.
Lastly, as customary, set
I'(a+k)
I'(a)

i. The Rogers-Ramanujan Continued Fraction

(a) =

Entry 1 (p. 326). Letiq| < 1,

U:=q”5 q ‘1_2 i —. pls
1 +1+1+1 +--
and
v=‘ﬁ q_z q_d q_.ﬁ =y
1 + 1+ 1+ 4+
Then
2
Lov—ut
(|)v+u2—uv
and

() UV + W)+ U2 -V +IUVUV -U+V+ 1) =0

32. Continued Fractions 13

1-n\’ 1+n
i) IfU = , then V = n? .
(i) If n(1+n) en i

-n

Proof of (i). In Part 11 [3, p. 80, eq. (39.1)], we showed that

1 f(=¢'*) ) f(=¢*)

——u—-1= and - ~v-1=—=- - 1.1

u u 1 ql/Sf(_qS) v v q2/5f(_q|0) ( )
In order to derive a relation involving u# and v, we need to rely on Ramanujan’s
work on modular equations.

Let o/a and /B be the moduli associated with the variables ¢'/> and ¢°, respec-
tively. (Ordinarily, of course, these variables would be designated by g and g%,
respectively.) Let m denote the multiplier associated with & and 8. Furthermore,
set

_ f(=¢"")

f(=¢*) and R = JACKES)
T gUs f(—g5)’ -
i J N 7 7

— —_—
_,’,2/5’f(_,1,10) ql/SJr(qS)

Q=

It will be easier to first derive a relation involving Q and R. It will then be an easy
matter to deduce a formula connecting P and Q.
From Entries 12(i), (iii) of Chapter 17 (Part 111 [3, p. 124]), we easily deduce

that
1-a)\" a(l —a)\Y"?
o () e ()
"\Ba-p and @ =mTA 0=

It follows that

a(l —a) 1/2‘_2 and ml/2=R_2

\BU-8) R
Now rewrite Entries 15(i), (ii) of Chapter 19 (Part III [3, p. 291]) in the respective
forms

1/8 1= g\ !/ 1 — 1/8 1 1/12
(@) +(=0) (& o) —(&a=s) -
and
(g)‘/“ N (1-_a)”" ~ (a(l -oo)'/" _2(a(l —a))lm _ 5
B 1-p B -H) B - p) m!/2’
These two equalities are, in fact, modular equations of degree 25. Muliiplying the

former equality by (a(1 — ))'/® and the latter by (8(1 — B))"/%, we see that we
can combine the resulting two modular equations to obtain the single equation

Y ﬂ(l—ﬁ))'/“ BA-B\""?
(@(1 —a)) l(a——“_a) +2 (0 —a) +m

1/8 1712
— (B(1 — B (a(l —a)) (a(l - a)) 5 .
BA -8 [ BO=5) +2 50— B) + o

(1.2)
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Using (1.2), we write this equality in the form
R R R R(Q _0° .
et e TEIwE
Clearing denominators and rearranging, we find that
R* +2R*Q —2RQ*- Q* =50QR - Q*R%.
We now replace ¢'/S by —g'/*. Then R is replaced by — P, and @ remains unaf-
fected. So,

|

+22 452
roais d i

Q' -2PQ*-2P?Q+ P* = P2Q* +5PQ. (1.3)
Next,set P, = 1+ P and Q1 = 1+ Q. After some elementary tedious algebra,
we deduce, from (1.3), that
(PE+2(QT+D — P} — Q1+ PIQ1 — 4P - 40, =0.
By (1.1), this last equality may be rewritten in the form

(o) (3+4)- () G- o))
o))

which can be written in the shape

W0 + 0} + w) + @ 1PN + W+ u® — utv? — W)

— @+ ut) + @ - V) - u) =0.
Upon factorization, we arrive at
@od@® + v) + 4 — V)P + u) + v¥ ~u) = 0.

From the definitions of u and v, it is clear thatu = O(g'/") andv = 0(g¥*) asq
tends to 0. Hence, the first factor (and not the second) vaishes for g sufficiently
small, By the identity thcorem, the first factor vanishes brr |g| < 1. This proves

.

A proof of (i) was also given by L. J. Rogers [4, eq. (54)].
It will be convenient to prove (iii) before (ii). We shal’ alter Ramanujan’s for-
mulation of (iii) by defining n by uv?. We shall then estiblish the two proffered

foemnilon fonee 77 nead 17
IOTMULES XOf U ana v.

Proof of (iii). From part (i),
v—u?
v4u?

Solving for u?, we find that
2 uv(l=n)
14 n

32. Continued Fractions 15
But since #2v* = n?, we deduce that

s_n(l+n)

»

1—n

which proves the formula for V. Now,

n® 1-n\2
U=—=
V2 "(1+n)’

which completes the proof,

Proof of (ii). From part (iii), we obtain the two cubic equations in n,
LT v n PN
n+n"+vn—v =0 (1.49)
and
w—(U+2n* - QU -Dn—-U=0.
By subtraction,
W43+ QU+V —Dn+ U -V)=0. (1.5)

We now obtain three equations, in addition to (1.4) and (1.5), by multiplying (1.4)
by n and (1.5) by n and n?. Thus, we obtain five homogeneous equations in the
“unknowns,” 1, n, n?, n*, and n*. Since there exists a solution (n = uv?), the
determinant of the coefficients is equal to 0, i.e.,

1 1 14 -V 0
0 1 1 v -V
0=|U+3 2U+V -1 Uu-v 0 0
0 U+3 W+v-—-1 Uu-v 0
0 0 U+3 20+V-1 U-V
11 v -V 0
0 1 1 14 -V
=10 0 4-5V-UvV 7V — v? UV +Vv?_gy
00 U+V -4 U-UvV -4v Uv +3v
00 U+3 204V -1 U-v

= 410UV — 10UV + 10UV2 + UV + U + UV + UV — ).

This completes the proof of (ii).
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Entry 2 (p. 321). Letiq] < 1. If

SO GG B G
N 1 —1+1 -1+
and
g/’ a 2l a3
pi=24__ 1 1 1
) 1 4141 +1+--"
then
uv(u — v)* — uzvz(u -2+ = - v)(1 +u’v®). 2.1)
Proof. Let
g a2 a4 gb
1 1 1 1

wi= —

1T+ 1 +10+1 4
By a direct application of Entry 1(i), we find that
2
w—v" o,
e vw”. (.2)
Replacing ¢ by —¢ in Entry 1(i), we also find that
2

—u
g = . @3)

These two equalities yield, respectively,

w +vPwt w412 =0

and

uw® + dw? +w—u?=0.
Multiply the first of the last two equalities by «? and the second by v? and then
add the resulting two equalities. Second, multiply the first equality by u and the

second by v and then subtract them. Upon cancelling the nonvanishing factor u + v
in each case, we find that, respectively,

wvwr +utvPw-(u-v)=0 2.4)
and

uv(u — v)w? +w—uv =0. 2.5)
Next, divide (2.2) by (2.3) and cancel the nonvanishing factor 4 + v to obtain the
quadratic equation

w? + (U — v)?w - u?v’ = 0. (2.6)
The three quadratic equations (2.4)—(2.6) may be written in the more succinct form

2

uv u’v? v—u w 0
(uv(u—v) 1 —uv )(w)-—-(O).
1 W —-v)? —uh? 1 0
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The determinant of the 3 x 3 matrix on the left side must therefore equal 0, and
this is equivalent to (2.1). This completes the proof.

Entry 3 (p. 321). Let |q] < L. If
1/s

N
-

wi=1_ 92 9 <
1 +1+14+1 +-
and
S A SR M ¢
r +1+1+1 4+
then

(v—u)(1 + uv’y = 3yt

u;:ﬁ Z q_2 q_g. __Ul/5
P +1+14+1 47
v:ﬁ q_3 q._6 q_9 _.V’/5
1 +1+1+71 47
a4 _ 1
mim gL a0,
f(-q’,—q¢%
and
14
25 f(=9.-9')
T e g
Then
m-n=mn= mw__ = uy’
I U I

Proof. Simple algebra shows that mn = m?/(1 + m) if and only if m — n = mn
and that mn = n?/(1 — n) if and onlyifm — n = mn.
By Entry 38(iii) of Chapter 16 (Part III [3, p. 79)), mn = uv? if and only if
4% 4" f(-4.-4'") (=4 —9'Y) _ f(=q, —q") f*(~¢>, —¢')
S=q",—a% (=%, —q¢"H 2 (~q%, —¢® ~ f(=q", —-g%) f3(—¢5, —g%)’
or

(=44, -4") (9. 3"V f (g%, -¢*) f(~q®, —¢%)
= f(=4.—¢ (-4, —a'"D f(—q", —-¢®) f(—q% —¢"%).
(4.1)
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By applying the Jacobi triple product identity, Entry 19 of Chapter 16 (Part III [3,
p- 35)), to each of the eight theta—functions in (4.1), we, indeed, verify that (4.1)
is valid. Thus, we have shown that mn = uv’.

It remains to prove that m — n = ma. Using Entry 38(iii) of Chapter 16 as
before, we find that the proposed identity is equivalent to the identity

f(-¢*.-¢"Y f(=¢9.-¢") _ f(=¢*.-¢'")Vf(=¢.~¢")f(-¢". —¢")
Fea =g fat - L f o - Car gD (a5 ")
which is equivalent to
f(—q% —¢') _ f(=q", —¢% B f(=¢% —q")
f(=4.-¢")  f(=¢*—¢")  f(=¢%-¢%)"
To prove (4.2), we shall apply the quintuple product identity three times. Referring

to Part I11 [3, p. 80, eq. (38.2)], we replace ¢ by g'>/? and set, inturn, B = —¢'3/2,
—q"7%, and —g*?. Accordingly, we find that

(4.2)

2 I8y _ 13 p 12 _ STy _ o 1S f(=4*, —4")
(=97, —q¢7)—q " f(=q7", —¢°) = f(~¢q )—-——f(_q‘_qm).
Cw aw ree oy sy _ g 1sy S(=4, —4")
(4", =¢)—q' f(=¢7", —q7) = f(—q )————f(_q,,,_q,,),
and
12 33y 3.0 3 4N _ pe_ 1S f(=¢> —q")
f(=47.-47)~q f(-q",—¢™) = f(-¢ )—-——f(_q(,,_qg).

Thus, (4.2) is equivalent to the identity
_ q”f(__qﬁlzy _q57) + q7j‘~(__q=f‘v, _qéﬁ)
=qf (-9 -¢*) - ¢* f(—¢", —¢™. 43)
However, from a basic property of theta-functions (Part iii {3, p. 34, Eniry 18(iv)}).
g f(=q~"% =¢"T) = qf (¢, —¢")
and
9 f(—q7% —¢*®) = -¢"f(—q®, —¢").
Substituting these facts into (4.3), we see that (4.3) reduces to a tautology. This

then completes the proof of the equality m —n = mn.

Entry 5 (p. 326). Ifiql < 1,

and
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then

@ + )y — 1) + 0 +uv = 5utv @y — 12

Proof. Let

From Entry 1(i), it follows that

wwl +udw? —wru?=0

and

vl +wt +v’w—v=0.

Eliminating w® from this pair of equations and then cancelling the nonvanishing
factor uv + 1, we find that

u(uv — Dw? — vw + uv = 0. (5.1)

We now take this pair of cubic equations in w and eliminate the “‘constant” terms
from the pair. After dividing out the nonvanishing factor w(uv + 1), we deduce
that

uvw? + u’w + v(uv — 1) = 0. (5.2

Next, we take (5.1) and (5.2) and eliminate the “constant” terms. Second, we
eliminate the terms quadratic in w from (5.1) and (5.2). We then obtain the pair
of equations

w’ w 1
W+ v3uv =1 wo@v—12—u2v?  —uvd—uwuv-1)
Wa thire ~ran dasteas tuwn farmlag fae 202 niamalsr
YYU HIUD Lall ULIYL LWV Lunuia 1ur w llalll\dly'

Wo+Pwv—1) Wl — uv(uy - 1)? — u2e?\’
—uvd —wwv -1 T Lwld+udwv-1) )
Therefore,
@ + vy = D)W + uPuv — D) + wv(@*v? - 3uv + 1) = 0.

The desired result now follows after some elementary algebra.

Entry 6 (Formula (3), p. 289). For|q| < 1, let

o= ¢ 4% g”
T+ 1+ 1+

and
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Then
1—2¢ +49% — 39> + ¢*
f5=w ¢ 4 ¢

1430 + 402 4+ 297 + 9%’

This result was communicated by Ramanujan [10, p. xxvii] in his first letter
to Hardy. The first proof of Entry 6 is due to Rogers [4, p. 392, eq. (7.1)]. A
second proof has becn given by Watson [1], and another proof has been found by
Ramanathan [2]. Entry 6 is connected with modular equations of degree 5.

Rogers [4] also derived a modular equation relating R(q) and R(g'").

We now establish the four values for R(g) stated on page 311 in Ramanujan’s
first notebook. Each of our proofs employs an eta-function identity from the unor-
ganized portions of the second notebook [9] (Part IV [4, Chap. 25]). Ramanathan
(3] gave a different proof of Entry 7, but proofs of Theorems 8,9, and 10 were

first given by the author and Chan [1]. In order to state the first four theorems, we
set

2:=14 2124/ 7.1y
a—b

where a and b are certain real numbers to be specified below.

Entry 7. Leta = 5", b = 1, and c be given by (7.1). Then

Re™)y=Ve2+1—c¢. 1.2)

Entry8. Leta =3+ V2~ /5,b = (20)'/*, and c be given by (7.1). Then

Re™)y=cr41—c. 8.1)

Entry9. Leta = 5'%(4—V2),b = 1+ V2 + /521143 - V2+/5-10),
and c be given by (7.1). Then

Re™"")y=c2+1—c. ©.1)

Entry 10. Leta = (60)'/*,b =2 — \/3+ /5, and c be given by (7.1). Then

Re ™ y=Vc2+1—-c. (10.1)

Rafare nravinag Entrie 7~

Selore proving Entries 7-10, we offer some needed notation and preliminary
results. Recall that f(—q) is defined in (0.9). We shall need two related trans-
formation formulas for £ (Part 111 [3, p- 43, Entry 27(iii), (iV)]). f a, 8 > 0 and

«f = 7%, then

e—a/lZ‘xl/tlf(__e—Zu) — e—ﬁ/llﬁl/4f(_e72ﬂ) (73)
and

e_a/24al/4f(e—a) - 8—3/2451/4}(‘(2—/’)' (7.9
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Following Ramanujan [3], [10, p. 23], we define the two class invariants
G" — 2—1/4q—l/24(_q; 42)00 and gn — 2—1/4q—1/24(q; q2)007 (7.5)

where n > Oand g = e *v" At the beginning of Section 2 of Chapter 34, we
establish two simple relations for these invariants,

8an = 2"%2,G,, (7.6)
and
(gnGn)s(Gﬁ - 8,‘;) = % (7.7)

First Proof of Entry 7. Recall that (Part II, [3, p. 84, eq. (39.1)])

L —ass F(=€7)
——— —R(e™)— 1= "= 7 (7.8)
R(e™®) ) f(=e™5)
where o > O and f is defined by (0.9). After some elementary algebraic manipu-
lation, we find that (7.2) is equivalent to the identity
! ~ R(e™%) = 2c, 7.9)
R(e @)
with & = 4. Thus, from (7.8), (7.9), and (7.1), we must prove that
—p—4n/5
s f e ) _ath g (7.10)

f(—e 27y " a—b

where a and b are as stated in Entry 7.
We shall employ Entry 58 of Chapter 25 of Part IV [4, pp. 212-213]. Let

_gt/s —g/s
F= q{/gf((l—q)s) and 0= qus(f (q—q')")'
Then
(PQ)* +5PQ = P* —2P?Q - 2PQ% + 0. (7.11)
Letg = e~2". Then, by (7.3),
P = /5. 7.12)
Using (7.12) in (7.11), we find that
507 +5v50 =5v5 - 100 - 2v/50% + @°. (7.13)
It will be convenient to set @ = /ST, so that {7.13) takes the form

VST 4 VST =1-2T 2T+ TP = (T2 = 3T + INT + 1).
Since clearly T # —1,
VST =T2-3T +1.
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Solving this quadratic equation, we find that

~ 3+/5£V104645
= > _

If we took the minus sign above, we would find that Q = +/5T < 1. But clearly
@ > 1, and so we deduce that

1
Q=J§(3+‘/3+‘/2 0+6~/§)‘ 714
By (7.10) and (7.14), it remains to show that
3+V5+V10+64/5 5441 7.15)
2 sy '

However,

- = N

345410465 =3+V5+5"42/5+6
=3+ V5+545+1)
B+ 5 /5457454 - 1)
B 514 -1

_ 25+
Tosla_q

and thus (7.15) has been shown to complete the proof.

Ramanathan [3] gave a more difficult proof of Entry 7 in which class invariants
were employed. We have also dlscovcred a proof of Entry 7 that utilizes class
invariants. Since our proof is simpler than that of Ramanathan and much different
from our proof above, we give it below. Like Ramanathan’s proof, our proof
requires the value of G,s, and so we give a simple derivation of this evaluation
next.

Lemma 7.1.

1++/5

Gas = 2

Proof. We employ a modular equation of degree 5 found in Entry 13(xiv) of
Chapter 19 of Ramanujan’s second notebook (Part III 3, p. 282])). Let

P =2"3{aB(l — a)(1 - B}/

1/8
0= (ﬁ(l ﬂ)) ‘

and

a(l — )
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where 8 has degree 5 over . Then

1y 1\
g+ o tHP-)=

Recalling the definition of G, in (7.5), recalling that (Part I (3, p. 371) x(¢) :=

(—49:9 )w, and using Entry 12(v) of Chapter 17 of Ramanujan’s second notebook
(Part HI [3, p. 124])), we find that

st = 2—l/4e7(/242l/6e—n/24{ﬂ(] _ ﬁ)}—l/24 — 2-—|/|2{ﬂ(1 _ ﬂ)}—l/24‘

n

N
~

(=)}
~

Since it is well known and easy to prove that G; = 1, we have, by the same
reasoning as above,

Gy =2l —a)} V¥ =1,

Hence, it follows that

Therefore, by (7.16), if x = Gs,

1 1 1
—+x3 42 = -2 =(=-+x
x3 x? X

Since x + 1/x # 0and x > 0, we conclude that

1+4/5
TR

st =X =

and so the proof is complete.

We remark that the value of G5 is given without proof in Ramanujan’s paper
(31, (10, p. 26).

Second Proof of Entry 7

(7.10).

Seta = 27/5 in (7.3), so that B = 5m/2. After some simplification, we find
that

f(_e—dn/S) = £8—7"/wf( _e—SN).
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Thus,
0= otnts T D) s s f(2e7T)
= f(—e-2omy — Vv 2*© f(—e-2m)
Since
4 Gl o 9 4
(q% 9% =(4:9)(q" 9 )0,
’ o0

we deduce from (7.17) that
Q = ‘/5825&00,

~
~
—
~3J
~

(7.18)

where g, is defined in (7.5). We thus must determine g»s and g,g0. Since G5 was
computed in Lemma 7. l we see from (7.6) and (7.7) that Q can be calculated.

For brevity, set x = a[ anda = ("8 . Thus, from (7.7),
ax? —a’x + 1=0,

Since x > 0, from (7.19), we deduce that

x_az+\/a"'—a
B 2a
=%(G§5 G -G lz)

= (/625+G +\/G G;j).

By Lemma 7.1, Gg'5 = Q2+V5?
by (7.20) and Lemma 7.1,

x=g§5=1('+‘/§)2(\/l—8+ 8~/5)2

4 2

2
%(Hf) (34254,

Thus, from (7.18), (7.21), and Lemma 7.1,
Q = V52'g3Gas

/5 (H'“/-\m (3+2.5V41z2

= f f (1 +f)"2(3+2 sl
5|/4) ]I/Z
- ﬁﬂ_“f__
V5-1
_J/53n+t

ST

(7.19)

(7.20)

=9+ 4+/5, and s0 G5 = 9 — 4+/5. Hence,

(7.21)
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Thus, (7.10) is established, and the proof is complete.

Proof of Ell:l‘y 8. Wewi

212-213), but now with

o
-
>
>

=
3
3

D __ 41/5 f(_e_‘"/s) _ n

P =" 7e—oon-— and Q =e8”/5f(_e_8n/5)
f(_e—Z()rr) f(—e““"”) :

By the same reasoning as that used in the first proof of (7.2), in order to prove
(8.1), it suffices to prove that

o="2 + Z«/E, (8.2

where a and b are given in the statement of Entry 8.
Write (7.11) in the form
P? 2
PQ+5———2P 2Q+g-. (8.3)

Z

From Entry 7, P = (5% 4 1)3/5/(5"/* — 1). Putting this in (8.3) and setting
Q = /ST, we find that

|/4 1
+ fT+f

§1/4

LA A T (VR 574
( +) 22t T2 (8.9)

smoq) T %5 s E
By an elcmcntary verification, it is easily checked that T = 1 is a root of (8.4).
Since clearly Q > +/5, this root is not the one that we seek. Writing (8.4) in the
form a;T% + a, T2 + a1 T + ap = 0, and dividing by 7 — 1, we find that
4122014544 /5454 T = (9+6-5'4 +3/542.5%%) = 0. (8.5)

Now sct

a+b

a—1b
in (8.5) to deduce, with the help of Mathematica, that

—(5+3V5)a® + (654 +2.5"ab + 3 — 3v/5)6? = 0.

Solving for a, we find that
54 + [ (74/5 — 15)b2
7 .

We now set b = 5'/44/2 and choose the plus sign above, because if we had chosen

N sMiaIIQ QEATY  wsea vEseaae 14 L. il o T

the minus aq_:,u, WC Wolag Iina tnat 7 < U. wmcn s lmpOblelC l‘lchC.

V70 = 30./5
7

=V24+/14-6/5=V2I4+B-V5)2 =243 -5

T =

a =

a=+2+
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Hence,

at+b ~ V243-5+54/2
VI = Vo

a6 T At3-A-sna

and so (8.2) has been shown to complete the proof.

T /&
I v

Il

Vg
U=

Proof of Entry 9. We again employ Entry 58 of Chapter 25 in Part IV, but now
we set

—l(m/S)

P = /S f(=e7%77) 4 Q=ets f(=e

f(—e=%m) f(—e=80m) "
By the same argument that we used in the proofs of Entries 7 and 8, to prove (9.1),
it suffices to prove that
a+b
~-b

where a and b are prescribed in the statement of Entry 9.
Set A = 34+ /2 — /5 and B = (20)"/%. As in the last proof, let @ = +/ST.
Thus, by Entry 8 and (8.3), we know that

A+ B B\* A+B A-B
+ ~/_T+~/_ (A+ ) 1—2——1-——-2T+A+—BT2- 9.3)

0= V5, 9.2)

A-B) T A-B
Let
_a+b
T a-b

in (9.3). Clearing fractions and simplifying with the hely of Mathematica, we find
that

(=10 — 7v/2 + 45 + 2v/10)a® + 5'/4(8 + 9v2 - 24/5 - 2V10)a%b
+ (=20 — 154/2 4+ 6V5 + 4J/10)ab?
+57410 + 15v2 — 4V/5 — 6/10)b° = 0.
Leta = 5'/%d, cancel 5%/*y/2, and simplify to deduce trat
(=7 = 5v2 + 24/5 4 24/10)d> + (9 + 4v/2 - 2/5 — V10)bd?
+ (44 3v2 - 3v/5 - 2V/10)p%d
+ (=6 — 242+ 3v5 4+ V10)p* = 0. ©.4)
Observe thatd = b is a root of (9.4). If this were the rootthat we are seeking, then
0 would equal (54 + 1)4/5/(5'/4 — 1). Thus, with P and Q interchanged, we

have the same solutions to (8. 3) that we had in the prod of Entry 8. Clearly, this
is not the solution that we want. Hence, dividing (9.4) by (d — b), we find that

(44 6+/2 — 2v/5 = 3/10)b? + 2(—=1 + V2 + V5)bd
+ (=10 — 7V2 + 4/5 + 2/10)d? = .
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Solving for b, we find that

L A= V3 - V5 £ 243/ (116 + 8372 - 5243 — 374/ T0)a2 ©5)
2(4 + 6v/2 — 2v/5 - 3V/10) '
Since
20 -v2-+5) _ (=-v2-V5)
24+ 6V2-2/5-3/10) 2+ 3v2)(2 - V5)

_ (6+5v2+4V5+ V10)
14

_ 0+ V24 V54 +v2)
14 '

we are motivated 1o set d = 4 — /2. Therefore, a = 5'/4(4 — +/2) in agreement
with what Ramanujan claimed. Thus, by (9.5),

6 — 52 — 45 + V10 £ 25283 + 1902 — 1255 — 86/10

b=
4462 —2V5-3/10
9.6)
Observe that
6_5ﬁ_4‘/§+m=1+~/§+~/§. 9.7)

44642 —-2J/5-3/10

We next wish to write
4283 + 190v/2 — 125v/5 — 86v10) = (w + xv/2 + yv/5 + 2/10)%,

for certain rational integers w, x, y, and z. Thus,

'n2

+

2% 4+ 5v2 1 10,2 — 1132
2x° + Sy + 10z 1132,

o~
o
(%]
SNt

wx + Syz = 380,
wy + 2xz = —250,
wz+xy =—172.
David Bradley kindly wrote a program to determine the 24 positive solutions
to (9.8). We then found the unique solution of the system of four diophantine
equaiions o be
w=20, x=9, y=-8 and z=-5
Thus,
2v/283 + 190v2 — 125//5 — 86./10
4+64/2 - 25 -3./10

_20+9V2-8V/5-5/10
44 6v2-2v5-3/10
=3-/24+/5-V10. (99
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If we choose the plus sign above, we would find thata —b < 0and T <0, which
is impossible. Thus, we conclude that

b=1+v2+V/5-2"3-V2+/5-V10),

which is what Ramanujan asserted. Thus, (9.2) is proved, and the proof of Entry
9 is complete.

Our proof of Entry 9 heavily relies on computation in the later stages. Although
Ramanujan possibly used Entry 58 of Chapter 25, he undoubtedly found a less
computational proof.

Proof of Entry 10. By the same reasoning in the proofs of Entries 7-9, to prove
(10.1), it suffices to prove that

—67!/5)

_ b
6x/5 ff ((_ee o - : fbs/g. (102)

where a and b are specified in the statement of Entry 10.
Apply the transformation formula (7.3) with & = 3m/5 and B = Sn/3. After
some simplification,

Fl—eP) = \/ge—dn/ﬁf(_e—wn/})'

s FE) o [ ™)
sl D = freron L) = /—A (10.3)

Because 30 =9 - %’, we are led to Ramanujan’s cubic continued fraction

1/3 2 2 4 3 6

q q9+q9" g9 +a" 9 *a

= — ’ l'
C@O=","7T +71 + 1 +- Il <

From Part 111 (3, p. 345, Entry 1(i)),

Glea) = —g'* x(q)
=Y k) x3(q3)
where
X(@) = (-4 )
In particular,
- Coid) Gas
Gl—e57) = —e~ 53 2 = - , 10.4
(e = e e T T V20, 109
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by (7.5). Recalling the value Gas = (1 + +/5)/2 from Lemma 7.1 and the value
/e /_\|/3I fa /[ / 11/4}

G5 = (1 +V5)(2 + v3) lv‘f-a—vw-r

f.r?r? Ramanujan’s paper [3], [10, p. 28], or from the table of Section 2 of Chapter
34, bui apparently first proved in prini by Waison {7], we find that, from (i0.4),
ey = — 16v2
(1 + V522 + V3 |[Va+ V15 + a5)14)

- 2V22 - V3G - V)

4+ V15)Y2 4 3(4 4 VIS)(IS)V4 + 3v/4 + /I5J/15 + (15)3/4
_ 2- V3G -5

VE(Va+ V150 + VT3 + (543 + VT5))

Now

V4 + V150 + VT8 = 4+ V50 + V1372

= 94+ 2415 = V/2,/ 1(6/3 + 44/5)?

= —(6v3 + 4/5).
ﬁ( )
Thus,
Glee=5) = Q- V3H3 -5
T 6v3 + 445 + (60)'/4(3 + +/5)
i~ [y rn sy V7N
=_( VD)U—VDHOVD-I-‘&VJ"J(UUJ"—\/l)( )")
8

(10.5)
Now Chan [1, Theorem 1] has shown that G(q) satisfies the modular equation

G*q) +2G*(¢)G(@) -G =0
Replacing ¢ by —q and solving for G(¢?), we find that

1—+/1-8G%*~gq)
G 2 — q
q°) 3G(=q) . (10.6)

Setqg = €77, as above, and v = G(e™'%"). Recall the definition of A from
(10.3). Then Entry 1(iv) of Chapter 20 in Ramanujan’s second notebook (Part I1I
(3, p. 345]) can be written in the form

1
3 _
3+AT= -+ 42, 10.7)
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Thus, by (10.7) and (10.6), with w := G(—e~3") given by (10.5),

A3_4/1—\/1—8w3\2+ aw g @4 1Qw-1)
B k 4w ) 1-V1-8w® w? '
(10.8)
by a somewhai lengihy, but sitaighiforwaid, calculation.
Hence, by (10.2), (10.3), and (10.8), it remains to show that
2 1/3
((w+1) (21—2w)) =a+bﬁ, (10.9)
w a-—b

where a and b are specified in the statement of Entry 10. We used Mathematica
to verify (10.9) and complete the proof.

Another proof of Entry 10 has been given by the author, Chan, and Zhang in
[3].

AL L s oie
ICXL CIN I

T yis
quote Ramanujan.

y Ramanujan in his

"

RGPVt TR PUg SPU
aClualiy recoracya twic

=

Entry 11 (pp. 374, 382). Ifq > 1,

1 2 3
LA aLnn
1+1+ 1+ 1+
oscillates between
-1 -2 -3
q q q
RS S (112)
and
-1 -a -8 -12
4 4 1 (11.3)

From the general theory of continued fractions, if all the elements of a divergent
continued fraction are positive, then the even and odd approximants approach
distinct limits. Thus, since (11.1) diverges forg > 1, Ramanujan is indicating that
its odd approximants tend to (11.2) while its even approximants approach (11.3).

In fact, we shall prove Entry 11 for |g| > 1.

First Proof. Recall the definition of the Gaussian binomial coefficient

7] _["] __ @ak
k] = k), T @ o ak’

where |g] < 1 and n and & are integers with 0 < k < n. Define

1 aq ag? agq”

WD =T L T+ T 4+ 1
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Then by a result of Ramanujan (Part 11 (3, p. 31, Entry 16)),
D,(aq; q)

cnla; q) = m.

(11.4)

where
n—jl| . .
Dy,(a; q) = Z [ ,j]a’q’Q.
0<25<n J

We will need two further results of Ramanujan (Part III [3, p. 77, Entries 38(i),
(1)), viz.,

00 q,ﬂ 1
G@) =Y - — (11.5)
W@ 09)xG% %)
and
00 nl+n
1
Hig:=) 2 (11.6)

S@GDn @59)0@% ¢

These are the famous Rogers-Ramanujan identities first established by Rogers
[1). Lastly, we require the following identities due to Rogers [1] and Watson [11]),
[14] independently:

oc q,,?
= G(gY, )
= @GDn @99 @ aLm
s _nt4n 1
Z = H(-q), (11.8)

S @ Dmn 990
oc nitn

Z‘l

=99 T @

and

o) qrx2+2n 1

2

@ Dmn @)

H(g%. (11.10)

It will be convenient to replace ¢ by 1/q in Entry 11, Letting c(g) denote

the infinite continued fraction lim, .o, ¢.(1; ¢), we may rephrase Entry 11 in the
following way. For 0 < ¢ < 1

< i,

the odd approximants of ¢(g ') tend t0 1/¢(—q), (11.11)

while

the even approximants of c(¢™") tend to gc(g%). (11.12)
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We first examine the odd approximants. Using (11.4), replacing j by n — j, and
utilizing the fact

[A] ::q_B(A_B)I:A] , 11.13)
B q7! B q
we find that
n 2"_’ _ Z_j
Duig~'iq7") J§)[ /)
CZn(l;q_‘): D (l’ —]) = " e 3
w1 q Z[ +4—/] 97/
j=0 ?
i[ﬂﬂ] P ) Zo[nﬂ] g/
j=0 9 =

Z [n;}H-l _'q_(,,_j)z ;}[n;—jj:]l]qu.,_j
J=

Hence, by (11.8) and (11.9),

x i

9
lim 6 (1 g~y = i=0@:9) _ G(-q) _ !
w0 =TT T HE T )

=0 {2: 9)2541

where in the last step we employed (11.5), (11.6), and the Rogers-Ramanujan
continued fraction (Part I11 (3, p. 79, Entry 38(iii)]). This establishes (11.11).

We next examine the even approximants. Employing (11.4), reversing the order
of summation in both the numerator and denominator, and applying (11.13), we
find that

Dy_1(q7" q7") jébr R
Y — ]; -1 = — ! =
C2n l( q Dzn(];q_’) [Zn I] lq i
j=0 i
"t (=1 ) =(n— nt+j 1,242
1 e MR o EL) T
]=
= n =q O cpri1 o
Sl A —(n-j)? S {rr qi°
Jéaol. 2j Jq—lq jéal 2j J
Thus, by (11.7) and (11.10),
o) 42j
q9
> ‘
. N = q: 9)2j+1 _ _H@Y — ge(g?)
”]Ln;oc2n—l(q )=¢ § qu _qG(q4) 9 )
j=0 (q:9)2;
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where we used (11.5), (11.6), and the Rogers-Ramanujan continued fraction.
Thus, (11.12) is proved.

Entry 11 is a truly amazing result. It is very remarkable that the Rogers—
Ramanujan continued fraction reappears in determining the limits of both the
even and odd approximants of the divergent Rogers-Ramanujan continued frac-
tion. It also should be noted that the continued fractions (11.2) and (11.3) are
“near” each other in the sense of Entry 13 below. More precisely, if we set x = |
in (13.1) and (13.2), we obtain (11.2) and (11.3), respectively, but with g replaced
by 1/q.

We will now give a second proof of Entry 11. This proof shows that Entry 11
arises from infinitely many Bauer—~Muir transformations.

Second Proof. The even part of (11.1) is given by (see (64.1))

i qS q7 qii
]+q — 1+q2+q1 — ]+q4+q5 — l+q6+q7 —_ ...

q—l q—l q—l q—l

Tt —T4q g7~ Ttq tq= — T4q g

(1 ] 14)
The latter continued fraction is a limit 1-periodic continued fraction for Ig] > 1.
Since the linear fractional transformation

q—l

t(w)y=-——"_
W=

has the two fixed points —¢ ! and —1, it follows that (11.14) converges for |g| > 1.
Moreover, the modified approximants

-1 -1 -1

q
— l+g7lg=* 4w,

q9 q

Sn(wy) =
(wn) 1+q—l—l+q—l+q—3_.4.

also converge to the same value if {w,} does not have a limit point at —1. (For in-
stance, see Jacobsen’s paper [1).) Applying the Bauer—Muir transformation (13.7)
to the second continued fraction in (11.14), with wo = 0 and w, = — | /g, n=1,
we obtain the continued fraction
q_“ gt g3 g}
1 +l+q—3—1+q—3+q—5_1+q—3+q—7_...

, (11.15)

which converges to the same value for |g| > 1. Again, this is a limit periodic
continued fraction. The attractive fixed point of

q>

t = ——
1(w) l+q‘3+w
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is —g~3. Hence, with wo = w; =0 and w,, = —g~3 for n > 2, the Bauer-Muir
transformation of (11.15) is given by

q—l q—-d q—8 q—S q-S

BRI L L A S E o A

which converges to the same value. Repeating this process k times with
wo=w = =w_ =0 and w,=—-g"*", n>k (11.16)

we obtain the limit periodic continued fraction
£l_ g~ q_"’ g% g !
1 + 1 + 1 +--- + l+q—2k—l —_ l_+_q—2k—l+q—2k—3

q—2k—l

— 1+q—2k—] +q—2k—5 -

a

Y

A7)

which converges to the same value as (11.14). Repeating this process infinitely
many times, we obtain (11.3). Since (1 1.17) converges uniformly with respect to
k by the uniform parabola theorem (Jones and Thron {1, p. 99]), and since (11.3)
converges, we conclude that (11.3) converges to the same value as (11.14). We
have thus proved that the even part of (11.1) converges to the value of (11.3) for
gl > 1.

To prove that the odd part of (11.1) converges to the value of (11.2) for |q| > 1,
we can use the same idea, and even the same choices (11.16) for w,,. We then find
that the odd part (Jones and Thron (1, p. 43, eq. (2.4.29)], where the first minus
sign is misplaced) of (11.1) equals

S 9

4 g q
1+q+q2— l+q3+q4— 1+q5+q6.—..
- g g g~
1+g'+g2—14+g ' +qg* —1+qg +qg® —
- q”' q° g q’
1+q_2+1+q_4-—l+q—3+q—6—l+q—3+q—8—...
. g = q° g
T+g 2 +1-g7+g*+14+q7¢~1+¢7+q7
g
— ]+q—5+q—10_...
q—l q—S q—‘) q—13

=1- .
I+ 2+1-g +q ¢+ 1-q2+gc+1-g7+qg "+~

The last continued fraction is the even part of (11.2). Since (11.2) converges for
lg| > 1, the second proof of Entry 11 is complete by the same argument as above.
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K. Alladi {1] has given another proof of Entry 11 that is similar to our first proof.
However, he related his proof to the continued fraction

") =g+ 1 1 1

=14 q3+q5+q_7'.|....‘
To be more precise, let F,{q) and @,{g) denoie ihe nih numeraior and denomi-
nator, respectively, of the nth convergent of r(q). Let T(q) := q~'*R

. . =gq (g). Then
Alladi (1, pp. 225-229] proved that, for |g| < 1,

Pn-i@) _ G@") _ T@")

lim = =
n—00 Oy,_1(q) g H(g'®) q°
and
Pulg) qH(=¢) ¢
n>0 0r,(q)  G(-g%) ~ T(—q%
Moreover, in the sense of modified convergence, Alladi proved that 7(g) tends io
T(q),1ie.,

1 1 1 1 1

n—oc +E+?+F+-.a+q2n—|+q2n+l+l=T(q)‘

For the definition, importance, and historical background of modified conver-
gence, see Jacobsen’s paper [2].

For the last entry on continued fractions found in the third notebook, we quote
Ramanujan.

ntry 12 (p. 383). /f

4V g9 ¢ &
1

u.= - — -
+T1+ 1T +T +

2 . Ll
lheny +1_4 — 1 = Owhenq" = 1, where n is any positive integer except multiples
of 5 in which case u is not definite.

This statement is not quite correct. However, 1. Schur [1], (2, pp. 117-136) has
established the following theorem.

2 3
9 49 q
K@=14+- — =
g T+ T+ 1+
where q.is a primitive nth root of unity. If n is a multiple of 5, K (q) diverges.
When n is not a multiple of 5, let A = (%), the Legendre symbol. Furthermore, let
p denote the least positive residue of n modulo 5. Then, for n % 0 (mod 5)

K(q) = rq"' 0P K ().
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Note that it is elementary that K(1) = («/3 +1)/2and K(—1) = (ﬁ - 1)/2.
We provide a short table of further values of K (g).

n K(q)
3 —g 5t
SS5+1
4 | q¥H
SS+1
6 | 5
145-1
7| %

Ramanuian’s lost notebook [11, p. 57) contains some claims on finite, g‘en'eral-
ized Roéers—Ramanujan continued fractions., and thesg results havelreFenuy tl)e::
proved by S.-S. Huang [1]. Perhaps the mam.result gives a fonr}u a for evalu:
ing certain finite generalized Rogers-Ramanujan continued f;agllons‘at primitive
ro;ts of unity x. At the bottom of page 57isa table. of ge'ne{a.l ton:}:ulas ar;ang:u
according to residue classes of n modulo 5, when xisa primitive n ll;oot ofun ?Is
However, the table contains some errors. When this table is ust n :fmaleu_]fan ‘
primary formula, specialized to the ordinary Roger.s—Rar'na‘nujar'l comm:et tt:ac
tion, we obtain Entry 12 as Ramanujan recorded it. This is evidence t a‘I ese
results in the lost notebook were derived before Entry 12. For more details, see
’s paper (1. )
HU;;!E :e?(tpl‘iSl[llll is stated exactly as Ramanujan recorded it.

Entry 13 (Formula (4), p. 289).

e ¢ ax q° o |
"T4+1- 11— 1 e conventional only
4 8 12
o o a aq .
_9 4a 1 g nearly |
T x4+ xtxt+t x +-

Both continued fractions converge to meromorphic functions of x in C — {0}

for |g| < 1. We shall indeed prove that
5 (—x)'q"
PN
¢ ox 4 _ =0 @5 o a3y
T— 1 + 1 — - 00 (—X)"q" +2n

r

nzo @H g

1
i -

qx
1+

and

—2n  4n(n+1)

q

, gl < L. (13.2)

ISR
= |9,
=R

£~

n=0 (qd; C]“)"
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Let f(x; q) and g(x; q), respectively, denote the values of the continued fractions
in (13.1) and (13.2). We shall then prove that both f(x; q) and g(x; q) satisfy the

camo et

same funciional equation
1
xa+ F(x:a)’
’ (x:q)

for 0 < |q| < 1. Furthermore, we shall prove that f(g; q) = g(g; q). It then
follows from (13.3) that

F(xq% q) = (13.3)

@ 9 =g@"*";q) (13.4)

for every nonnegative integer n. Lastly, we shall describe some work of Zagier (1]
which indicates in what sense f(x; q) and g(x; q) are “nearly” equal.

The continued fraction on the left side of (13.1) may be identified by employing
a continued fraction found in Ramanujan’s “lost notebook” [11] and proved by

Andrews [5], M. D. Hirschhorn [2], S. Bhargava and C. Adiga [1), [2], Bhargava,
Adiga, and D. D. Somashekara [1), and others. Let

15, allll OINELS, 1.6

A bq + rq? 24+ 2q}  bg? +rgt
F(a.b,k,q)=l+aq+q q+Aq°  aq’+2q q° + Aq

1+ 1 + 1 + ] 4o
and
ol 24n)/2 n
(—A/a)aq" M2
G@,b, A, q) = Z_‘?__, ql < 1.
n=0 (q;q)ll(_bq;q)n
Then
G(a,b, A, q)
F(avb‘k,q) = Glan b lnqn\' (13'5)
AUV FR SN RN D

Setting b = 1 and A = 0, replacing g by ¢2, and setting a = —x/q, we establish
(13.1).

The continued fraction on the right side of Entry 13 is equivalent to

g/x  g*/x* §d/xP ¢'/x?
T+ L+ 1 4+ 1 4
Thus, (13.2) follows from the corollary to Entry 15 of Chapter 16 (Part III [3, p.
30]). This corollary also appears in Ramanujan’s [10, p. xxviii] second letter to
Hardy.
To prove (13.3) for F(x; ¢) = f(x; q), we shall use
mation found in Perron’s book [1, p. 47]. Briefly, a Bauer-Muir transformation of

a continued fraction b, + K(a, /b,) is a (new) continued fraction whose approxi-
mants have the values

ay a; ax
by +b+- + by +w;’
Such a transformation exists if

Si(wy) 1= bo + k=0,1,2,....

A i=ap = wi (b +wy) £0, k> 1, (13.6)
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and it is given by
arha/As a1h3/ 22

Ay
_ + .o
bo + wo + by + wy + by +wy — worz/M F by + ws wiks/da 3.7

s s TS Tets £ f b arhitrarily
K(a,/b,) converges to avaiue f € L.Letip 7 j 9O aivt N
ii‘:g:e(:\g;r?:: %0 :ndsd:ﬁ/ng L =S Y(to), k > 1. Then Si(wy) tends to f a‘; well,
unless the chordal distance d(wx, &) has a limit po'int.at 0. Hgnc;, thet )au:r(—)
Muir transformation (13.7) converges to £ as well, if limy oo Inf d(we, I
(Jacobsen [5]).
We shall apply this to the odd part

ﬂllT
g’x g'x —
L—ax+ 7o —gn + 14¢°(1—g0) + 1+g%0 —gx) +
\ (13.8)

=f
of (13.1). Let
a,=q"'x (n=1) and b, =1 +¢"(1-gx) (120

2%

so that (13.8) can be written as — 1 +bo+K(a, /by = f(x: ). léelgw;ls; co?werf;;
each k € N. Then the modified approximants —'l + Sk (wk).of (13. )b Sipe
to f(x; q) by the following argument. The cc}nlnuued fraction —.l +bo :e“ f(:, / “,,.n
is limit periodic since lim,.oc @» = 0 and lim, 00 bn = 1. Tt 12 then vell known
(see, for instance, Jacobsen’s paper [3}) thfu —1 +bo + K‘(a.,.{ ,,.) 'c,olri ; f slod
value ¢ and that # tends to —1 forevery .tail seq\{ence of —i+ fo ;; (;\\:«,i ; u;;o "
1o # @. In particular, this implies that lim . 1nfd(wk, rk)d—f ' -t ,;,ay
that limy— o0 Sk(wi) = f(x; ). Since (13.1) obviously holds for g = 0,

assume that g # 0.

A simple calculation shows that, for k>0,

2k-2
A = ax — wi—1(bx +wy) =¢q #0,

. . ) < viven
so that the Bauer—Muir transformation exists, CONVErges to f(x; q), and is give
by

2’x q’x

. :
. o — 3 -
fod =0+ 5t T1 21— ¢*0) + 1+9°( —¢°3) (13.9)

Comparing (13.8) and (13.9), we find that

|
fg) = —ax + Ty

which proves (13.3) for F(x; g) = f(x; )
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To prove (13.3) for F(x; q) = g(x; ), we just observe that replacing x by g°x
in (13.2) yields

o0

vy 4 4 & _ g
8(‘1X,q)—q2x+q2x+q2x+..._ x +

_ Ve 1
x+leiq)  xq+8(xgq)

¢
+ x

= |

+ x +---

® | -

which is what we wanted to show.
For x = g, the continued fractions in Entry 13 reduce to, respectively,

2 2 4 4
.a) = T 4 q i
f(q'q)_l_T+T—T+T—-” (13.10)
and
i 2 g8 g
8@ D=1 T T+ T 4. (13.11)

Thus, (13.11) is the even part of (13.10), and so f(g; q) = 8(q; q).
In order to examine how “close™ the continued fractions f(x; ) and g(x; q)
are to each other, by (13.1) and (13.2), we are led to examine

00 x—zr:qM1 0 (_x)nqnz 0 X-Zn—lqdn(n+l) 00 (_x)nq(n+l)2
F(x;q) .= -
1 ;(q‘; g Z; % 9% g @%9% = @%9Y.

Quite remarkably, Ramanujan stated an identity for F(x; q) in his lost notebook
[11], namely

Q0
v (_x)nqnz o )
Flriq) = oo _ 4% 990(gx: 4")oo(g/x: ¢%)oo (13.12)
' @% 49 @% 9900 ' ’

where the last equality is obtained from an application of the Jacobi triple product
identity. The identity (13.12) was proved by Andrews in (6, pp. 25-32} and is
mentioned by him in his Introduction to the lost notebook [11, p. xxi, eq. (10.6)).
Zagier [1] independently also established (1 3.12). From (13.12), it is obvious that
F(g**!; q) = 0 for each nonnegative integer n. We thus have obtained a second
proof of (13.4). Of course, the second proof is shorter than the first, but the first
proof is more elementary than the second, because (13.12) is somewhat difficult
to prove.

If x is not an odd power of g, in what sense are f(x; q) and g(x; q) near each
other? H. Cohen performed extensive calculations to answer this question, and
Zagier [1] established Cohen’s conjectures as well as much more. We give a brief

summary of some of Zagier’s results. We always assume here that 0 < q < land
x > 0.
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Yy Entry 14 (Formula (2), p. 290).
Let 0 = exp(logq).Then, forx =1, ox x ot a6 Wy o'
1— ¢4 r 2 T T -~
sV/5-1 5 5—~/5Qz_5—3~/5Q3_... T+g+14¢2 —14@" + 14q" ~ 1+¢° + 1445 — -~
fi =g ——|1+¥5Q+ —; 2 e ¢ & nearly
x+x+x +x+- T
and
_1 5—4/5 5-3V5 5 The analysis for Entry 14 is very similar to that for Entry 13. Both continued
1/5‘/§ _ \/g + Q2 + Q i 1N . . . .
elig)=q 3 1 Q 2 2 fractions converge to meromorphic functions of x in C — {0} for |q] < 1. We shall

prove that
In particular, as g tends to 1--,

3 2 P 3 9
cq) - gl q) = (5= V9)q'?Q + 0(Qh). (13.13) 1 q’x q°x q°x a’x q°x

- TG TG R T~ g+ Thge -

However, as x tends to 0, N (_x)"qmzﬂm

(14.1)
/ /w2 /4\\ Z (2. A2 Ny 2
. oy — A ) (13.19) _n=0 @5 gqh
fixiq)—glig) =0 (e)‘pklogq}) ) 3 (xyrgeimm <.
Note that the asymptotic behaviors for x = 1 and x near O are different. = @hed),
In general, Zagier (1] has shown that and
c(x) + O(I)) 00 y—2n 20 4+n
ca) — e(x: g) = ————= )cosf x" g
frig g exP( logq 1 v s D D o
LI B B L
as ¢ tends to 1—, where & = ( logx)/(2logq) and r+xt+x+x te o x f x~ingnion
2 \2\ n=0 (9% q"n
n . o _
W= +3 Li; \(‘v 1+x2/4-x/2) ) Let f(x; g) and g(x; q), respectively, denote the continued fractions on the left
sides of (14.1) and (14.2). We shall prove that f(g"; q) = g(q"; q), for every
+ 1 log? ( 1+ x2/4+x /2) — log x log (\/ t+x2/d4+x/ 2) , nonnegative integer 7, by invoking the same theorem from Ramanujan’s lost note-
2 \

book that we used in Section 13. Thus, we shall easily see that the “closeness” of

f(x; q) and g(x; q) can be determined merely by changing the variables in the
analysis of Section 13.

where Li, (1) denotes the dilogarithm

o
Lipe) = Y t"/n%, M =1L
n=1

Proof. For |g| < 1 and each nonnegative integer m define

. _ _ 2 2 S _m o \n, (ni+n))2
Since Lip(1) = m?/6 and Liz ((3 —«/5)/2) = /15 — log ((1 ++/5)/ ) . (—g™x)'q

2 oC
- - = i and PZM'H (x) =

t c{0) 2/42a () me/ i_l! aQ[@Qment WIth ( 2m; NP

inat c{u) /4 and (1) /s, g § :

q’"“x)"q("z‘L")/z

(_
- « o ea —~n Lot sk (_q2m4-l; q)
(Lewin [1, p. 7]), we Nna s

n=0 * 7 VAU e 2m+1 n(q, q)"
B ightf i .
‘¢ 233e?: a(r:aaly‘;z shows that, for instance, f(x; 0.99) and glx; 0.199) agree (0 y straightforward calculations, we then find that
’ ‘ ' S m4!
abouthS decimai places if x is near 1, about 96 places if x is near 3, and ab:ut o) = Pty = o -
laces if x is close to 0. The function c(x) becomes negative for x larger.t an TP P

lg7u‘: 6acle;7 Thus, for x larger than this, f(x; q) — g(x; q) becomes exponentially and
about6.177. ,
large as g tends to 1—. . . - i B 13 .

We do not know the meaning of. the wgrds conventional only” i ry P61 — By — - zm‘{l)(l _ -

For Entry 14, we again quote Ramanujan. p -



42 Ramanujan’s Notebooks, Part V

Since P,.(0) = 1 for cach m € N, we thus deduce that

qx q’x q°x
Pox) . (+DU+q (1+g0+g¢) (1+gH0+4g%
PG 1 + 1 - 1
g°x
(1 +¢H(0 +49
+ 1 4
1{ gx q’x q’x q°x }
=l—§ll+q+l+q2_l+q3+l+q4_... .

(143)
Hence, the first continued fraction in Entry 14 converges for |g| < 1 to the value
00 (—x)"q("2+")/2
Py(x =0 (7: @)a(—1; @)n
fx:q)=—1 +2-¥ =-1 +2£0—T—7
v Pl(x) [v+} (_qx)“q\ Ly
n=0 (q; q)n("'q; q)n

o0 (_x)llq(n7+n)/2(l +qn)

=0 (g% 4%)n
oo (—x )nq(n’+3n)/2

Ey (9% qn

which immediately proves (14.1).
By the corollary of Entry 15 in Chapter 16 (Part I (3, p. 30)),

1 1
2 4__" 6_~
g —](l Tor g Tgn \|
+ x4+ 1+ + 1+ 1+

2
x -2nq2n +n

=1+

»

w

= |

|-

® IR

flxiq)—g(x;q)

2
282 —n (_x)nq(nz+n)/2 0 x‘z"‘lqz"2+" x (—-x)"q‘" +3m/2

oo x-an 00
=0 (% ¢ L G o @ i @)

0 (_x)nq(,.2+3n)/2 o x—2nq2n2—n
n=0 (qz;qz)n n=0 ((12;‘12)n
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(@5 Doo(Xq; Poo(1/%; @)oo
00 (_x)nq(nz+3n)/2 00 I—anbrz—n

9% 9% 3

im0 (@45gDn 20 (g% gDn
where we have employed (13.12) with ¢? replaced by ¢ and x replaced by x./q.
It follows that f(g": g) = g(@”; q), for each nonnegative integer n. We also see
that Zagier’s analysis can be applied mutatis mutandi, after the aforementioned
changes of variables are made.
It is interesting to note that the continued fractions in (13.1) and (14.1) are
connected to the basic hypergeometric functions
o0
(@; @)n(b; q)n
wia, biciq,0) = ) ———=2",
: ; € @) (q; @n
For example, we shall show that the continued fraction in (14.1) can be derived
from E. Heine’s [1] continued fraction expansion

]

|z) < 1.

201(a, by c; g 2) az @z a4z
2¢.(a,bq;cq;q;2)= R T T (144
where
o q*(1 —ag")(b — cq") and ay = g* 7' — bg")(a — ¢q")

(1= cg®)(1 - cg***) (1 —cq® N1 —cq®)
Leta = 0,c = —1, and z = xg/b, and let b approach co. We then find that

*'x g*x

- % oy, ad —axz= 2—1 T
(1 + g2 + g2+ (I +q%* 1A+ g%)

Thus, the continued fraction in (14.4) reduces to the one in (14.3). Likewise, since

lim (b; @),b™ = (=1)"g"" ™2 and  lim (bg; q),b™" = (—=1)"q""+"/72,
b—>00 b0

—au+12 =

the left side of (14.4) reduces to the left side of (14.3). The identity (14.3) follows
then, since the continued fraction (14.4) converges uniformly with respect to  in
a neighborhood of b = 00. A rigorous proof of this statement can be given along
the same lines as that given for (24.5) below.

Entry 15 (p. 373). Let a, b, and q be complex numbers with |q| < 1. Define

00 qnzan
q)(a):nz:; (2; 9)albg; 9),
Then
v@ _ . aq ag’ —bg aq’ aq*-bg?
¢(aq) 1L+ 1 + 1 + 1 +o

Proof. In (13.5), leta = 0, replace b by —b, and set A = a. Upon observing that

lin})(—l/a; q)na" — knqn(n—l)/l'
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we see immediately that Entry 15 follows, since the continued fraction expansion
of F(a, b, A, g) inthe proof of Entry 13 converges locally uniformly in our domain.

Observe that another continued fraction for p(a)/¢(aq) is given in Entry 15 of
Chapter 16 (Part I1I [3, p. 30]). Furthermore, another representation for ¢(a) can
be found in Entry 9 of Chapter 16 (Part 11 {3, p. 18}). With the help of these two
observations, Ramanathan [4) has found another proof of Entry 15.

Entry 16 (p. 373). Forlg| < 1,

2

x4 (=¢*) __ f@.4") =i q" a6.1)
fl-q.—9%  f(—9%—-49") = (@*qn '
and
ax(-a)f(=4") _ af@.d) & gtV (16.2)
fah—g)  f-ab ¢ Z ke '
where, as before, x(q) = (—q; 4 oo. Moreover,
a4, 9" f4.9) _q9 @& & (16.3)
f(=q* =g/ f(=q*,—¢') 1+ 1 + 1+ )

Proof. First, (16.3) follows immediately from (16.1), (16.2), and a standard rep-
resentation for the Rogers-Ramanujan continued fraction given in Entry 38(iii) of
Chapter 16 (Part III (3, p. 79)).

We next demonstrate the first equalities of (16.1) and (16.2). By Entry 19 (the
Jacobi triple product identity), (22.2) (Euler’s identity), and Entry 22, all in Chapter
16 (Part 111 (3, pp. 35, 37, 36]), we find that

0.9 (=409 D(=3" D@ 4"
F(=4% =4 0% 9@'% ¢%)x(3%; ¢
_ (-4 4"00(—4% 3" )0
(9% 4'90(9% 4'oo(—4% 400 (g% 7' (-9 ¢')o

_ (4% 260(=4% 400 (=4 ' oo (=¢%; ¢ oo
(=% 400 (@i 4o (-3 )0 (@ 4°)oo(—4% ¢°)eo

3 1

T (=45 490045 §9)00(q% ¢

(16.4)

_ (g% 30(q%; 7)oc
(2 490 (3% 4% (4% 7)o
_ x(=a)/(=4%)
f(—a,—q%
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which .establishes the first equality of (16.1). The proof of the first equality in
(16.2) is completely analogous.

By (1.6.4‘) and its analogue, in order to prove the second equalities of (16.1) and
(16.2), it suffices to show that, respectively,

2
=, a”

1
1

qz)oo(q§ qj)oo(q4§ qs)oo

2 @499 (—q%

n=0
and

o) q(n+l)’

_ q
=0 @%9 (4% 99%G% 4w (9% %)

These last two identities have been proved by L. J. Rogers [1, pp. 330, 3311. Hence.
the proof of Entry 16 is complete. S o -

Entry 17 (p. 374). Leta, b, and g be complex numbers with |q| < 1. Define

venme

& (n?+n)/2 n
pay=3y 2___°

=@ Pa(=bg; q)n’
Then

v(a) 14+ bg ag® bq* ag® bq®

gag) L AT+ T+ 1+ T+

Proof. The result follows immediately from setting A = 0 in (13.5).

2. Other g—Continued Fractions

Entry 18 (p. 373). For |q| < I,

f(-9.-¢°) _ 1 q+4* ¢*+¢*
f=¢* =) 1+ 1 + 1 4.

Beneath this continued fraction, Ramanujan writes

Num? — £C4% LACH,
um? = and Den? = .
(—q) f(—q?)

_l_n, fact, -he has incorrectly inverted the identifications of the “numerator” and
denominator” on the left side of Entry 18.

By Entry 22 and E 1 i

s ry xample (v), Section 31 of Chapter 16 (Part II1 [3, pp. 36,
S04 =" _ xCOVE@) | @4906@% 000 (@D
f(—q% —g? o(—¢q°) @%992@% 900 (CHPDY




46 Ramanujan’s Notebooks, Part V

where x(q) = (—¢; §*)oo- On the other hand, by Entry 22 of Chapter 16 (Part III
[3, p. 36]),

V@) f(=q" _ 4% 4%)0(9: Do _ @490
e(—a)/f(=9) @ 4%@% 403 3D (4% 9%
Hence, we have shown that Ramanujan has mistakenly confused the roles of the

“numerator” and “denominator.”” Moreover, we now see that Entry 18 can be
written in the more transparent form

2
= M"i = l ‘1_+i L i (18.1)
g%q¢®», 1+ 1 + 1 + .-

The first proofs of (18.1) in print are due to Watson {2] in 1929 and Selberg [1,
P 19] in 1936 B. Gordon [1] and Andrews {1] found proofs in 1965 and 1968,
respectively, while Hirschhorn [3] has shown that (18.1) can be deduced from
Ramanujan’s continued fraction (13.5). Ramanathan {2}, [3) has briefly discussed
(18.1). L.-C. Zhang [1] has examined (18.1) when g is a root of unity.

A detailed study of G(g) has been made by H. H. Chan (1]. He has derived
modular equations relating G (g) with each of G(—q), G(g?), and G(g*). Usmg
these and other modular equations, he has determined values for G(+e™™ ") for
several positive rational numbers n. The author, Chan, and L.-C. Zhang (1] have
found general formulas that enable one to evaluate G(xe™™ v ™y in terms of class

invariants.

Entry 19 (Formula (3), p. 290). For|q| < 1,

@54 1 g @’ q q’
@90 1= 1+qg —1+g> —14¢>—1+g%

5

Proof. We apply Theorem 6 in Andrews’ paper [1] witha, = wxg,a; = w™'xgq,
a = —1/(x2q%), and b = 1/(xq), where @ = exp(2ri/3). Thus, 1/(a1a2) = —
and 1/a; 4+ 1/a; = —b, as required in Theorem 6. Accordingly, by the same
argument as in the justification of the limiting procedures in Entry 24, using the
uniform parabola theorem (Jones and Thron [1, p. 99]), we find that

3 5
fim H; (wxq, o 'xq; %; q) _ q

=0 Hy | (wxq, w™'xq; xq; )

Fi g
k]

g
149 —1+q> —1+q° —

(19.1)
where the identification of H,; will be made shortly. Comparing E 19 and
(19.1), we see that it remains to show that

) 1 g% q%)
lim — S L (19.2)
=0 Hy (wxq, 0 'xq.x:q) 49: 90

Hy \(wxq,w™'xq; xq; q)
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By Andrews’ paper [1, eq. (1.1)],
(xq/a1; q)oo(xq /az; q)co,,

1 i{a;, a2, %, g) = 9 Dos Coilay, az; x; q). (19.3)
Furthermore, by [1, eq. (1.1)],

lim € 1 (wxq, w™'xg; x: q)

o0 (_l)nq3n(n—])/2
2@ @ @@ @)n
_ i io: (] — w—lqn)(l - qu)(_l)nq3n(n—l)/2

(-0 (1 -w & (9% g%
—1 ( ])n In(n-1)72 » (- q)n 3n(n—1)/2 (194)
T3 (n}; @*q%) —@ +w)z @

( Z)n 3n(n— l)/2
+
§ (@4

= 5(0 + @40 + % ¢D)o),

where we have employed an identity of Euler (Andrews [4, p. 19)). By a similar
argument,

. i —1)*g3rn=1/2+2n
lim C, | (wxq, 0™ 'xq; xq; q) = Z - ( l)?
x>0 n=0 (q, q)n(w lq; q)n(qu q)n

—~
—
N
;)

~—

Z( Z)n 3n(n—-1)/2
B o

by another application of Euler’s identity.

Putting each of (19.4) and (19.5) in (19.3) and using the results on the left side
of (19.2), we find that

= (4% ¢)oo.

1
lim
=0 Hy\(wxq,w™'xq; x; q)
Hy\(wxq, w='xq;xq;q)
1 (nl A
— L 9,49
(0 -0 (1 - 0)3((q; ¢%)eo + % %) 0) @ 9700
2. 43 -1
(q ’q )W
This completes the proof of (19.2) and hence also of Entry 19,

The functions C; ; studied by Andrews in [1] also appear prominently in his
paper [3, Sect. 2). These functions play a crucial role in the full three parameter
general Rogers—Ramanujan theorem (Andrews [2]).
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In Ramanujan’s [10, p. xxviii] first letter to Hardy, he states the Rogers-
Ramanujan continued fraction and some identities involving it. Ramanujan con-

> e i H o H M
tinues by claiming “The above theorem is a particular case of a theorem on the

continued fraction

2 3 4 s

1 ax ax ax ax ax
1

T+ 1+ 1 + 1 + 1 + 1+
which is a particular case of the continued fraction

1 ax ax? ax?

14+ 1+bx + 14bx2+ 1+bx3 +--

which is a particular case of a general theorem on continued fractions.” It seems
possible that Andrews’ Theorem 6 of (1] giving an evaluation of

xq(l +axq?)  xq*(1 + axq®)
1+bxg? + 1+bxqg® +--

is the “general theorem” about which Ramanujan writes. However, Hirschhorn [1],
[3] has also put forth a very good candidate for this “general theorem.” The most
general continued fraction containing the Rogers—Ramanujan continued fraction
as a special case is undoubtedly that of Andrews and D. Bowman [1].

1+ bxq +

Entry 20 (Formula (4), p. 290). For |g| < 1,

@990 _ 1 q g 7

@9 17 1+¢> ~1+g* —1+¢° -~

This result is simply the case a = 1, & = 0 of Entry 12 of Chapter 16 (Part I1I
(3, p. 24]). Entry 20 can also be found in the “lost notebook™ [11]. Ramanathan
[4] has also given a proof of Entry 20. Another continued fraction for the left side
of Entry 20 is found in the “lost notebook” and has been proved by Andrews {7]
as well as by Ramanathan [4].

It is interesting to note that the continued fraction in Entry 20 also converges
for |q| > 1. In fact, set ¢ = 1/a, so that |a| < 1. Then

1 q q° q°
1= 1+g2—1+g*—1+g°—
1 _la i/a’ ija’
TT-Tt+1/@ - 1+1/a* - 1+1/a®~--
1 a a? a®

1-a’+1 —a*+1—aS+1—
@;aY _ (1/9%1/¢%)
T @Y.  (1/4:1/3%0
This is, indeed, a beautiful example of symmeiry.

(20.1)
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It follows more generally from Entry 12 of Chapter 16 that

b9’ 9% 1 bq bg* b’ e
g4 1= T+q? —T+g* —T4go —--0 M=l
Now let |g| > 1 and set g = 1/a, so that |a| < 1. Then, as in (20.1),
1 bq bg* bg® _ ba*aY% (/9% 1/9% 0

1= 14+¢? —1+¢* —1+¢° — - (ba;a%  (b/q:1/9%0
Although the continued fraction above is symmetric in ¢ and 1/q, the product
(3% 4*)oc/ (bg: ¢*)oo does not share this invariance. However, if b = — 1, then
(4" _ 43 4%=@* 44" 4%)wo
(=49 (9% 903’ 4%)c(@7; %)’
and the latter quotient is invariant when q is replaced by 1/g. Thesc observations
are due to K. Alladi and B. Gordon [1, p. 298).

The convergence of (20.1) when g is a primitive root of unity has been examined
by Zhang [1].

Entry 21 (Formula (5), p. 290). For |g| < 1,

(-¢%4)0 1 q ¢*+q ¢ g*+q¢* ¢°
409 Jo 279 LT @21.1)

(49D 1+1T+ 1 + 1+ 1 41+
Entry 21 was first proved in print by Selberg (1, eq. (54)}. Another proof has
been given by Ramanathan [4). We provide yet another proof based on Entry 15.

Proof. Applying Entry 15 witha = 1 and b = —1, we find that
00 n?
q
r 2. 52 2 3 4 2
,.=o(q.q).,=i+g 9°+q q¢ q‘+gq
g L+ 1+ 1+ 1 4

D

n=0 (‘12; qz)n
(A]temative!y, this can also be proved by using (13.5) in Chapter 16 of Part III
(3, p. 28! witha = —1and b = 1.) Using Euler’s identity (Andrews (4, p. 19)
once again, we find that the numerator and denominator on the left side above are,
respectively, (—¢; ¢%)oc and (—q2; g2)o,. The desired result now follows.

If “Q(q) denotes the left side of (21.1), then, by using Entries 22(i), (ii) and
25(vii) of Chapter 16 (Part III [3, pp. 36, 40]), we can easily show that

v _ x
¢ q)  16q°
in the notation of Entries 5 and 6 of Chapter 17 (Part 111 (3, pp. 100-102)). Thus,

modular equations for Q(q) can be trivially derived from any of Ramanujan’s
modular equations.

0% () =
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Entry 22 (Formula (6), p. 290). For |q| < 1,

=3
o

K<

+

@:990@ 4% _ 1 g+q> ¢ o+ q°
@90 1+ 1+ 1 4+ 1T+ 1

The first published proof known io us is by Selberg {1, ¢q. (53)]. Gther proofs
have been given by Andrews [S] and Ramanathan [4]. Entry 22 also appears in
Ramanujan’s “lost notebook” [11]. Another continued fraction for the left side of
Entry 22 has been found by Andrews [1] and Gordon [1]. Chan and Huang [1]
have developed an extensive elegant theory for these continued fractions, including
modular equations and explicit evaluations.

Entry 23 (p. 373). Forlg| < 1,

f(-9.—4) _ q+4q

1 2
f(-g%—-¢ 1+ 1 +

6

¢ ¢ +gq
1

¢
+ 1 + 1

4.

By the Jacobi triple product identity, we may rewrite Entry 23 in the form

4 8

@:4=@q _ 1 q+d ¢' o +¢° ¢
@5 9M(@® g 1+ 1 A+ 1+ 1+ 1+

Hence, Entry 23 is equivalent to Entry 22.

3. Continued Fractions Arising from Products of Gamma
Functiong

For the first result, we quote Ramanujan [9, vol. 2, p. 281]. We have

1 1 I

-—) —+-—-—log3
Z X Z x/3 + X &
23 2-2 -4 -5 PT-7
Toxr 4+ 6+ 3xr + 6 + 5x2 4+
The symbol 3~ 1/x denotes 3, 1/k. However, (24.1) is clearly incorrect with
this interpretation, because the left side is discontinuous for positive, integral x,
while the right side is continuous for such x. Now if x is a nonnegative integer,

then (M. Abramowitz and 1. A. Stegun [1, p. 259])
v+ Dy =) 1/k, (24.2)

k<x

(24.1)

where y denotes Euler’s constant and ¥ (x) = [(x)/ I'(x). As in Chapter 6 (Part
I (1, p. 138]), we shall then take the left side of (24.2) as our interpretation of
3" 1/x for all positive numbers x.

We now reinterpret (24.1).
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Entry 24 (p. 281). IfRex > 0,

S~

-

( x4+ 1)+
L T v

1
3T

=

+ 1) —u

Ly

e (
\

<
<

2/3 2*-2 4H-4 -5 P-7
T2 4+ 6 + 32 + 6 + 52 +-
Gk=1 ) =Ck—-1) Gk+1)’=0Ck+1)
+ 6 + Qk + x? o

(24.3)

Proof. If £, m, or n is an integer or if Re x > 0, then by Entry 35 of Chapter 12
(Part II [2, pp. 156, 157], Jacobsen [4]),
1—-P 2emn
I+P X -m—nl+1
% 4L — jH0m? — P — )
+ =@+ D= —m2 —n2 422425+ 1)

(24.4)
where

_ l‘(%lx+t’+m+n+I))l‘('§(x+(—m-n+l})I‘(—;(x—(+m—n+l))r(%[x—K—m+n+l))
FGix~=m—n+ IDFG{x—t+m+n+ )Y G{x+e-m+n+ DI (x+e+m—n+1)

Dividing both sides of (24.4) by m and letting m tend to 0, we find, upon an
application of L'Hospital’s rule, that

WG+ E—n+ D) +v (Fx-e+n+1))
(

—1/1(lfx4—£-l-;g-l-!l\—l llx—!—n.L!l\‘
LAV ! RV R A VA R ] (24.5)
LUn % —4j28 — O — i

T2 -4 1+ =S Qi+ D2 —n2 422425 +1)

We must justify the limiting procedure. Let £, n, and x be fixed with Re x > 0.
Of course, if the continued fraction terminates, no justification is necessary. So
assume that £ and n are not integral and that |m| < 1. Let K(ai(m)/by(m))
denote the continued fraction in (24.4), but with the first partial numerator divided
by m, and let fi(m) and f(m) denote the continued fraction’s kth approximant
and value, respectively. Without loss of generality, we assume that f(m) # o0
in a neighborhood of m = 0. (Otherwise, consider 1/(1 + K(ax(m)/b,(m))).)
Furthermore, let g, denote the kth approximant of the continued fraction in (24.5).
We want to prove that

v £ s JPSPRPN
k‘ﬁlclo 8k = ”I,TOJ un) = y). (£4.0)

Suppose that the convergence of f; (m) to f(m) is uniform with respect to m
in a neighborhood of m = 0, i.e., for some ¢ > 0 and [m| < e,

[f(m) — fim)] < A, (24.7)
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where A, tends to O as k tends to co. Also suppose that f, (m) tends to g, as m
tends to 0, uniformly with respect to k in a neighborhood of k = oo, i.e., there
exists an inteser kg cuch that for & > l(n

CAISS all HRCECT Ry S22

|ge = fi(m)| < r(m), (24.8)
where r(m) approaches O as m tends io 0. Now,
1£(0) — gkl < 1£(0) = fOm)| +[f(m) — fi(m)| + | fu(m) — gul.
Thus, (24.6) follows provided that (24.7) and (24.8) hold. Indeed, these two state-
ments of uniform convergence follow from the uniform parabola theorem (W. J.

Thron [2]).
Next, the even part (sec (64.1) below) of the continued fraction in (24.3) is given

by
vy

4 6(2° —2)(4* - 4

6:(5° — S)(7? -
—6(7P-7+8—8+4+6-5x2 —---
62{(3k — 1)* — (3k — DBk + 1)* — (3k + 1))
— 6{k + 1) — Bk + 1) + Bk +2)> — Bk +2) + 6(2k + 1)x2} — -+~
4/6 44 5.2 — 1T -1)
241 — B -4+5-5+18x2 — TP —-7+8 —84+30x2 — -
9k2(9K? — 1)(9%? ~ 4)
— 32k + D{9K? + % +2+2x2) — -
8/27 4.12(12 - H12 - §)
AxT41)/9 — 3{2-1242- 1+ 4(x% + 1)/9}

4.22(22 - H(2* -3
—5{2-22+2-2+4(x2+1)/9}—

4 (e - () (2 - G))
— 2k + D{2k2 + 2k + 4(x2 + 1)/9} —
Hence, by (24.5), with ¢ = §, n

2y (ot 1)+ (S +2) = (b + 1) - v (30}
(24.9)

= £, and x replaced by 2x/3,

CFE(x

—
w
Nil—

Since (Abramowitz and Stegun {1, p. 259])

¥(2) y+§:<1 ] )
) =— -—— ),
Le\k k—1+z
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where y denotes Euler’s constant, we find that

1 1 1 1 1

ot v 3,3
3k+x—2 3k+x-1 3k+x 3k+x X

1 1 D YA 1 0
_ 3 -
3+ x 3k—2)+ ;(31:” 3k—1)

)+i( k- 2/3)

= /1 1 3
+Z(E‘k—1/3)+2

3
—3¢(x+1)—3Vr( x+1)+—+3 lim (log N —log 3N)
X N—-ooo

—3¢(x+1)—3a//( x+l)+§—3 log 3.
X
Using the foregoing calculation in (24.9), we complete the proof.

Entry 25 (Formula (5), p. 292). IfRex > 0, then
1 = 1
et ; (o + k)2

+

1 [1 3 18 k2k2 - 1)/4 }

1
x 22| +Sx+Tx+ 4+ Chk+Dx +eoe-

T tr—2 htr-1 k+x %2 %-1 %

53
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Proof. Replacing x by 2x in Entry 30 of Chapter 12 (Part II {2, p. 149]) we find
that

T(n,x):=

(n/2)
x+(Q—n)Fn,x)’
where
12(1+n)/4 2222 —n?)/4

- Ax + Sx 4+

After some elementary algebra, we find that
n—2xT(n,x)
2T (n, x)(L — n)

Letting n tend to 1, applying L'Hospital’s rule, and using the facts T(1, x) =

1/(2x) and %(l,x) # 0, we find that

F(n,x)

= F(n, x).

1 - Zxﬂ(n,x)
an

liml F(n,x)= liml
n— n—

oT
=2T(n,x) +2(1 = n)—(n, x)
on

oT
1—2x—(1,x)
an

I
|
=
+
g
o~
e

Since

] 11 222 —1)/4 323 -1)/4
FUL®) =30 o 7 4.
we see that the proof is completed after a little algebraic manipulation and an

appeal to uniform convergence as in the proof of Entry 24.

Entry 26 (Formula (6), p. 293). IfRex > 0, then

LR < VR U R I LY IR LN - S 3
m+kz|:(x+k)3_g ad|x+x+xt+tx+x 4+

where, for k > 1, px = k2(k + 1)/(4k + 2) and g = k(k + 1)*/(4k +2).
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Entry 26 is, in fact, due to T. J. Sticlijes [11, [3, pp. 378-391]. It is also given in
Wall's book (1, p. 37), where 4z2 should be replaced by 4z3.

Entry 27 (p. 325). Let n be a complex number such thatRen > — % Then

i P (he N aw o a-n? @y
kzl(n+k)2_( 2){n2+n+ 3 +5m2+m)+ 7
(2-32 (3-95)? (3.5
+9n2+nm)+ 11 + 1B3@mitnm) 4|

27.1)

Proof. From the corollary to Entry 30 of Chapter 12 of the second notebook (Part
1L {2, p. 150)), we find that, for x = 2n + 1 and Rex = Re(2n + 1) > 0,

ad 1 el 1 4 24 4

) PP S S L M o

= (n +k)* = (x + 2k —1)? lx +3x +5x +7x + -+

afn+ 1 1 14 24 34
=4in+- ), - —— = .
2) |12 +4n+ 1)+ 3 +5@n2+4dn+ 1) + 7 + -
(27.2)
We shall use the Bauer-Muir transformation (13.7) to prove that this continued

fraction converges to the same value as the one presented in this entry.

Choose wy, = 0 and wy ., = —(2k + 1)? for each nonnegative integer k. From
(13.6),

M=1, Ay =4Q2k—17% and Aps = 16K
for each positive integer k. Moreover,
audusi /Ay = K22k — 1)2,
A2/ Aaker = 4k + 122k + 1)%,
by + wu — wp—2hu /A = 4k — 1,
and
bart1 + wasr — @u—Apri/Ax = (4k + 1)(4n® + 4n).

Hence, the continued fraction in (27.2) is transformed by (13.7) into the continued
fraction

1 401 1)? 41 1)? 42-3)? 4(2 - 3)?
nlt+dn+ 3 +5@n2tdn)+ 7 +9(@dni4dm) + -
1 a-1)2 (I-1n2 @232 (232

Thtn+ 3 45w tmt T 49t -

Since the even approximants of the two continued fractions coincide and since both
continued fractions converge for Ren > — % the proof of Entry 27 is complete.
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In the foregoing proof we have seen that the even approximants of the continued
fractions in (27.1)and (27.2) are identical. Thus, an alternative proof can be derived
by showing that the even parts of (27.1) and (27.2) agree. Such a proof would be
shorter and simpler but not as instructive as the constructive approach via the
Bauer—Muir transformation.

IE o las .o — 1 i Bt 27 wa fand el

IHWCICLTE = 1 iUy 47, wbL ung that
1 12.12 12.12 2.32 2. 32
2+ 3 + 10 + 7 + 18 +--f’

”2

= (2)—1+3{
<=4

where ¢ denotes the Riemann zeta-function.
Letting n = 1 in Entry 28 below, we deduce that

Entry 28 (p. 325). Lei it be a complex number such that Ren > —3. Then
i(—l)"“ _ (n+ 1) 1 11 1-1 2.3
—nvk )22+ 1 + 2 r2m 1

Proof. From the corollary to Entry 29 of Chapter 12 of Ramanujan’s second
notebook (Part II [2, p. 149}), it follows that

N (=D 1t 22 32

Y — = — ==
x+4+2k-1 x+x+x+x +--

k=1
forRex > 0. Setting x = 2n + 1, we find, via equivalence transformations, that
00 (= 1)*+t 3 1 12 22 32
ntk  2n4+l+2n414+2n+1+2n+1 4
12 92 2
canpnl—t L2 ¥
@Q+1P+ 1 +@n+1)2+ 1+

k=]

R ] R S i
=|n
M4m+L+ 1 H2m2p;mei T 1 4

(28.
forRen > —1.

We apply the Bauer—Muir transformation (13.7). Let wy = 0 and wyy =
—(2k + 1)/2 for each integer k > 0. Then from (13.6),

M=1, Ax=kQRk—1), and Az, = 2k,
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for each positive integer k. Furthermore,
ayrus1/Au = k(2k — 1),
1 rans2 /A = (k + 1)(2k + 1),
by + wn — wu-2hufAu-1 =1,
and

baks1 + Ouy1 — @i hakrr /A = 2n% + 2n.

Thus, the Bauer-Muir transformation transforms the continued fraction in (28.1)
into the continued fraction
1 1-1 1-1 2.3 2.3
M+22n+ 1 t2n+2n+ 1 +2m2+2n+ -
Since the even approximants of the two cominued fractions coincide and since
both continued fractions converge for Ren > — — , the proof is complete.

Alternatively, the even part of the last continued fraction in (28.1) is precisely
the continued fraction in Entry 28. This gives an even shorter proof.

Entry 29 (p. 343). Let x and n be complex numbers such that either Re x > 0 or
n = (2k + 1)i for some integer k. Then
2

l‘2(13()c+1))l‘i°]H'(x+3+4k)2
r2(tl-t(x +3)) k=0 1 + n2
(x + 1 + 4k)?
412 P43 n?4s?
+ x4+ 2 + 2 A

4
X

Proof. Replacing n by in in Entry 25 of Chapter 12 (Part I [2, p. 140]), we find
that, under the conditions specified above,
Tl +in+ D)T(3Gx—in+1))
F(3(x+in+3))T (3(x —in+3))
_ 4 n?+12 2432 npt45?
Txt 2+ 20 4+ 2+
However, from Euler’s product formula for the gamma function,
r2 (4 + 1)
o " —.
14—
I Eareany +4k)2I

Using this formula and an analogous formula in (29.1), we complete the proof.
(A product representation for |T'(x + iy)}? is given in Gradshteyn and Ryzhik’s
tables [1, p. 945, formula 8.326, no. 1].)

(29.1)

F(3x+in+ )T (tx—in+ ) =
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Entry 30 (p. 343). For all complex n,
tanh(rn/4) n+12 a2+3 n’+5’

1
n 1+ 2 4+ 2 + 2 4+

Proof. Setting x = 1 in Entry 29, we deduce that

2
n
7t°°l+(4(k+l)) I e o
all =7

1 w N T4 2 4+ 2 42 4
+(2(2k+1))

However, by a familiar product representation for tanh z, the left side above equals
(1/n) tanh(n/4).

Entry 30 may also be found in O. Perron’s book [1, p. 36, eq. (23)). Entry 31
below is also in Perron’s text [1, p. 33].

Entry 31 (p. 343). Let x and n be complex numbers such that either Re x > 0 or
n = (2k + 1)i for some integer k. Then

- +2k—1
2 _1k+'___x________
g( ) (x +2k — 1)? +n?

1 n*4+12 22 pP432 42 p24 S
x+ x +x+ x +x+ x +-

Proof. Replacing n by in in Entry 29 of Chapter 12 (Part I1 [2, pp. 147, 148]), we
find that, under the conditions given above,

2}5’\(_1),(“ x+2k—1
et (x+2k—1)?+n?

> 1 1
=) (=1 +
= x+ni+2k—1 x—ni+2k-1

1 n?412 22

—

P k2 + nt

Proof. Set x = 1 and replace n by 2n in Entry 31.

In the continued fraction of Entry 32, Ramanujan inadvertently wrote n? for
4an?.
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Entry 33 (p.344). Let x and n be complex numbers such that either Re x > 0 or
n = (2k 4 1)i for some integer k. Then

oo
1
2 _—_—
g(x+2k+1)2+n2
1 2(n? +1%)  2:(n2 4729 32(n? + 3%
x + 3x + S5x + Tx et

Proof. In Entry 30 of Chapter 12 (Part II [2, p. 149]) merely replace n by in, and
the desired result immediately follows.
Entry 34 (p. 343). For every complex number n,

22(n? +2%) (24 3Y
3 + 5 + 7 4.

n wn n? 122 +12)

Proof. It is clear that the identity holds for n = 0. Thus, assume that n # 0.
Setting x = 1 in Entry 33, we find that

2 00
i(co,h(”_") - _) - 12—"
2n 2 wn 2= k+1)2+n2/4
_ L B@ 41y 2224 2Y)
T+ 3 + 5 e
Upon multiplying both sides by n? and rearranging, we complete the proof.

Entry 35 (p. 344). Let x and n be complex numbers such that either Re x > -3
with x ¢ (—%, O}, or n = ki for some integer k. Then

2f: (=DF
L+ +n?

_ 1 n? +12 12 n? 422 22
Xtx+ 1 A x24x+ 1 A x4

Proof. In Entry 31 of Chapter 12 (Part 11 [2

Sl iasTran

n 18NN vanlaan
s P 1Jvyy, ICp1ace

2x + 1. Then, under the proposed hypotheses we find that

Y.

i by 2in and x by

1w
24 (x+ 1+ k)24 n2
_ i 4 + 4n? 22 4 4 an? 42
Ax24+4x + 1 + 4x2 4 4x + 1 + 4x2 4 4x + -
which is equivalent to the continued fraction displayed in Entry 35,
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Entry 36 (p. 344). Let m, n, and x denote complex numbers such that either
Rex > 0, orm = ij for an integer j and x # —(2k + 1) for any nonnegative
integer k, or n = ij for an integer j and x # —(2k + 1) for any nonnegative
integer k. Furthermore, let

=1°—°:l. (_m+n V]

&l m=-n V|

UV G | e e T G |
Then
u=v _mn M +1)E 41 (m+2)(n?+2)
u+v  x + 3x + Sx +

Proof. Assume that x, m and n pos gitive In nntn: 33 of Chapter 12 (Part II

a
wSsumge (hat x are ©I Lnapler
im

(2, p. 155]), replace m and n by nd in, respecnvcly Employing a product
fo

rmula for | (x + iy)|? (Gradshteyn and Ryzhik [1, p- 945)), we find that, under
the aiven hvy nn'l\pepc
the given hypotheses

—mn (M4 1HREP4+12) mP 422+ 2%
x + 3x + 5x + -

_IPGe+ D+ 3om 4w = P (2 + )+ Son = mi)[*
|l‘('§(x+ 1)+ 3(m +n)i)|2+ |F(%(x+ l)+%(m—n)i)|2

]°-°l P+ (m + n)? l_' ﬁ{ (m —n)? ]_l

k=0 (x + 2k + 1)? 40 (x + 2k + 1)?
T oo L -1 P T
= (m + n)© x (m — n)¢
1
k];lo{ +(x+2k+1)21 U‘ (x+2k+1)2}
1/ 1 Jas sy aa
l/u l/U v “

T lfu+ /v vtu
This completes the proof for x > 0, m > 0, and n > 0. Since the continued
fraction converges to a meromorphic function of x for Re x > 0, the entry holds in
this half plane by analytic continuation. Furthermore, since the continued fraction
converges to a meromorphic function of 7 and of n, it follows that Entry 36 is
true for all complex m and n. That the equality holds if the continued fraction
terminates foliows by straightforward computation.

Entry 37 (p. 344). If m and n are complex numbers with m # n, then

mtanh (37n) = ntanh (§7m)

m tanh (37m) — ntanh (371n)
mn M2+ 1DRE+H1D) (m? 4232 +2%)
1o+ 3 + 5 4+
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Proof. Putting x = 1 in Entry 36, we see that it only remains to show that
(u — v)/(u + v) reduces to the left side of Entry 37.

a Coacn IV o PP U S

meg a familiar pluuuu representation for sinh z, we see that, whenx = 1,

u—v (m+n)‘ sinh {1 (m + n)} — (m — n)~' sinh {17 (m — n)}

u —{-1) (m4+n)- 1 ¢inh llrr{m -J-n\l <+ (m — n)~!sinh {%n(m — n)}

—2nsinh (§7m) cosh (3n) + 2m sinh (37n) cosh (3rm)
2m sinh (37m) cosh (37 n) — 2n sinh (37 n) cosh (37rm)

m tanh (%nn) — ntanh (%nm)
mtanh (1rm) — ntanh (37rn)’

and so the proof is complete.

Entry 38 (p. 345). Let m and x be complex numbers such that either Rex > 0,
orm =k(1+i)/2, orm = k(l —i)/2, for some integer k. Furthermore, set

00 2m 2
"2!:!){”(”2“1) ]

B M (ix+1)
Tre+zm+D)r(dx—2m+ 1)

and

Then
u—v  2m?  Am*+1* amt42* 4mt 43
u+v x + 3x + 5 +  Tx o+

Note thatif m = k(1+i)/2 for some integer k, the continued fraction terminates.

Proof. We apply Entry 33 of Chapter 12 (Part 11 [2, p. 155]) with m and n replaced
by (1 + #)m and (1 — i)m, respectively. We then find that, form > 0 and x > 0,
or for (1 &+ {ym = k for some integer k,
2m’  dmi41t Amt420 amt 4 34
x + 3x + Sx + Tx

o 4

FG+2m+ D) F(dx—2m+1)) -T2 (Jx+1)) 1+

x+2k+l

0

e
I|

1+

t
o 2
Fic+2m+ D)) Fiax—2m+0)+T2(4(x+1) nl

0 X+2’(+l

l~

Uu-—-v
u+v’

where in the penultimate step, we used the same formula for {T"(x + iy)|? that we
used in the proofs of Entries 29 and 36. The result is then valid for all complex m
and all complex x with Rex > 0 by analytic continuation.
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Entry 39 (p. 345). For arbitrary complexn,

sinh(rn) — sin(n) M2 dnt 41t 4nt 420 4nt 43
sinh(wn) +sin(rn) 1 + 3 + 3 + 7 .

Proof. Setting x = | and replacing m by n in Entry 38, we deduce that

E 4n4+14 4n4+24
3+ 5 4.

1 +
% n \? 1
kl=10|1+(k+1) ]_ TAT I —m

o | VRPN 2) 1
1
‘)i +(k+l) ]+ FrA+a)r|a —a)
(rn)~! sinh(rn) — (xn)~! sin(rn)
~ (wwn)~1sinh(mn) + (rn)~! sin(wn)’

=18

k

where we have employed a familiar product representation for sinhz and the
reflection formula for the gamma function. This completes the proof.

Entry 40 (p. 345). Let x and n be complex numbers such that either Re x > — i
or pn is an integer, where p is a sixth root of unity, and x is not a negative integer.
Furthermore, let

Then
u-—v n? n — 19 A
utv 22+2x+1+32x2+2x+3) + 522 +2x+7) + 0

The constant term within parentheses in the kth denominator is given by k> —k +
1. In the notebooks, Ramanujan mistakenly indicated that this constant is equal to
2k — 1. Thus, Ramanujan wrote § instead of 7 in the third denominator displayed

ine? = ha tennad hask ta a eorihal arrar in recordine Entrv
1 TECO F:4 ry

Amanmian’s A
144 el

above. Raluauujau 8§ SITOr Can o¢ Walea 0acK 1§ g SCNidca: €Nor I
40 of Chapter 12. For a discussion of this error, see Part I1 [2, pp. 163, 164]. Note
that if pn is an integer, where p is a sixth root of unity, the continued fraction

tCrminaics.

Proof. We shall apply Entry 35 of Chapter 12 (Part 11 (2, pp. 156, 157], Jacobsen
[4]) with € = e2™/>n, m = ¢***/3n, and x replaced by 2x + 1. Observe that

(ez _ k2)(m2 _ kZ)(nZ - k2) — né - k6
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and that x? — €2 —m? —n?+2k? — 2k 4 1 is transformed into x4 dx +2k2 — 2k +2.
Thus, the continued fraction that arises from Entry 35 of Chapter 12 equals

2n’ 4(n® — 19 4(n® — 2)
4x?4+4x +2 +3(4x2 +4x +6) + 5(4x2 4+ 4x + 14) + - a0
n? nb _ 16 S _ 26 (40.1)

T x4 I+ 3 A x4 + ST 2 ) ke

We now examine the gamma functions appearing in Entry 35 with the para-
metric designations given above. Letting w = ¢?*//> and using Euler’s product
representation of the gamma function, we find that, in the notation of Entry 35 of
Chapter 12,

~

Tx+1+awn)

P: e —
o Fx +1-whn)

J
lim ﬁ(1+i+"(—")(X+1+k-—wn)(x+i+k—w2n)
m=oo, s X+ 14+k+n)(x+1+k+on)(x+1+k+0?n)

It

_ﬁ(x+l+k)3—n3
e EF1THE)? + 03

1=
. n u
x+1+k

Hence, by Entry 35 of Chapter 12, the continued fraction (40.1) equals

1 n_ Y
_ﬁ x+1+k v

l—P_l—v/u_u—v

14 e s T . ’
1+ r 1t+v/u u-+v

and the proof is complete.

Entry 41 (p. 347). Suppose that m, n, and x are complex numbers such that
Re x > 0, or assume that n is an integer or that im is an integer. Then

o0
Yo fant(—2 Y (
Pl \x—n+2k+1) \x+n+2k+1]]

=um”’Tﬂ (2 +m®)(12 —n?) (2 +m?)(22 — n)
{ x + 3x + Sx 4+ e

———

Proqf. In our proof below, we will temporarily ignore the fact that tan—! zis
multivalued. At the end of the proof, we shall show that the correct branches have
been chosen.



64 Ramanujan’s Notebooks, Part V
Replacing m by im in Entry 33 of Chapter 12 (Part 11 (2, p. 155]), we find that,
forRex > 0,orn € Z,orime Z,

I"( (:+n+1)+ lm)l‘( (r—n+l)—-1m) l"( (x—n+1)+5 ml)[‘( (r+n+l)-—51m)
r(2(1+n+l)+ lm)l'( (x— n+l)—- 1m)+l( (x— n+1)+2:m)l'( (x+n+1)— nn)

imn (2 +mHi-nYH @ +mH? -6
x + 3x + Sx 4o

@1
Suppose first that x, m, and » are positive, and let
a=T(jx+n+D+ %im)l"(%(x—n-k 1) - 3im) =:a +ib,

where a and b are real. Multiplying both sides of (41.1) by —i and then taking the

nnnnnnnnnn of aach oulA we gee that
lllVble mllsvlu Ok €aln §1GC

Lfmn (12 +mHA? - n?) (22 + m®»)(22 —n?) }
tan™ {-—_— + ... f

2y + Sx
A v -~

a (41.2)

=tan"" {i (: ;a)] = tan~'(b/a) = Im(log &)
a+a

=Im(log{r (G&x+n+ 1)+ %im)l‘(%(x —n+1)— %zm)}) =T.

In orderto calculate T, we employ Euler’s product representation for the gamma
function. Hence,

o0
T=-) {Imlog(3(x+n+1)+k+zim)
k=0

+Imlog (3 (x—n+ D+k-— -xm)}

N m Noooof  -m2 3]
s )i

- _kz:é - \%(x+n+1)+k)ﬁa" \ (x—n+1)+k

S o () o ()
_kz_(; tan x—n+2k+1 x+n+2k+1

Thus, formally, the proof has been completed.
To complete the proof, we first apply Stirling’s formula to show easily that, for

x >0,

(41.3)

i l"(%(x+n+l)+%im)l"(%x—n+l)——zm) L
1m N~ 71
I AN

Jr—">°l"(“§(x—n+l)+%im (x+n+1)—-3im)

Thus, for the principal branch of tan™' z

1 L a-a =0.
Hrpten {' (Ha)l
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On the other hand,
im S fuan (—" Y i \
i"&%gi kx—n+2k+1)" (x+n+2k+l)l
—im 3 - R rof ! )
ot | x—n+2k+1 x+n+2k+1  \a-m+2+D )]

1
—xll»ooz‘(x+2k+l)2 n? +0((x—|n|+2k+l)’)] =0

for the limit as x — oo can be taken under the summation sign, since the series
converges uniformly for [n] < x < 0o. Thus, our calculations in (41.2) and (41.3)
demonstrate that Entry 41 is correct for x sufficiently large and positive. However,
since both sides of Entry 41 are meromorphic for Re x > 0, the equality of Eniry
41 must then be valid for all x with Rex > 0.

If n or im is an integer, the continued fraction terminates. A straightforward
computation shows that the identity still holds for x > 0. Hence, the proposed
result follows by analytic continuation. Furthermore, since both sides are mero-
morphic functions of m and n, the entry holds for all m, n ¢ C by analytic
continuation.

Entry 42 (p. 347). Let m, n, and x denote complex numbers. Suppose that either
Rex > 0, or m = 2ir for some integer r, or n = (25 + 1)i for some integer s.
Then

> & - m+n O m-—n
2D {“‘“ '(m)“"“ (m)}

s m P4 12 mi+22 ni432 mPi 4 ]
= tan — - )
x+ x + x + x + x +-]

Proof. As in the previous proof, we temporarily ignore the fact that tan~' z is
multivalued, and assume that x, m, and n are positive.

In Entry 34 of Chapter 12 (Part II {2, p. 156], Jacobsen [4]) replace € by im and
n by in. Thus, under the given assumptions on x, m, and n,

im R 412 m 422 p243 w44 I Rl R
At x + x 4 x4 x4 1xp @D
where

l‘( G+ 14im+nNT (S + 1 +i(m— mNx+3—i(m— - (43 =i (m+n)))
T TG+ 1-itm—mnr( &A=l +n G +3+Hien+m)) L (2 +3+i(m—n)))

a+ib

«
T a@ a-ib'



66 Ramanujan’s Notebooks, Part V

where & = a + ib is the numerator of P. Multiplying both sides of (42.1) by —i
and then applying the operator tan~!, we deduce that
afm o nP+12 m2422 n2437 m?+ 4
tan x+ x + X + x + x

o ] (422)
=tan”'i (Z;Z; i) =— lan_l(b/a) = —Im(log a) =: —-T.

Employing Euler’s product formula for the gamma function, we find that
T = Imlogl (J(x + 1+ i0n +n)) +ImlogT (4(x + 1 +i(n — n)))
+ImlogT ({(x +3—i(m —ny) +Imlog [ (3(x + 3 — i(m + n)))

0

A SN T Y 1. Y : NOTEAY
= —)_{imiog(3(x + 1 +ilm+n)) +k)

=
I
=

+1Imiog ($x + L+ i(m —m)) + k)
+Imlog(4(x +3 —i(m —n)) + k) + Imlog ((x + 3 — i(m +n)) + k)]

_ i tan”! m+n )+tan"( m-n )
T & x+ 1+ 4 X+ 1+ 4%
lan”'( m—n ) lan“'( m+n )}
X+340k T
e . - m+n . m-—n
= -y (- —— )+t ————)}.
S f () o ()|

Using (42.3) in (42.2), we formally complete the proof.

To show that we have, indeed, chosen the correct branches in aii our caicuiations,
we use the same type of argument as in the proof of Entry 41 for the case Re x > 0.
Since the details are very similar, we omit them.

If mi/2 or (ni — 1)/2 is an integer, the continued fraction terminates. The
proposed result again follows, as in the proof of Entry 41.

(42.3)

Entry 43 (p. 347). Let x and n denote complex numbers. Assume either that
Rex > 0orn = ji for some integer j. Then

i 0 tan! 2n —tant " 412 2422 ’
k=0( x+2%+1) x+ x + x 4+

Proof. Set m = n in Entry 42.

4. QOther Continued Fractions

Entry 44 (Formula (2), p. 276). Let a and b be complex numbers such that
a # 0 and |arg(b/a®)| < 7. Let B, denote the nth Bernoulli number. For each

32. Continued Fractions 67

nonnegative integer n, define

k=0

Then, for each positive inteoer N as x tende to O theniok vl
, Dosttive integer N e O [4

Re(bx?) > 0,
x l_’_ ie—nax—nszl
2 n=1

26 % 6b Py
—_ n 2N
+ § : (2’[)' Axay + O(X )

——

Q|-
+

)

+

D

+

a

+

n=|

Our version of Entry 44 is slightly more precise than that of Ramanujan. A
proof of Entry 44 has been given by Watson [3] for the case whena > 0, b > 0,
and x > 0. The extension to b/a* € C — (—00, 0] and Re(bx2) > 0 follows
by analytic continuation, since the continued fraction converges to a holomorphic
function of (a, b) for b/a* € C— (—00, 0], and the series on the left side converges
to a holomorphic function of (a, b) for Re(bx?) > 0. The reader should note that
the notations of Ramanujan, Watson, and the authors for Bernoulli numbers are
different.

The next result was communicated by Ramanujan {10, p. 352) in his second
letter to Hardy and is simply the case a = 1, b = % of Entry 44. We precisely
quote Ramanujan below, but, of course, a more accurate version can be formulated
as above. Ramanujan tacitly assumed that x > 0. However, the result holds for all
x € C with Re(x?) > 0, i.e., for | arg x| < n/4.

Corollary (Formula (3), p. 276). When x is small,

1 1 2 3 4 ad
- - - - — = —(1+lu)2/2
T+ 1+ 1+T+1+- "‘/‘;z_;"

x x2 x4 x6 X8 x10

212 360 5040 60480 1710720 "V

Entry 45 (Formula (4), p. 276). The formal power series

S\ (—1)*2(2%+2 _ 1B
L(x):= % +2
@) ; (2k + 1)x2k+1

has the corresponding continued fraction

a, a a;

xtx+x 4+

where a; > 0 for 1 < k < oo. In particular, a; = a, = 1, a3 = 30. a, = 150,
and as = 493. As before, B;, 0 < j < 00, denotes the jth Bernoulli number.

CF(x):=



68 Ramanujan’s Notebooks, Part V

For the definition of correspondence, we refer to the text of Jones and Thron (1,
p. 148]. Continued fractions of the form above are called S—fractions or Stieltjes
fractions. They have the property that their even and odd parts converge to analytic
functions both of which have the asymptotic expansion L(x) (Jones and Thron [1,
pp. 136, 342]). Moreover, they converge for all x in the cut plane |arg x| < 7 if
and only if they converge for one x in this region. It seems to be very difficult to
determine if C F(x) converges.

Proof. To see that C F(x) is an S—fraction, we observe that L(x) can be written
in the form

L(x) = Y‘( Dfer/x¥H,
k—()
where

Btz
2k + 1

4 00y k+1 0o M+l gy
s [ = [

m%+2 f,  sinhu o sinh{(wu)

where we have used a familiar integral evaluation (E. T. Whittaker and G. N.
Watson (1, p. 126)). Since sinh(z«) > O for u > 0, the primary assertion of Entry

a =22%7 —1)
(45.1)

45 follows from Stieltjes’ theory. (Sce, for instance, Wall’s book (1, p. 363].) <~

To calculate the numerators ag, we may use Entry 17 of Chapter 12 in Ra-
manujan’s second notebook (Part 11 (2, pp. 124, 125)) Alternatively, Viskovatoff’s
algorithm (A. N. Khovanskii {1, pp. 27, 28]) can be empioyed. The caiculations
in the second method are somewhat easier, and, in either case, they are routine.

Hence, we omit them.

It is tempting to conjecture that the numerators of C F (x) are integers. However,
as = 588456/493 and a; = 10101660478/4029289.

Lastly, we find two functions that have the asymptotic expansion L(x) as x
tends to oo.

From (45.1), for each positive integer n,

4 100 tdt
P =4 | 78 simb )
B e et N (ot Y Sl .

- QL %+ Jo sinh@re)  x¥+ Jo o (14 ¢%/x?)sinh(x1)
—l) Ck 1
—42 x2k+1 (x2"+3)'

as x tends to oc. Thus, Fi (x) has the asymptotic expansion L(x).
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From tk}e Laurent expansions of cot ¢ and coth ¢ about the origin (Gradshteyn
and Ryzhik [1, p. 42}), we easily find that

o
24k+3B
cotht —cotr = Z 2 e

e (4k +2)! ’
Applying Watson’s Lemma (E. T. Copson [, p. 49}), we deduce that

oo . o0 24k+BB
f e* (colht—cott)dt~z——“+2,
A £ (3K + )x%+

|t} < .

as x tends to 0o with Rex > 0. Replacing x by 24/ix and by +/ix, where the
principal branch of the square root is chosen, we find that, for —37/2 < arg x <
n/2,

o0
F(x) = 2if (e_‘/‘:' - e'z‘/i_"’)(cotht —cott)dt ~ L(x),
0

as x tends to oo.

Unfortunately, neither F) nor F, has been of any use to us in determining the
convergence or divergence of C F(x).

Entry 46 (Formula (6), p. 277). For each complex number x,

4.5 2.3 6-7 4.5
2 2 2 — x? nilihapty o 2
xeothhx=14 21X 2.3 2.5 2.5 7"
3 9 5 + 7 + 9 + 11 + 13 +-

| Ol J4 -Pu—|
LAy &/ (rormua (

number n # 0,—1,-2,-3,...

x x x x
n+n+li+n+2+n4+3+--
_x_x x ax ax Ay X A1 X

n nt n+l+n+2+n+3+---+n+2k+n+2k+1+---
where, for k > 1,
k + D(n +k) k(n+k-1)

(12 = ———— d - —————
T knrk-D M T T DR

We first remark that the continued fraction on the left side of Entry 47 is equal
to
¢x S (2 Jx)
i T2 \/_ )

for all complex x, where J, denotes the ordinary Bessel function of order v. See
Wall’s book (1, p. 349] or Part Il [2, p. 133, Entry 19].
Next, we show that Entry 46 readily follows from Entry 47.
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Proof of Entry 46. Recall that (Wall [1, p. 349)), for each complex number x,

x2 xr x?

xcoxnx=1+?+—5-+7+m,
which is due to J. H. Lambert {1). This suggests that we letn = % and replace x
by x2/4 in Eniry 47. Accordingly, we find that
24 x4 x4 X4
32 +5/2 4+ 72 +9/2 +---
_x*/4 x4

3/2  9/4

2-5/2x% 1-3/2x%2 3.7/2x* 2.5/2x%

|x2/4 1.3/24 2-5/24 2-524 3.7/24

(46.1)

52+ 172 + 972 + 112 + 13,2 +---|°

which is equivalent to

1fx* x* &2
213 +5+7 +--

54 7 4+ 9 4+ 11 + 13 +--

Multiplying both sides by 2, adding 1 to each side, and employing (46.1), we
complete the proof.

Proof of Entry 47. We shall employ a lemma of Rogers [2, p. 74]. If fi = epey,

Hh=ete, hfi=eae, i+ fi=eitey, fufs =eses, fs+ fo=es+es....,
then
e ex  ex hix fax fix
_— _— —_ =€y + — —_— —_ ’ 47.1
1-1 -1 - " "7 -1 -1 - @

in the sense that both continued fractions correspond to the same (formal) power
series. This means that if both continued fractions converge in a neighborhood of
x = 0, then they converge to the same value (Jones and Thron [1, p. 181]); that

is, (47.1) expresses an identity between their values. Writing the left side of Entry

47 as the equivalent continued fraction
X X X
A _ntl) (D@ +2)
1 - 1 - 1 — -
we see that, in the notation (47.1),
x 1

O AT T ark—Dr+ o

32. Continued Fractions 7

We now calculate f;, k > 1. Straightforward calculations show that

X . 2 . n
Re+D' T Tam+2 P T i e v e )
By induction, we shall show that

k+1)(n+k)
kKnik-Dn+2k—Dns20 <=0 “412)

3
J1 =

Sfa =

: k(n+k—1) k> 1 @13
k+Dr+kn+20)R+2k+1) - 3
We assume that (47.2) and (47.3) hold for k = 1,2,...,m. Simple algebraic

P PN, PO R Sy
-AULUIAtIoNy 3SNOW nat

S =

»

a m+2Yn+m+1)
m+Dn+myn+2m+1)(n+2m+2)

Srmi2 = @myr+ermiz— famy =

and
€Im+2€m+3 (m + 1)(n+m)

foms2  mAD(+m+ D(m+2m+2)n + 2m +3)
This completes the proof.

f2m+3 =

For the next result, we again quote Ramanujan.

Entry 48 (Formula (1), p. 290).

X XZ X2

n+2+4n+6+4n+10+ -

2n n-1 n+1 n—2 n+2
+?+ T - x + 1 - % +_”=1 nearly.

Proof. From our remark after Entry 47, it is not difficult to show that

x x? x2 _ o dnap@x/2)  4n -2

M2+ M6+ 10+ T pGx/2)

in the sense that the continued fraction converges to the function on the right side
for all (n, x) € €%, x # 0. It will be convenient to write the right side in terms
of Bessel functions of imaginary argument (Watson [15, p. 771). Thus, comparing
Entry 48 with (48.1), we must show that

»  (48.)

fi_ap(x/2) 4n-2

Loip(x/2)  x

_ 2n n—1 n4+l n-2 n+42

T ox+ 1 - T x 41 - x4
where I, denotes the Bessel function of imaginary argument of order v.

(48.2)

nearly,
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As x tends to oo (Watson [15, p. 203]),

e R (T v+ k+

)
k + 3)
o x)l/2 L k' T P Rex >0,

1(x/2) ~ i

where we have mnnred the exnnnemmllv dgc:g@_smo terms in the comnletc as-

ymptotic expansion. Using this expansion in (48.2), we find that the left side of
(48.2) is asymptotically equal to the quotient

X (=1)'Tr+k+1)

2,2) kI T(n — k)x*k _ 2R —nn+11/x)
X f D*T(n+k) —  x  2F(1—n,n1/x)
o KT — k)x*
where 2 Fy(a, b; z) denotes the (divergent) hypergeometric series
w— @) ¢
2Fola, b.z) = 2'5 R

From the book of Jones and Thron (1, p. 212}, it follows that

2n n—-1 n+l n-2 n+2
T+ 1 - x + 1 - x 4

n/x  (1-n)/x (+D/x Q-n)/x (@®+2)/x
T T T N U
2n2Fg(l —n,n+1; 1/x)
x  2Fo(1 —n,n; 1/x)

FAQ 2N
(48.3)

in the sense of correspondence. From Jacobsen’s paper [4, Theorem 2.3(ii)], it
follows that the continued fraction converges for x € C — [0, 00). For positive x,
it is likely to diverge.

We are now able to properly interpret the word “nearly” in Entry 48, or, equiv-
alently, (48.2). Replacing the left side of (48.2) by a quotient of asymptotic series
as x tends to oo, with Re x > 0, we see, from (48.3), that the continued fraction
on the right side of (48.2) equals this quotient of asymptotic series in the sense of
correspondence of C-fractions.

Observe that, if n is an integer, the power series and continued fraction in (48.3)
each terminate. Thus, in such an instance, we have equality in (48.3) in the usual
sense.

Roa_.. AD (T 2 = 209

Entry 49 (Formula (2), p. 292). Le

that Re x > 0, or such that Rex = 0 a.
y = ((1 + x)V2 — 1}/x and m = n(1 + x*)™"/2. Then

x 1-2x2 2-3x% 3457 _ +m(y+_)°°<-1)"y“
T¥n+ d4n +64n + 84+n +o0 y) & mt2k

S
.
]
D)

b1
2
)
I
>
3
y
~
0)
<
3
N
3‘
A}
‘
n
N
N
)
=
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Proof. Let x # 0. In Entry 22 of Chapter 12 (Part II [2, p. 136]), Ramanujan
offers a continued fraction for a certain quotient of ordinary hypergeometric series.

Settinga = v — 1,8 =0, and y = u, and replacing x by /8 with |a/8} < 1, in
that theorem we read)ly deduce that
1
—F(l—v 1:14u —a/RB)
u-.\ y LI u, —a/B)
49.1
B 1 + v)ep 2+ v+ Dap @1

T up-avtup—av+1(B-o) tup—av+2(f—a) + -

(This last result was also established by Preece [3].) We now set r = (1 + x2)'/2,
o=—1)/x%B8=(+1)/x*u=(pr+n)/2r),and v = (pr — n)/(2r),
where p will be specified shortly. Then ja/8] = |(r — 1)/(r + 1)] < 1, since
Rer = Re(l + x%)"/% > 0, and (49.1) takes the simplified form

1
;ZFI(] —v, ;1 +u; —a/B)

_r+1 px? 2p+Dx? 3(p+2)x?
Cp4ntp+n+2+ ptn+d4 t ptnt6 +-

By a fundamental result on hypergeometric series (Bailey [1, p. 2, eq. (2)}),

1 1
peid I BT ~y?) = =( + YL R4 v, us 1w —y?). (49.3)

Thus, (49.2) may be recast in the form

1
;(l +y L R v u 4w -y

. 5 Ny . . —~ 2 (49.9)
_r+l px* 2(p + H)x* 3(p +2)x*
T p+ntp4n+2+ p4nt+d + pint6 +---
We now put p = 2, and so ¥ + v = 2. Since y(r + 1) = x, we find from (49 4)
that
y( + %) X 1-2x%2  2.3x2
2 2FIQu 4wy —yY) = Tt Ain + 64 +- . (49.5)

An elementary calculation shows that

A=A +y) R, w1 +u —y) = A+ y) 2R 25 1 4+ u; —y?) — .
It follows that

1+
w 22,051 +u; —y?)

1 —u 1 2 2
=yt— y+; YRl w1 +u; —y?) (49.6)

1 y2 m+2 m+4
= — — F, ]__;_2 .
Y m(y+y)m+22l( 20 2 )
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Combining (49.5) and (49.6) and then simplifying somewhat, we complete the
proof.

Entry 50 (Formula (4), p. 292). Let x, p, and n be complex numbers such that
cither Rex > 0, orRex = 0and 0 < |Im x| < 1, or p is a nonpositive integer.
Furthermore, let y = {(1 + x)"* — 1}/x and letm = n(1 + x*)"/*. Then

x 1-px? 20+ Dx? 3(p +2)x?
p+n+p+n+2+ ptn+d4 + p+nt6 +--

_ S (=D (py*
—_ 24(p-1)/2 D
=(1+1/x%) 2y) k§=0k

tom + p+2k)

Proof, Let x? € C — (—o0, 0). Multiply both sides of (49.4) by y. Note that
yr+1) = x,u = (m+ p)/2, and 1 + y* = 2ry/x. After some elementary
algebraic simplification, we deduce Entry 50 in this first case. If, in addition, p
is a nonpositive integer, then both the continued fraction and series terminate.
We therefore have an identity between two rational functions of x for Rex > 0.
Hence, the identity holds for all complex x by analytic continuation, when p is a
nonpositive integer.

In his second letter to Hardy, Ramanujan [10, pp. xxix, 353] asserted that

. a a (22 (3a)}
l4+n+34+n+5+n+T7+n+

1
=2 [ znurm?)"“
Jo

{1 +a?)'

which is a particular case of the continued fraction

a pa® 2p + Da?
p+tn+p+n+2+ prnta -

which is a particular case of a corollary to a theorem on transformation of integrals
and continued fractions.”’ In Ramanuian’s Collected Papers [10, p. 353], the third

and COMNUNUCU 11aluivils. 1 anasiiaisuy
denominator above appears incorrectly as p +n + 3.
Now C. T. Preece [3, p. 99] showed that, for nn, p > 0,

a pa® 2(p + Ha®
p+n+tp+tn+2+ ptntds +--

- -n -2
= 2%a(l +az)(p_|)/2/' (p-inl+a) v gy |
b ({1 +a)'"2 + 1} +2((1 +a?)'/2 —1))?
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IO s€c ﬂlat lhls res 1S qu al [ly p y
Sult €quivalent to E" 50, re lace a I) X and write ﬂle nght

2Px(] +X2)(I’-|)/2 /I tp~l+mdt
0

A+ )2+ 112 Jo {1+ 2y2)p
AD 1 284p-1)/2 p 00 o aikoo s a4 .
_ Px 4+ x%)ehiy CROA VIS Sl RN
T . X t dr

=O
et k 2%
=+ ]/xz)(ﬁ—l)/l(Zy)p (=1 (P)ry
;k! (p+m+2k)

Entry 51 (Formula (l), P 292) Let x and n b € uch tha
. . e Complex numb

(- # , or sucn that x=0 an ,d. 0 < !!_m__ xl <1 Furlhnrmnrfms los \t» ’

R X () O h h Re i< .o Turinermore, let 'y =

{(A+x)'2 —1}/x and let m = n(1 + x2)~'2 ;
= + x°)"Y% where th X
(1 4+ x¥)2 is chosen. Then re the principal branch of
x 2 @) @GP
l+n+34+n+5S5S+n+T7+n+--

0 1k Zkdl
=2z( D'y ‘
' gm+2k+1

An elementary calculation shows that |y| = 1 if and only if Rex = 0 and
I1Im x| > 1. The choice of the principal branch of (1 + x2)'/2 ensures that |y| < 1
and so the series on the right side above converges. g ’

Entry 51 is simply the case p = 1 of Entry 50.

E.ntry 52 (Formula (3), p. 292). Let n and p denote complex numbers such that
either Ren > 0 or p is a nonpositive integer. Then

1 1-p 2p+1) 3(p+2) 4Ap+3)

n+ n + n + n + n + .

e (—DF(pk
=2° R o

K'(n+p+2k)

g‘n:of. Replace n by nx in Entry 50; thus, now m = nx(1+x2)~"/2. We then find
a

1. px? 2(p+ x?  3(p+2)x?

ptrx+p+2+nx + ptdinx + p+64nx + -

_ ] 1.p 20+ 1) (p+2)
n+p/x +n+(p+2)/x tnt+t(p+dD/x+nt(p+6)/x +---

(] 4 l)(P—l)/Z e )”i (=D (P y™
— y Dy
x o k! m + p+2k)°

X
Ln
T n

52.1
Now let x tend t0 co. Then y tends to 1 and m approaches n. Thus, we se(e tha:

the left and right sides of (52.1) approach, respectively, the left and right sides of
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Entry 52. To see that equality still holds, we apply the uniform parabola theorem,
just as we did in the proofs of Entries 24, 14, and 19.

Entry 53 (p. 342). Let x and y be complex numbers withRex > OandRey > 0.
Then

y+1DP+n (y+3)P+n G+ +n
2x + 2x + 2x + .-

x+(

+(x+1)2+n x+3D+n  (x+5*+n
2y + 2y + 2y 4o

G+ +n G+DP+n G+ +n x+3’+n
x+y+2 + x+y+4 + xty+6 + x+y+8 +-

We remark that, by symmetry, each of the continued fractions above is also
equal to

AP 4n (G+DI4n +3)P4n +3)4n
t+y+2 + x+y+4 + x+y+6 + x+y+8 + oo

The first equality in Entry 53 is actually the same as Entry 27 of Chapter 12
(Part 11 (2, p. 146]), for x > O and y > 0. As we remarked there, this elegant
identity is found in Ramanujan’s {10, p. xxix] second letter to Hardy. The first
proof in print is by Preece (2], and the resuit can aiso be found in Peiton’s book
(1, p. 37, eq. (31)}. This result has also been proved by Ramanathan (6]. Since
both continued fractions converge locally uniformly for Rex > 0 andRey > 0,
the identity follows by analytic continuation forRex > OandRey > 0.

The first continued fraction diverges for Re x = 0, while the second diverges
for Re y = 0. The identity does not hold if Re x < 0 and/or Rey < 0, since the
first continued fraction is an odd function of x but not of y, whereas the second is
an odd function of y but not of x.

The third (and fourth) continued fraction converges 10 a meromorphic function
of x and y, since it is equivalent to a continued fraction K(cx/1), where

k2

1
~aita

Ck
as k tends to 00.

Proof. As just indicated, it suffices to establish the second equality.
In Gauss’s continued fraction, Entry 20 of Chapter 12 (Part I1 [2, p. 134]), we
set x = 1 and then replace «, B, and y by (x —n — 1)/2, (x +n — 1)/2, and
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(x + y)/2, respectively. After some simplification, we find that
25;1(%()' +14n), 30~ 14n); 4
GO +14m, 3+ 1+n); Lx + y+2); -1)
2
S 2 i N el VR Gty
x+y+2 + x4+y+4 + x+y+6

(): + \:)‘

x+y)

53.1)
x+3)2-n?
t ox+y+8 +-7
Second, we use Euler’s continued fraction, Entry 22 of Chapter 12 (Part II [2 p.
136]), whenx = 1 andfx. B, and y are replaced by —(y + 1+n)/2, (x — 1 +n)}2
and (x + y)/2, respectively. Upon simplification, we deduce that ’
2P (GO +14+m), 3G — 14 n); J(x +y); 1)
RGO+ 14n), 30+ 1+n); Lo+ y +2); —1)
X ]
—ay &HD -nt x43P2-n  (x+5)? - nt
2y + 2y + 2y + -

x+y)

' k53.2)

Comparing (53.1) and (53.2) and replacing n by i
equality of Entry 53. p g n by i/n, we deduce the second

It is interesting to note that the third continued fraction in Entry 53 can be
obtame@ fror‘n the second one by repeated applications of the Bauer-Muir trans-
formguon with modifying factors wy = x — y + 2k. Also, the first continued
fraction can be obtained from the second one by repeated use of equally simple
Bauer-Muir transformations. T T

Entry 54 (p. 342). For all complex numbers x and n

TR 1 x 1 ox 2
ni= i+l ntl+n+1+n+1+

3w

-1 X 2 3x
n+x —n+x+l—n+x+2—n+x+3—---°

Proof. The latt tinnad franel : .
*. Ahe lalter continued fraction in Entry 54 is merely the even part of the

former contfnued fraction, a fact immediately seen from 64.1).
To establish the first pant of Entry 54, replace x by x/8 and set y = n in

Part I1 [2. n. 134 Entry 21 aa (21 9\ Qi
4 P 234, Intry 21, &G, (21.2)]). Since the continued fraction converges

uniformly with respect to 8 in a neighborhood of B = oo, we may let 8 tend
oo to complete the proof. Alternatively, we can replace x by —x in the tg
f:ontlnu'ed fraction of Corollary 1 of Entry 21 of Chapter 12 (Part II [2 15366c b
immediately achieve the desired result, since both continued fractior,lsp . o~

for all x and n. converge
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Entry 55 (p. 343). For every complex number x,

x

1
| —e™* T

Proof. Setting n = 1 in Entry 54, we deduce that

_ ,x ] o0 (_ )lz 00 (—X)k
1-e __Z X =Z

1 x 1 x 2 x
T14+141+1+H141

-
+

Taking the reciprocal of both sides, we complete the proof.

Proof. If we set n = 1 and replace x by 2x in the first continued fraction of
Corollary 1 of Entry 21 of Chapter 12 (Part 11 {2, p. 136)), we find that, for all
complex x,

x 2x 2x 4 4 6x 6x
T1-24+3-4+5-6+7 -
X X X X X { _x_
TT-T+3-145-1+47-

Entry 56 also readily follows from a continued fraction for ¢* found in Wall's
book 1, p. 348).

Entry 57 (p. 343). For all complex numbers x andn,

n P
xX—-n+ ———Fx =
¥

o n+ 1

-

x n+l1l x n+2
1 1 +1+ 1+

—_—N

+1+

n[ng

Proof. By a straightforward calculation, it is easily shown that the left side of
Entry 57 is equal to

x 1Fi@2;n+2;x)
nt 1. FR(;n+Lx)

F(x):=
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To show that F(x) has the given continued fraction, we require the continued
fraction

2File, By x) =1_l{ Bly —a)x
Fi@+ 1,85y +1,x) B-—a)x+y+1
B+ Dy —a+Dx
—B-a+Dx+y+2
B+2(y —a+2)x
—B-a+Dx+y+3— }’
due to E. Frank [1] and valid for |x| < 1. Replacing x by x/8, letting 8 — 00, and

using the fact that the resulting continued fraction in (57.1) converges uniformly
with respect to g in a neighborhood of 8 = 00, we find that, for all x,

1Fiia+ 1,y + 15, x)

(57.1)

1Fi(a; yi x)
Y (y —a)x (y—a+lx (y—a+2x
Ty xty+l— x4y42 — xty43 -

Putting @ = 1 and y = n + 1, we deduce that, for all x,

1 Fx) = 1 nx (n+ Dx (n+2)x
X —n+l—x+n+2—1+n+3—x+n+4—""
By (64.1), this last continued fraction is the even part of

1 n x n+l1 x n+2
) = T+ T+ T 4T+ 1 4
It remains to show that C F(x) converges to F(x)/x.

The odd part of CF(x) is

n (n+ r (n+2x

(n 43y
(n+ +3)x

)X 1

1
1—x+n+l—x+n+2—x+n+3-x+n+d—--"

which converges for all x and n. Thus, the even and odd parts of CF (x) both
converge to meromorphic functions of x and n. The even part convergesto F(x)/x,
and so we want to show that the odd part also converges to F(x)/x. Now C F(x)
and thus the even and odd parts converge to the same values forx > Oand n > 0.

Therefore, by analytic continuation, they are equal for all x and n. This completes
the proof.

Frank’s continued fraction (57.1) can, in fact, be derived from Euler’s continued
fraction, Entry 22 of Chapter 12 (Part 11 {2, p. 136}).

Entry 58 (p. 343). Let x be a complex number such that Re x2 > — 3- Then

sinh~' x x 2% 2004+xY)  ax? 40 +x?)
1

A+a2 " T+ T +7 1+ 1 + 1 4
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Proof. Using a familiar transformation for , Fy (Bailey {1, p- 2, eq. 2]), we find
that (Gradshteyn and Ryzhik [1, p. 60])
sinh ™" x = x 2R (3, 5 3 —x?) = x(1 + D)V FL 1 §5 2.
We now apply Entry 21, eq. (21 .2), of Chapter 12(Pan (2, p.134)) with g =0,
y = 172, and x replaced by x2. Hence, forRe x> > —1,
sinh™! x
(1 _+_x2)l/2
x/2 x2 t+x? U 204xh) 3 3(i+xD)
1241402 + 1+ 12 41+ 12+

which is easily seen to be equivalent to the proposed continued fraction.

=x.FR (1,1 3 —x%)

]

Entry 59 (p. 343). Let x be any complex number such that Re x? > —%. Then
2 20+xhH 3% A+
1 1

+1 + 1

~
~

tan"!x =

—

Proof. We know that (A. Erdélyi (1, p. 102])

tan'x = x,Fi(3, 1; 3 —x7).

We again apply Entry 21, eq. (21.2), of Chapter 12 (Part II (2, p. l134]) but now
with 8 = —1,y = §, and x replaced by x*. Thus, for Rex? > —3,

x/2  x*j2 14+x% 3x%2 2(1+4x%)
172+ 1 + 12 + 1+ 1/2 + .-

ij&

tan ' x ==

[}

which is equivalent to the proposed continued fraction.

5. General Theorems

Entry 60 (p. 339). For 1 < k < n, assume that ax # 0. Then

N1 1 a4 _G (60.1)

Sa a —ata -~ a,+ay — " T Q-1 tan

In fact, we have stated a finite version of Ramanujan’s claim, i.c., Ramanujan’s
statement is for “n = 00.”

Proof. Entry 60 is easily established by induction on n. In fact, Entry 60 is a
version of an identity

3 b b bs bn (60.2)
;b1b2~~~bl.=T —T+b,—1+by— - — 1+b,’
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due to Euler (Jones and Thron [1, p. 37]), where by 3 0, | < k < n. To derive
(60.1) from (60.2), set by = 1/a, and by = a;_,/ax,2 < k < n. After a simple

eﬂmva]ence transformation, we deduce (60.1)

pelice T A OiNallon, we acuce (OV.2 ).

In the following three entries, Ramanujan examines the convergence and diver-

gence of limit k_npnndm continued fractions of the form

a a as

» +;+;+_'_, 61.1)

where lim,,_, o @4, = aj‘ € ﬁ, for 1 < j < k. The convergence behavior for the
special periodic case, ayn4; = a}, 0 < n < o0, has been known since the 1880s
(O. Stolz {1], Jones and Thron [1, p. 46]). If we think of the continued fraction
(61.1) as being generated by the linear fractional transformations

an
Sp(w)=———, n=123, ...,
(W) Tt w

Sh(w) :=51050-- 05, (w)
a, a; a A+ A w (61.2)
p+p+.”+p+w_Bn+Bn—lw'

we may deduce the following information:

(1) For k = 1, the approximants S, (0) of the continued fraction

61.3)
are just iter;
Hence, (61.
repulsive fi

1

Honce
0onde,

n e
atic

d
and

D

-

s} avalis 0
151 () Evaiuat U.

A1 w w =
w) has on ttracuve fixed point and it has no

omts ofs,(w) are p(+/1 + da/p? — 1)/2.

1 3
"c:.
]

[+

d4a/p* € C — (00, —1). (61.4)

(2) For k > 1, we regard the periodic continued fraction as iterations of S; (w),
given by (61.2), evaluated at the points

0,a) = $1(0),a1/(1 + a2) = $2(0), ..., Sc_1(0). 61.5)

Hence, the k—periadic continued fraction converges if and only if S;(w) has an
attractive fixed point and it has no repulsive fixed points at any of the points (61.5).
It was first pointed out by T. N. Thiele [1] in 1879 that if §; (w) has a repulsive fixed
point at one of the points (61.5), then the periodic continued fraction diverges. This
phenomenon is therefore called Thiele oscillation (Perron [1, p. 87)).

For more details, we refer to Jones and Thron’s book (1, p. 47]. The results
quoted above were probably known to Ramanujan who most likely derived them
himself, because they are not found in the books of G. Chrystal [1] or G. S.
Carr [1], the two primary sources of information about continued fractions for
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Ramanujan. He then must have realized that he could generalize these results to
limit k—periodic continued fractions, and Entries 61 and 63 below are the results

of his investigations. His first result is on limit 1-periodic continued fractions.

Entry 61 (p. 339).

@2 & A 61.6
-1 -1T-1=-- (©1.6)

is intelligible or not according as lim,,_, a, < or > 1/4.

1 ﬂ a a aa
1 1

Here we have precisely quoted Ramanujan. By “intelligible,” Ramanujan evi-
dently means “convergent.” In the periodic case a, = a, Entry 61 is true, since
the condition (61.4) then reduces toa € C — (%, 00). It is also true that the limit
periodic continued fraction converges ifa € C — [%, 00). This was first proved by
E. B. Van Vleck (13 and is beautifully presented in Perron’s book (1, p. 93). In the
case lim, o a, = 3, the point wisely omitted by Ramanulan the continued frac-
tion may converge or diverge, according to how a, tends lo +- But what happens
if limyoo0 @y =a > 1 27 Itis easy to prove that if a, tends toa “fast enough,” then
the continued fraclion (61.6) diverges (J. Gill {1]). That it may converge otherwise
was also shown by Gill [1], if one allows complex elements a,,.

In our Memoir [2] with Andrews, Jacobsen, and Lamphere, we asked if there
exist convergent continued fractions (61.6) witha,, > 0 and lim,_,ca, = a > %.
In a lecture at a conference on continued fractions in Trondheim, Norway, on May
31, 1997, L. J. Lange answered this question. In particular, in 1985, he and N. J.
Kalton (1, Theorem 8.1] had proved the following theorem.

Theorem 61.1. Ifa, is real, lim, .o a, =a > :'v and

o0

z’an+l _anl < 00,

n=|

then (61.6) diverges.

Moreover, if the last hypothesis above is dropped, Kalton and Lange [1, Theo-
rems 6.1, 6.2] found specific classes of sequences {a, } for which (61.6) converges.

For further results relevant to our qﬂes“eﬂ, see Theorems 2.1 and 3 .2 of their pa-

per [1). Lange also raised a more difficult question. If a is any real number such
that 2 > 1 , does there exist a real sequence {a,} such that a, — a and (61.6)
wuv'erges"

D. Masson [1] has communicated to us another theorem relevant to our original
question in the Memoir [2]. Using Pincherle’s theorem, he has shown that (61.6)

diverges provided that a,, is real and

a, =a(l+gn)+o(gn)),
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as n tends to 0o, where a > , and where g(») is any positive function monoton-
ically decreasing to 0 as n —> o0, for example, g(r) = cn™, for some constant ¢

nd
and positive number «.

For the next entry, we again quote Ramanujan.

Entry 62 (p. 340). The ¢

ntry 62 (p. 349).
- =, = = 62.1
p+p+p+p+- ©2.1)

tends 1o two limits or one limit according as 3_ 1/ ./a, is convergent or divergent.

Ramanujan evidently considered a,, I < n < 00, to be positive and p to be
real. From Stieltjes’ classical work (2], (3, pp. 402-566]), it follows that (62.1)
converges if and only if

o0
Ea’l’a}) * -] +Z a4 - = 00 62.2)

axa; - - az, ajas---ay
n=1 n n=\ 1 L!lfl

otherwise, its even and odd parts converge to two distinct values. This coincides
with the natural interpretation of Entry 62, except for one matter; the condition
(62.2) is not equivalent to Ramanujan’s condition

Y 1//a, = oo, 62.3)

n=l
unless one makes further restrictions. Indeed, (62.3) is a sufficient condition for
the convergence of (62.1) (Perron [1, p. 47]), but there exist convergent continued
fractions (62.1) witha, > 0, p > 0, and }_1/,/a, < oo. For instance, the
continued fraction

converges since

[~} (2]
103 * Q-

E = E 1 =o00.
anas -

n=1 n=

Ramanujan was not the only person to have made this mistake; for example, see
Khovanskii’s book (1, p. 45].

Entry 63 considers limit k—periodic continued fractions for 1 < k < 5. We
state a rather general version, although Ramanujan probably examined only real
continued fractions.

Entry 63 (p. 340). Consider
cF=% 2 .
T-1-1-1--
) IfICF)is limit 1-periodic, then CF converges if lim,_,a, = a € C —
[K’ Q).

a
1
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(2) If CF is limit 2-periodic with limits a and b, then C F converges if
__ % ¢
{1 -(a+b)?
wherea +b # 1.
(3) IfCF is limit 3-periodic withim,,_, o @3, = a,lim,_, o0 3,42 = b, and
lim, ¢ @3 = ¢, then CF converges if
abc
—_— €
{1-(@+b+0)
wherea +b +c # 0, and ifla| > Ic| whenb = 1, |b| > |a| whenc = 1,
and |c| > |b| whena = 1.
4) Suppose that CF is limit 4—periodic With Qany» Qany2, Qanyd, And Ag,

C—[3,),

wmunb toa,b,c, uuuu reoyecuvmy, asn tends to 00. Then CF conveérges
if
abed
cC- [‘l_p OO),
{1 —(@a+b+c+d)+ (ac + bd)}?

wherea+b+c+d—ac—bd # 1,and if lab] > |cd| whenb + c = 1,
|bc| > |lad| whenc+d =1, |cd| > |ab| whena+d = 1,and |ad| > |bc|
whena + b = 1.

(5) Suppose that asny\, Gsny2, Gsns3, Gsnsa, and as, approach a, b, ¢, d, and
e, respectively, as n tends to 00. Then C F converges if

abcde
(1—-(@+b+c+d+e)+alc+d)+bd+e)+ce)? €
where the denominator above is not equal to 0, and if
lab(1 — d)| > |de(1 — b)), when b+c+d—bd =1,
|bc(l — e)| > lea(l —c)l,when c¢c+d+e—ce=1,

C - (5, 00),

[P VR PAYENEN P g | N TP TP > P |
|Ca\l — a)| > |ao\1 — aj|,wnén a T € v a —aa =1,

|de(1 — b)| > |bc(l — €)|,when e+a+b—eb=1,
and

lea(1 —¢)| > |cd(1 —a)|,when a+b+c—ac=1.

The “extra” conditions on the parameters a, b, ... are not given by Ramanu-
jan. Thus, for example, in (3), Ramanujan says that CF “is intelligible when
{1 — (a + b + ¢©)}* — 4abc is positive.” The primary conditions insure that Sy (w)
has an attractive fixed point and a repulsive fixed point. The “extra” conditions
eliminate the cases where the corrcspondmg k—periodic continued fraction di-
verges by Thiele oscillation.

Such limit k—periodic continued fractions were first studied by M. von Pidoll
(1] in 1912 and by O. Szész [1] in 1917. It is interesting to note that Ramanujan
probably made his discoveries in the period 1912-1914.
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Note that part (1) follows from Entry 61 and the remarks we made following it.

Prosf. The comresponding periodic continued fraction is given by
- b ¢
1 -1-1-
The corresponding linear fractional transformation
s _—a b * _ Ay + A 1w
k(w)-T - T - = l4w - By + B w

has an attractive fixed point and a repulsive fixed point if either

()
By #0,Ac1 + B, #0, and

o (1 + 22 <
or

(b) r_y =

k-1

(=]
=
=%
>

(See, for instance, the book by Jones and Thron (1, pp. 51-52).) (If $; is singular,
i.e., one or more of the elements a, b, ... are equal to 0, then §; is a constant
function whose value we regard as the attractive fixed point of S. Its “repulsive
fixed point” is then the point w for which S is not well defined. For more details,
we refer to Jacobsen’s paper (3).)

From the work of von Pidoll [1), Szész [1], and, in more generality, Jacobsen
{31, it further follows that if condition (a) or (b) holds and none of the points (61.5)
is the repulsive fixed point of S, (Thiele oscillation), then the limit k—periodic

continued fraction converges. The results in Entry 63 arise from the application
of these criteria when k = 1,2,3,45

As noted earlier, the case k = i “,las examined in Entry 61.
Letk = 2. Then
—a(l + w)
1-b+w’
For case (a) werequire that B, = 1 #0,A; + By =1-a - b #0,and

4A2B) — BA | _ dab
‘"g(” A 1 Bo) )"a'g(' (]—a—b)z)

ie,ab/{l —(@+ b)) eC- [%, 00). Note that case (b) is impossible.

if one of the fixed poinis in (61.5) is the repuisive fixed poini of 5;{w), then this
fixed pointis either 0 or —a. Now w; = Oisafixed pointof Sy (w)if A, = —a = 0.
Then

S(w) =

<7,

0
l-b+w
is singular, and w, = 0 is the repulsive fixed point if and only if 1 — b = 0. But
this contradicts the requirement ! —a — b # 0. Thus, 0 is not a repulsive fixed
point. If wy = —a is a fixed point of S2(w), then b = 0. I is easily seen that the

S(w) =
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other fixed point of $,(w) is wz = —1. Now w, = —a is the attractive fixed point
of §;(w) (and not the repulsive one) if and only if

|B2 + Byw)| > |By + Byws| (63.1)
(Jones and Thron {1, p. 52]), i.e., if and only if |1 — a| > Q. This is true §ince
1 —a # 0. Thus, w; = —a also is not a repulsive fixed point, and there i
Thiele oscillation. This completes the proof of (2).
Next, let k = 3. Then

a b c A + Ayw
S3(w): _-l- - T - l+w = B;+ng'
where A3 = —a(l —¢), A, = —a, By =1 —b—c,and B = 1 — b, by the
recursion formulas (0.5) and (0.6), or by direct calculation. For condition (a),. we
require B, = 1 — b # 0,ie., b # 1, Ay + B3 = l1—@+b+c) # 0,ie,

4(A3 By — BsAz)) )
; 14 ————— )| < m,ie.,

a+b+c#1and arg( + (4, + By

S R TS (63.2)

{1-(a+b+0)
For case (b), we require B, = 1 —b = 0,ie. b =1, and |4;| # |Bs|, e,
lal # 11 —b — ¢l = |¢|. Now withb = 1

abc _ ac eC—[%,oo)

l—@+b+e)? (a+e)?
if and only if |a| # |c|. Hence, S3 has an attractive and a repulsive fixed point (in
the extended sense if S3 is singular, i.e., if abc = 0) if (63.2) holds.

We next need to determine the conditions that yield repulsive fixed points. If
one of the fixed points in (61.5) is the repulsive fixed point of S3(w), then this
fixed point is either 0, —a, or —a/(1 — b).

First, w, = Ois a fixed pointof S3(w) if §3(0) = A3 = 0,ie.,if—a(l—¢)=0.

Case 1. a = 0. Then
0
—-b—c+(l-bw
is singular, and w; = 0 is “the repulsive fixed point” if and onlyifl —b—c=0.
But this is impossible by (63.2).

S3(w) = ]

Case2. ¢ = 1,a # 0. Then
—aw
Siw)= ———7»
-0+ 1 —0o)w
and the other fixed point of S3(w) is given by wy = (b — a)/(1 — b). Hence, in
analogy with (63.1), wy = 0 is the attractive fixed point of S3(w) (and not the
repulsive one) if and only if

|B3 + Bywy| > | B3 + Bow:|
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(Jones and Thron (1, p. 52)),i.c., |b| > la|. (The case | B3+ Byw,| = | B3+ Byws]|
is excluded by (63.2).) In conclusion, under the condition (63.2), if ¢ = 1, we
need to require thai jb| > |a] for the convergence of C F.

Next, w3 = —a is a repulsive fixed point of S3(w) if and only if w; = Ois a
repulsive fixed point of

D)= 2 € _2
S =T o
So, by symmetry, we need to require that |c| > [b] if a = 1 in order for CF to
converge. Likewise, w3 = —a/(1 — b) is a repulsive fixed point of S3(w) if and
only if w, = 0 is a repulsive fixed point of

which yields the requirement |a| > |c| if & = 1. This concludes the proof of (3).
Cases k = 4 and k = 5 are proved in exactly the same manner as case k = 3.
However, with increasing k, the details become more laborious. For these reasons,
we shall provide only brief sketches of the proofs when k = 4and k = 5.
Letk = 4. Then

A4 + A3w
84 + ng ’
where Az = a(c—1),As = a(c+d—1),B; = 1-b—c,and By = 1-b—c—d+bd.

For condition (a), werequirethatb+c # 1,1 —(@a+b+c+d) +ac+bd # 0,
and

Ss(w) =

abed
{l—(@+b+c+d) +(ac+bd))? €
In case (b), we need b + ¢ = 1 and |ab| # |cd|. Now when b + ¢ = L,
abcd abed
(I —@+btctd)+@c+bd)?  l{ab+ cdf

if and only if |ab| # |cd|. Hence, S, has an attractive fixed point and a repulsive
fixed point if (63.3) is valid.

We next need to determine when the points (61.5) are repulsive fixed points.
Now w, = 0 is a fixed point if Ay = a(c +d — 1) = 0. It is easy to see that the

C -4, 00). (63.3)

€C—[},00)

casea = Qisimpossible. If c + 4 = 1, then
Axw
Sa(w) = ———F—
By + Byw

has the fixed point w, = (A; — B4)/Bs. Thus, in analogy with (63.1), w, is not a
repulsive fixed point if and only if

1Bs| > |Ba + Bawa| = |As),
i.c., if and only if |bc| > |ad|.
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The remaining three conditions listed in Entry 63 for the case k = 4 arise from
the remaining three possible repulsive fixed points in (61.5) and considerations of
symmetry.

Let k¥ = 5. Then

- B5+B4w,
where Ay = a(c+d —1),As=a(c+d+e—ce—1),By=1-b—c—d+bd,
and Bs = 1 —b — ¢ —d — e+ ce + be + bd. For condition (a), we require that
1—(b+tc+d)+bd#0,1—(a+b+c+d+e)+ad+ac+ce+be+bd #0,
and
abcde
—(@+btc+dte)talc+d) +b(d+e)+ce)

€ C—[4,0). (63.9)

Forgomg the calculations for condition (b), we conclude that Ss has an attractive
fixed point and a repulsive fixed point if (63.4) holds.

We now examine the five possibie repuisive fixed poinis given by (61.5
w, = 0 is a fixed point of Ss(w) if $5(0) = As =alc+d +e+ce—1)=0.
The case a = 0 is impossible, and so we assume that ¢ +d +e +ce—1 = 0. The
remaining fixed point of Ss(w) is (A4 — Bs)/ Ba. It follows that w, is not a repulsive
fixed point if and only if | Bs| > |A4], i.e., if and only if Ibc(1 — €)] > lae(1 - c)|.
The remaining four possible repulsive fixed points yield the additional restrictions
listed for the case k = S of Entry 63.

S\ Ny
JJ. INOW,

It may be remarked that the “extra” conditions in Entry 63 can be eliminated if
we use the notion of general convergence (Jacobsen {2]).

Entry 64 (p. 342). If n is even, then
a @ a

Lol

o+ byt by

@ b, azasb, aqasbabg

" ay + biby — asby + ba(ay + bybs) — asbs + ba(ae + bsbe)
Qp_2Gn—1by_aby

— o = @y 1by + by_a(ay + by_1bs)’

This is just the finite form of the even part of an infinite continued fraction,
namely (Jones and Thron [1, p. 42]), the even part of

ai az
bo + b+ byt
is
a.b2 0203b4 a4a5b2b6

bo+ a2 + biby — asby+ by(as + bybs) — asbe + balas + bsbs) — - (64 b

33

Ramanujan’s Theories of Elliptic
Functions to Alternative Bases

1. Introduction

In his famous paper [3], [10, pp. 23-39], Ramanujan offers several beautiful series
representations for 1/sr. He first states three formulas, one of which is

4 (6n + 1)($)?

= Z (nh)34n !

where (a)o = 1 and, for each positive integer n,
@n=al@a+1)}a+2) --(a+n-1).

He then remarks that “There are corresponding theories in which g is replaced by
one or other of the functions

@ = exp (—m/ix{/x.) . g2 =exp (—2nxg/(1<2~/§)) ,
g3 = exp (—27K;/K3),

where
Ki= R (53 LK), K= R(},56K), K= R 5 LE)"

Here K| = K;(k'), where 1 < j <3,k = V1 —k% and0 < k < L; ks
called the modulus. In the classical theory, the hypergeometric functions abave
are replaced by > #1(1, : 1; k?). Ramanujan then offers 16 further formulas for
1/ that arise from these alternative theories, but he provides no details for his
proofs. In an appendix at the end of Ramanujan’s Collected Papers [10, p. 336],
the editors, quoting L. J. Mordell, lament “It is unfortunate that Ramanujan has
not developed in detail the corresponding theories referred to in q[14.”
Ramanujan’s formulas for 1/ were not established until 1987, when they were
first proved by J. M. and P. B. Borwein (1, pp. 177-188], [2], [3]. To prove these
formulas, they needed to develop only a very small portion of the “corresponding
theories™ to which Ramanujan alluded. In particular, the main ingredients in their
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work are Clausen’s formula and identities relating , F; (%,
the functions  F; (£, 3; 1;x), 2R, (3.3 1;x), and »F, (3
Weiﬂs {4}’ {6} fn—'kg— Anval nead
mulas for 1/7. Ramanujan’s ideas were also greatly extended by D. V. and G.
V. Chudnovsky (1], [2] who showed that other transcendental constants could
be iepresenicd by similar series and that an infinite class of such formalas ex-
isted.

Ramanujan’s “corresponding theories™ have not been heretofore developed. Ini-
tial steps were taken by K. Venkatachaliengar [1, pp. 89-95] who examined some
of the entries in Ramanujan’s notebooks [9] devoted to his alternative theories.

The greatest advances toward establishing Ramanujan’s theories have been
made by J. M. and P. B. Borwein (5). In searching for analogucs of the classi-
cal arithmetic—geometric mean of Gauss, they discovered an elegant cubic ana-
logue. Playing a central role in their work is a cubic transformation formula for
2F1 (3, % 1; x) , which, in fact, is found on page 258 of Ramanujan’s second note-
book [9], and which was rediscovered by the Borweins. A third major discovery
by the Borweins is a beautiful and surprising cubic analogue of a famous theta—
function identity of Jacobi for fourth powers. We shall describe these findings in
more detail in the sequel.

As alluded in the foregoing paragraphs, Ramanujan had recorded some results
in his three alternative theories in his second notebook [9]. In fact, six pages, pp.
257-262, are devoted to these theories. These are the first six pages in the 100
unorganized pages of material thatimmediately follow the 21 organized chaptersin
the second notebook. Our objective in this chapter is to establish all of these claims.
In proving these results, itis very clear to us that Ramanujan had established further
results that he unfortunately did not record either in his notebooks, unpublished
papers, or pubiished papers. Moreover, Ramanujan’s work points the way io many
additional theorems in these theories, and we hope that others will continue to
develop Ramanujan’s beautiful ideas.

The most important of the three aiternative theories is the one arising from the
hypergeometric function ; F, (3, £; 1; x) . The theories in the remaining two cases
are more easily extracted from the classical theory and so are of less interest.

We first review the classical terminology and theory, which can be found in Part
111 [3]. In particular, see Chapter 16, pages 34-37, Chapter 17, pages 101-102,
and Chapter 18, pages 213-214.

The complete elliptic integral of the first kind K = K (k) associated with the

modulus &k, 0 < k < 1, is defined by

1; x), to each of

71 %)
,2; 1; x}. The Bor-
A

Aitinnnal far
urvial 1vi-

;
3
2 6

elaoin t oo b, dacil ‘o P
ULUIVL UL VEIUPRU LG UCad Uy UCliviiig svyvel

)
al
al ai

nf2 d(P
. _ 1 1.1.32
K'=/r: i fente 2 2Fi (3316, b

where the latter representation is achieved by expanding the integrand in a binomial
series and integrating termwise. For brevity, Ramanujan scts

z2:= ;K = . F (%, %; l;kz)' (1'2)
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The base (or nome) q is defined by

g:= e 7K /l(i

-~
w

~

where K’ = K (k'). Ramanujan sets x (or a) = 2,
Let n denote a fixed positive integer, and suppose that

PG E1-K) GRA(551-6)
2F1 (3. 53 15 &) 2F(3. 5 6€) 7
where 0 < k, € < 1. Then a modular equation of degree n is a relation between the

moduli k and € which is implied by (1.4). Following Ramanujan, we put o = k2

and B = £2. We often say that £ has degree n, or degree n over «. The multiplier
m is defined by

(1.4)

_2h (3.5 e)
2R (3.5 5 8)
We employ analogous notation for the three alternative systems. The classical

terminology described above is represented by the case r = 2 below. For r =
2,3,4,6and 0 < x < 1, set

(1.5)

1 r—1
2(r) == z(r; x) := L F (;’r " ;l;x) (1.6)
and
A=t -
@ = q,(x) := exp | - csc(m/r)? L T ) .
27, 5 x)
In particular,
g = (-2 G R L1 2)) (17
\ V3 .F (%.%:1;1) )’ .
A3 61—
ga = exp —nﬁﬁl‘—a—x) , (1.8)
1F (3 31 x)
and
{ R in1-x)
(g L=
ge=exp|—2r—=8 &' /) 1.
e o
(We consider the notation (1.7)-(1.9) to be more natural than that of Ramanujan
quoted at the beginning of this chapter.)

Let n denote a fixed natural number, and assume that

(15 51-a) LR (= 151-p8)
"R (L = e . (1.10)
2Fi(7 5L a) 2K (3 =1 8)
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where r = 2, 3, 4, or 6. Then a modular equation of degree n is a relation between
« and B induced by (1.10). The multiplier m(r) is defined by
2R (L= L)
m(r) = — A
2P, 5 ﬂ)
forr = 2, 3, 4, or 6. When the context is clear, we omit the argument r ing,, z(r),
and m(r).
In the sequel, we say that these theories are of signature 2, 3, 4, and 6, respec-
tively.
Theta—functions are at the focal point in Ramanujan’s theories. His general
theta—function f(a, b) is defined by

(1.11)

o0
flabyi= 3 a" eI gp) < 1.
h=-00

If we seta = ge?', b = ge™%%, and g = ¢"'", where z is an arbitrary complex
number and Im(z) > 0, then f(a,b) = 93(z, r), in the classical notation of
Whittaker and Watson [1, p. 464). In particular, we utilize three special cases of
f(a, b), namely,

(]

o@=f@.p= Y, q" (1.12)
v(g) = f(g.qY) = p_q"" ", (1.13)
n=0

and

f(=q):= f(-q,-¢") = Z (—1)"g e = l’[(l q",  (114)
n=-00
where |g| < 1. The last equality above is Euler’s peniagonal number theorem
which is most easily derived from Jacobi’s triple product identity (Part I (3, p
35, Entry 19)). o
One of the fundamental results in the theory of elliptic functions is the inversion
formula (Whittaker and Watson [1, p. 500]; Part I1I (3, p. 101, eq. (6.9)])

2= 2R (3 5 X)) =¢'@- (1.15)
We set
2 =9'@"). (1.16)
for each positive integer #, so that z; = z. Thus, by (1.5), (1.15), and (1.16),
2
_u_v@ (1.17)
n  ¢¥*(q")

In the sequel, unattended page numbers, particularly after the statements of
theorems, refer to the pagination of the Tata Institute’s publication of Ramanujan’s
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second notebook [9]). We employ many results from Ramanujan’s second notebook
in our proofs, in particular, from Chapters 17, 19, 20, and 21.

2. Ramanujan’s Cubic Transformation, the Borweins’ Cubic

dontit nd tha T ) oyse i la
Theta—Function Iuvuthy, and the Inversion Formula

In classical notation, the identity

93(q) = 93(q) + 93 ()

is Jacobi’s famous identity for fourth powers of theta—functions. In Ramanujan’s
notation (1.12) and (1.13), this identity has the form (Part III 3, p. 40, Entry

25(vii)])
¢ (@) = ¢*(~q) + 16q¥*(g?). @.1)

The Borweins [5}] discovered an elegant cubic analogue which we now relate. For
w = exp(2ri/3), let

00
a(q) = Z qm1+mn+n2‘ (22)
mn=—00
i 2 2
b(q) = Z a)m—nqm +mn+n , 2.3)
mn=-cQ
and
00
c(q) = ) gV M@/ 1/ 2.4)
mn=—00

Then the Borweins [S] proved that

a’(g) =b'@ + ). 2.5)
They also established the alternative representations
3n-H In+2
algq) =1 +6Z ( — gt ] zq3n+2) 2.6
and
a(q) = p(9)e(g®) + 4qvr (g (g%). Q2.7

Formula (2.6) can also be found in one of Ramanujan’s letters to Hardy, written
from the nursing home, Fitzroy House [11, p. 93], and is proved by us in (9. The
identity (2.7) is found on page 328 in the unorganized portions of Ramanujan’s
second notebook and was proved in Part II [3, p. 462, eq. (3.6)] in the course of
proving some related identities in Section 3 of Chapter 21 in Ramanujan’s second
notebook. Furthermore, the Borweins (5] proved that

b(g) = 1 {3a@®) - a(9)} (28)
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and

c(@) = 3 latg'™ —al@)}. (2.9)

The Borweins’ proof of (2.5) employs the theory of modular forms on the group
generated by the transformations ¢ — 1/¢ and ¢ — f + i+/3. Shortly thereafter,
they and F. G. Garvan [1] gave a simpler, more elementary proof that does noi
depend upon the theory of modular forms. Although Ramanujan does not state
(2.5) in his notebooks, we shall show that (2.5) may be simply derived from results
given by him in his notebooks. Our proof also does not utilize the theory of modular
forms.

We first establish parametric representations for a(q), b(q), and c(q).

Lemma 2.1. Letm = z,/z3, as in(1.17). Then

a(q) = ﬁ%%. 2.10)

b(g) = m“—‘%ﬂ, (2.11)
and

@) = vim2 T Dm — D' 2.12)

4m

Proof. From Entry 11(iii) of Chapter 17 in Ramanujan’s second notebook (Part
I 3, p. 123)),

¥ig) = jvale/pVt  ad  yieY=3vnB/eN @13
where 8 has degree 3 over a. In proving Ramanujan’s modular equations of degree
3 in Section 5 of Chapter 19 of Ramanujan’s second notebook, we (3, p. 233, eq.
(5.2)) derived the parametric representations

_(m =)@ +m)

= (2.14)

and

1
p= =D C+m 2.15)
1rom

Thus, by (1.16), (2.7), (2.13), (2.14), and (2.15),
a@) = Juz {1+ (G.B)m}
m? +6m —3

-1
=./Z|Z3[l+,(1_%tﬁ — ’lejT'

and so (2.10) is established. (In fact, (2.10) is proved in Part III [3, p. 462, eq.
(3.5)1)
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Next, from (2.7) and (2.8),

/ 9 \ 7 VIR T
2b(g) = p(@e(@* (35 _ 1) - N (1 = 3,249 )
Do ( o ') @ (1-3 )
e \ (2.16)
G, X0 { }(‘ill'. ""’

200) = 9@)0(@’ )(“’(" D )—4qw(q2>wq6)(1__v'_(‘iﬂ)‘

R} ¥y (g%
(2.17)
By Entry 1(iii) of Chapter 20 (Part III [3, p. 345]), (1.16), and 1.17),
22@) _ _(g9'@) N\ (9 " .
0@ Ui ) “\m 7] -
and
e(g'"™ o' @) 3 )
1= - = (m*-1)"
0@ (w“(q3) ') (= 1) @19
By Entry 1(ii) of Chapter 20 (Part I1I 3, p- 345)) and (2.13)-(2.15),
VACK) ( ACRIN
1-3q° =(1-94" )
P VgD
_ 9 ﬂ 1/3 1/1(3 l/‘l
= (1 WZ) = 2—(", 57 (2.20)
and
s 7/1\ p) L4, 2 s 1/3
W AC R I (1 R AR )
2"*&((1") 9*¥4(q®)
13 1/3
_(i- zﬁ) = pmt”
( m’ 2 C — @21

Using (2.13) and (2.18)-(2.21) and then (2. 14) and (2.15) in (2.16) and (2.17),
we deduce that, respectively,

1/3

/ 3
o= mal(%“) —(aﬁ)mM]

(m + 3)2/3

=Juzn l ©O—m?)'2  (m—1)(m+3)2m' 33 — m)'3
4m (m + 3)2/3 I

_ G —m)9—mH'/3
= \/2123—;'1‘2/3—
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and
{2 an ia20m + '3
2(q) = VT {(m ~ DY+ @ = |
e ‘ ,m2 _ .l.!/j&, + (m — 1)('" + 3)('" + l)llj ]
=J2123 1( ) 2m(m — 127 l

3m? - 1)\ m+1)
2m ’
Hence, (2.11) and (2.12) have been established.

=3

Theorem 2.2. The cubic theta—function identity (2.5) holds.

Proof. From (2.11) and (2.12),

(2123)*?
64m?
32
= ——(21223 (mz + 6m — 3)3 = a‘;(q).

b(g) +c(g) = [m3 = m)*©@ = m?) +27(m + 1Y’ (m* — D)}

by (2.10). This completes the proof.

Our next task is 1o state a generalization of Ramanujan’s beautiful cubic trans-
formation for . Fy(}, %; 1; x).

Theorem 2.3. For |x| sufficiently small,

{”+1.3c+1_1_(1—x\3\
\1525/ |

K. _
“‘\’ 3 2 1+ 2x
1 3¢+5
= (1 +20)%,F (c,c+§; c: ;x3). 2.22)

Proof. Using MAPLE, we have shown that both sides of (2.22) are solutions of
the differential equation

2x(1 = ) + x + 23 +2x)%y”
— (1 + 20)[(4x> = DBc + 2x + 1) + 18cx]y’ — 6c(B3c + (1 — x)*y=0.

This equation has a regular singular pointatx = 0, and the rqots of the associated
indicial equation are 0 and (3¢ — 1)/2. Thus, in general, to verify that (2.22? ho’lds,
we must show that the values at x = 0 of the functions and their first derivatives
on each side are equal. These values are easily seen to be equal, and so the proof
is complete.
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Corollary 2.4 (p. 258). For |x| sufficiently small,

F/l 3.1.1—/l'x\z\—(‘w'zx)F/l 250). @23
S RS Ve Ty i S EAE Ml A

Proof. Setc = § in Theorem 2.3,

The Borweins [5] deduced Corollary 2.4 in connection with their cubic analogue
of the arithmetic—geometric mean. Neither their proof nor our proof is completely
satisfactory, because they depend upon prior knowledge of the identity and differ-
ential equations. Recently, H. H. Chan 4] has given a considerably more natural
proof that depends upon rederiving some of the results in Sections 4-6 of this
chapter without appealing to the theorems here in Section 2. The Eisenstein series
M(q) and N(g), defined at the beginning of Section 4, play key roles. Chan [4)
has also shown that Ramanujan’s cubic transformation can be derived from two

PP SN P SO R NPT YR ol PN +« 11

P T T N
CUvIC U didivul 114auvuln Uuut W L. uvuliyal | 1].

Our next goal is to prove a cubic analogue of (1.15). We accomplish this through
a series of lemmas.

Lemma 2.5. Ifn = 3™, where m is a positive integer, then

12 P@) _ a@ 12 g
A (5' ypht- a3(q)) = aqn " (5’ 3his a’(cﬂ))’ *29

Proof. Replacing x by (1 — x)/(1 + 2x) in (2.23), we find that

p(l Z.,‘,_b"m)_ a@ . 12_1_(0(‘7)—b(q))3
I T @) a@+ 26 2 '\3'3 " \adg) + 26()

30,3
a(q) Fn(l 2 _C(q))

Ta@ ' '\3'3 " a @)
37,3
_ 8@ (12, r@))
a(q’) \3 3 a’(q°) )]

by Theorem 2.2. Iterating this identity m times, we complete the proof of (2.24).
The next result is the Borweins’ [5] form of the cubic inversion formula.

Lemma 2.6. We have

1 2. ) c3(q) _
2Fy (5, 3 b ;3—(‘]—)) = a(q). 2.26)
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Proof. Letting m tend to 00 in (2.24), noting that, by (2.2) (or (2.6)) and (2.3) (or
(2.8)), respectively,
lim a(g") = 1 = lim b(g"),
n—>oo n—0o0o
and invoking Theorem 2.2, we deduce (2.26) at once.
Lemma 2.7. Ifn = 3™, where m is a positive integer, then

L2, @) _ 2@ g (L 2ula). e
o 33" a*(g) ,,a(q”) 3’3 @

Proof. By Theorem 2.2, (2.25) withx = c(g)/a(q), (2.8), and (2.9),

12 Y@ _ 12, 3(q))
2Fy (3.3;1;03@))— 2 (3 3 BN )

3a(q) /1 % \: ( alg) — clg) A\

T a@+2clg) (3 3 \a(g) + 2@ )
3a(q) 12 '—'L(qm))- 2.28)

= 2@ N (551 am ‘

Replacing g by g° in (2.28), and then iterating the resulting equality a total of m
times, we deduce (2.27) to complete the proof.

Lemma 2.8. Let g3 be defined by (1.7), and put F(x) = g3. Letn = 3™, where
m is a positive integer. Then

F b(q) =F" (———bj(q") 2.29)
a3(q) a3(qn)
and .
(@) (c @ ) (2.30)
F (03(4)) =F\@en )
Proof. Dividing (2.24) by (2.27), we deduce that
3 1 2 b3(qn)
Al 2t @) LA 330 o
"\3'3 " a@q)) _ \3'3 Vs @231)
12 . b@ (L2 b’(q"))
ZFl(ga 5; l, (13((_])) 25 3! 3’ 'a:‘(qn)

Multiplying both sides of (2.31) by -2x/ /3 and then taking the exponential of

h side, we obtain (2.29). ‘ _
eacMuluply both sides of (2.31) by — —/3/(2rn), 1ake the regprocal of each‘ snde;
use Theorem 2.2, and then take the cxponential of each side. We then arrive a

(2.30).
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We now establish another fundamental inversion formula.

Lemma 2.9, Ler

)
o

b
%4

Proof. Letting 7 tend to oo in (2.30) and employing Example 2 in Section 27 of
Chapter 11 in Ramanujan’s second notebook (Part II [2, p. 811), we find that

(q) ) , (c3(q")
F = lim F'/n _)
(03(q) nlbn;o 3(q,|)

v { @, 56’(q) W
“ e \2703n ' T 923 T 7))
5 1/n
—tim ("4 ) (142 + )+ )
nooo \ N9 /7
= q,
where in the penultimate line we used (2.6) and (2.9).
Theorem 2.10 (p. 258). Let F be defined as in Lemma 2.8. Then
z:= 2F (5.3 1,x) = a(F(x)) = a(gy). (2.32)
Proof. Letu = u(x) = b*(F(x))/a*(F (x)). Then by Lemma 2.6 and Theorem
2.2,
a(F(x))= R (3.5 51 -u). (2.33)
On the other hand, by Lemma 2.9,
F(1 —u) = F(x),
or
2 D1.
£ (5550 ARG L1-x) @2.34)
2F(5 550 —w) 2Fi(5. 3 L x)
By the monotonicity of , Fy (3, %; 1; x) on (0,1), it follows that, for 0 < x < 1,
R (55 61-u) =R (4,3 15x). (2.35)
(The argumcnt is given in more complete detail in Part 1l (3, p. 101) with
2Fy (l 2. 1; x) replaced by , F, (3. 3: 15 x) ) In conclusion, (2.32) now follows
from (2 33) and (2.35).

Theorem 2.10 is an analogue of the classical theorem (1.15). Our proof followed
along lines similar to those in Ramanujan’s development of the classical theory,
which is presented in Part 111 [3, Chap. 17, pp. 98-102].
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Corollary 2.11 (p. 258). If z is defined by (2.32) and g3 is defined by (1.7), then

& XJ(")""!'; 2.36)
2 n)n
= 12 _—, 2.
z 1+ ; 1_qf

where X3 denoies the principal character module 3.

Proof. In Part I11 [3, p. 460, Entry 3(i)], it is shown that

n 3n
12y —36%1"_‘1(13"
n=1

=a*(g). .37
1- q" n=1

Since here g is arbitrary, we may replace g by g3 in (2.37). Thus, (2.36) can be
deduced from Theorem 2.10 and (2.37).

We conclude this section by offering three additional formulas for z.

Theorem 2.12 (p. 257). Letq = g3 and z = 2(3). Then

n

> e
z2=1+6 T T
n=ll+q +q

Proof. By Theorem 2.10 and (2.6),

In+1 In42
( q n -+ B q )
1 _ A3n+d 1 _ a3n42
\1—4q 4

1 /

e

z=1+6
0

n

1+6

1l

i

[
Z(q(3n+l)m _ q(3n+2)m)
=1

noo m= .
1+ 6Z(qm _ qu)zq3mn
m=1 n=0

0 m 2m

9 —4q
= 6 _—
1+ ,,?:1 =g

(o] am

and wme prool 1 compiee.

In the middle of page 258, Ramanujan offers two representations for z, but one
of them involves an unidentified parameter p. If g is replaced by —q below, then
the parameter p becomes identical to the parameter p in Lemma 5.5 below, as can
be seen from (5.11).
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Theorem 2.13 (p. 258). Letz and q be as given above. Put p = (m —1)/2, where
m is the multiplier of degree 3 in the classical sense. Then
30,3 30,2 30,3
A 2 ¥°@Y)  Le'(@)
z= (l+4p+p)=4 -3 .
o) TP T el

(2.38)

Proof. Our proofs will be effected in the classical base q. We first assume that

the second equality holds and then solve it for p. Let 8 have degree 3. By (2.13),

v’@) 9la)

¥(@%) ¢*@@°)

_ o /¥t _m2(3 +m\?
(B/a»'/*

14+4p+p2=4

\ em ) (2.39)

by (2.14) and (2.15). Solving (2.39) for p, we easily find that p = (m — 1)/2, as
claimed.

Second, we prove the first equality in (2.38). By the same reasoning as used in
(2.39),

V@) P e 2
V@D T e@  PBR P

( (3+m)2 3)
=Jhuia|gm|\— —_——
2m m

m? 4 6m—3
SVun| T =a(),

by (2.10). Appealing to Theorem 2.10, we complete the proof.

3. The Principles of Triplication and Trimidiation

In Sections 3 and 4, for brevity, we set ¢ = g3, and z = z(3; x) (unless otherwise
stated).

In the classical theory of elliptic functions, the processes of duplication and
dimidiation, which rest upon Landen’s transformation, are very useful in obtaining
formulas from previously derived formulas when ¢ is replaced by ¢° or Ja,

Theorem 3.1. Let x, g3 = q = q(x), and 2(3; x) = z be as given in (1.7) and
(1.6), respectively. Set x = t*. Suppose that a relation of the form

Q¢’q.20)=0 3.1
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holds. Then we have the triplication formula

, s 13 . \
1-=0)y" 1 3_1_ 21__;3)1/3 z):O 3.2
o({iraazmm) o3l

and the trimidiation formula

3
1-t 13 +2nz)=0. (3.3)
Q(l_(1+21) g7, ( )2z

Proof. Set
[ 1—1 \3 (1 Ay
3 — —_— . 2
C=1-\17z)
Therefore,
I G (3.5)
By Corollary 2.4,

It

’ L q. 3
7 =20 = A (5. 3 617)

12, l—t)3
Filz 30 *(1+2t
=q+20.F (3 LELe)y=0 +202(8%). (3.6)

Also, by (1.7), (3.4), (2.25), and (2.23),

i gt = ex N 2n2F,(3,.4,1,1-w3)\
q = \ «/— 2Fl 3 3, r/}) /

(2,, A (5 E6GE)) )
=exp|———%x

V3,F (3» L1 - () )

( 2 2Fl(3"' ’1—‘))=ql/3(t3)'
= exp A oF (535150
\ 33 ’

It

3.7
7 .

Thus, suppose that (3.1) holds. Then by (3.5)-(3.7), we obtain (3.2), but with
¢, g, and g replaced by ! ¢, q', and 7, respectively.

ht, g, and z replaced by ¢', q,
On the other hand, suppose that (3 1) holds wit
and 2’ respectively. Then by (3.4), (3.6), and (3.7), it follows that (3.3) holds.

Corollary 3.2. Withq andz as above,
b(g) = (1 — %'’z
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and
c(g) = x'Pz.
Proof. By (2.8), Theorem 2.10, and the process of triplication,
bg) =103 - 1{1+20-0"}z-2) =1 -0,
while by (2.9), Theorem 2.10, and the process of trimidiation,

c@) =3 (0 +2x")z —z) = x'P2.

Theorem 3.3. Recall that f(—q) is defined by (1.14). Then for any base q,

Nt
—~

w

o

Proof. All calculations below pertain to the classical base g.

By Entry 12(ii) of Chapter 17 of Ramanujan’s second notebook (Part HI [3, p.
124)),

af (=) = zlel — o). 3.9

It thus suffices to show that the right side of (3.8) is equal to the right side of (3.9).
To do this, we use the parametrizations for b(q) and c(q) given by (2.11) and
(2.12), respectively. It will then be necessary to express the functions of m arising

in (2.11) and (2.12) in terms of « and 8. In addition to (2.14) and (2.15), we need
the parametrizations

(m+ 13 -m)’?

l—a= 16m3 (310)
and
33 _
1_ﬂ=(m+l) (&) m), Gan

16m
given in (5.5) of Chapter 19 of (Part Il [3, p. 233]). Direct calculations yield
a3/8(] - a)3/8

2 _ 2
9—m =4m W, (3,]2)
2 (-t
3—m =2MW, (3]3)
_ 3/8
m-{—l—2(| A (3.19)
(1-a)i/8 N
and
3/8 3/8
2 B - )
mt =l = dome— (3.15)
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Hence, by (2.11), (3.12), and (3.13),

- 5« 118(1 — o) !/8

(A
4m7/6"’"(] — ﬁ)l/S
Zlml/2al/8(1 _a)I/Z

1N —
\g) =

-

111 0124 118 (3]6)
2.,,,3.,“(1 _ﬁ).,v
By (2.12), (3.14), and (3.15),
3z 2(1 — B)¥8 41388 (1 — p)'/8
clq) = am32 (1 —a)i/8 /241 — )V
1/8¢1 _ g)1/2
307701 - B) G.17)

= W2 241 — )1 /6
It now follows easily from (3.16) and (3.17) that
#6°(@)*@) = fgzi’el — ),
which, by (3.9), completes the proof.
Corollary 3.4 (p. 257). Let q = g3, and let z be as in Theorem 2.10. Then
g f(=q) = VT3~ A1 — x)'8, (3.18)

Proof. By Theorem 3.3 and Corollary 3.2,
af*(—q) = 5 (1 —x)’xz"
from which (3.18) follows.

Corollary 3.5 (p. 257). With the same notation as in Corollary 3.4,
@' (=g = JT3 VB3 — )\,

Proof. Applying to (3.18) the process of triplication enunciated in Theorem 3.1,

we deduce that

2 8
s " J‘{] +2(1 - 1/3}1/ 1—(1— x)l/3 174
q f(_q ) 35/3 1+ 2(1 _x)I/J
1/8

(420 -9 - (-0 -0")]
x 3
(1+20 -x)'7?)

Ta—3/8 1 e \II3|]/ \1/24

=V3 -0 -x)7p -0
x {l _+_(] _x)l/3 + (1 _x)2/3}|/8

— ﬁ3—3/8 {1 _ (l __1)]|/ﬂ (1 . x)l/24
— \/23_3"8(1 _x)l/24x|/3|
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as destred.

4. The Eisenstein Series L, M, and N

We now recall Ramanujan’s definitions of L, M, and N, first defined in Chapter
15 of his second notebook (Part II [2, p. 318]) and thoroughly studied by him,
especially in his paper (7], (10, pp. 136-162], where the notations P, 0, and R
are used instead of L, M, and N, respectively. Thus, for g| < 1,

X gt
L@ :=1—24ZIT"-

n=1 q’l

M@ = 142405 22
Vizd = p - .
! Si-g

and

I
—_

I
W
S
&

3
o

N(q):

We first derive an anatogue of Entry 9(iv) of Chapter 17 in Ramanujan’s second
notebook (Part I1I [3, p. 120]).

Lemmad.l. Letq = q; bedefined by (1.7), and let 7 be as in Theorem 2.10. Then

d
L(g) = (1 — 4x)z* + 12x(1 — X)zd—i. (4.1)
Proof. By logarithmic differentiation,

-
L

dl 24 = ilo/ 1 -gm%
34 og (¢/*(—q)) = 1 8\’! )

=1-24iI ]
n=1

On the other hand, by Corollary 3.4,

n

_ = L(g). (42)

d d
95 108 (ar¥-q) = 975 18 (£2'"2x(1 - x)°)
d 12 4 dx
=q- log (%22 x(1 — x)*) i
Now by Entry 30 of Chapter 11 of Ramanujan’s second notebook (Part II [2, p.

870,
d (2nFG.31-0) 1
dx\v/3 ARG 5L L0 /7 x( -0

43)
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Thus,
dg _ _ 9 (4.4)
dx ~ x(1 = x)z¥
Using (4.4) in (4.3), we deduce that
d dz l _ 3
92 tog(af™(-) = x(1 = )2 ( T
=12x(1 — x)z— + (1 — a0 4.5)
dx
Combining (4.2) and (4.5), we artive at (4.1) to complete the proof.
Theorem 4.2 (p. 257). We have
M(g) = 2*(1 + 8x). (4.6)

Proof. From Ramanujan’s paper (7], (10, p. 330] or from Part I [2, p. 330, Entry
13),

dL
il L(L%g) - M(@)}.
Thus, by (4.4) and Lemma 4.1,
2 ,dL
M(g) = L*(g) — 12x(1 — x)z o 2
d dz
= (1 - 4x)*z* + 24x(i — x)(i — 402 25 1 14ax0 - 022 (d—\l
dx \dx)/

- 12x{1 - %) {—422 +2(1 — 4x) zfi—— 12x(1 — x)( \ + 12221\
\ dx )

where we have employed the differential equation for z (Bailey (1, p- 1])

d dz) _2 @n
d—x lx(l _X)Z;] = 9Z.

Upon simplifying the equality above, we deduce (4.6).

Theorem 4.3 (p. 257). We have
N(g) = 25(1 — 20x — 8x%). (4.8)

Proof. From Ramanujan’s paper (7}, [10, p. 142} or from Part 11 [2, p. 330, Entry
13],
am

— = Y{L@M(@) - N@)}.
qdq 3 (L(@M(q) q
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Thus, by (4.4), Lemma 4.1, and Theorem 4.2,

N{a \ = LI MG 211 _\_ZdM
BN — L\Y)M\Yy) — DAL T AL T
dx
dz
(1—4x)z + 12x(1 — x)z 7= 1+ 8x)
uA'

-3x(1 - x)2? l4z3(1 + sx)— +8z4]
dx

= 2% {(1 — 4x)(1 + 8x) — 24x(1 — x))
=281 — 20x — 8x),
and so (4.8) has been proved.

Theorem 4.4 (p. 257). We have

[V 7P N I £
Migy ="

Cloe
b
T d

Proof. Apply the process of triplication to (4.6). Thus, by Theorem 3.1,

3
17334 1-(1—x)'7?
(14201 - 0)'7) (1+:3H_____1+2“_xw3
12 (1+20 -0'7) (1
=3z (1+8(1 —x))
1

M@’ = 52*
—2(1 =)' + 401 — 0)¥?)

— 4.0 Q-

=5z (¥ — 8x),
and the proof is complete.
Theorem 4.5 (p. 257). We have

N(g® =2°(1 - 3x + £27).

Proof. Applying the process of triplication to (4.8), we find that

(+ \3\"{1

¥/

[1-a-0' }

N(g*) = 20
ll+2(1 —x)113]

Ll
36

_gli-a-0" ¢
[l+2(l—x)l/*|}

6
= % {(] +2(l — x)l/])c‘ _ 20(] +2(] _x)|/3)3 (1 _ (1 _x)|/3)3

-8(1-q —x)'/3)6|

107
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6
= ;—6 (=27 + 54001 — x) + 216(1 — x)?}

6
- 2_6(729 — 072x + 216x2)

Il

221 = 4x+ £x2)
Il 37 a7 7

We complete this section by offering a remarkable formula for z* and an identity
involving the sixth powers of the Borweins’ cubic theta—functions b(g) and c(g).
Corollary 4.6. We have

10z* = 9M(¢*) + M(g). (4.9)

Proof. Using Theorems 4.2 and 4.4 on the right side of (4.9), we easily establish
the desired result.

Corollary 4.7. We have
28 (b°(q) — (@)} = 27N (@) + N(@). (4.10)

Proof. Using Theorems 4.3 and 4.5 on the right side of (4.10), and also employing
Corollary 3.2, we readily deduce (4.10).

5. A Hypergeometric Transformation and Associated Transfer
Principle

We shall prove a new transformation formularelating the hypergeometric functions
2(2) and z(3) and employ it to establish a means for transforming formulas in the
theory of signature 2 tothat in signature 3, and conversely. We first need 1o establish
several formulas relating the functions ¢(q), ¥(g), and f(—q) with a(q), b(q),

and ¢(g).
Let, as customary,
@ Qoo =(1-a)(1 —ag)(l —ag")---, IgI<L
For any inieger 7, aiso set
(@; q)oo
a,q), = .
@q @;4")oo
From the Jacobi triple product identity (Part I1I {3, pp. 36, 37)),
9(~9) = @ Do(g5 §oor CRY
(9% 4)oo
=177 (5.2)
VAC)) @ 29w
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and
F(=9) = @; @)oo (5.3)
Lemma 5.1. We have
b(g) = %, (5.4
o) = 3q"3f;:—:g:), (5.5
2
3% - ngly 66
20 o
and
AgY _ 5 ¥ @%e(-q) 65

) 7 Y(g)e—¢%)
Proof. First, (5.4) and (5.5) follow directly from Corollaries 3.2, 3.4, and 3.5.
Next, from (5.5) and (5.3),

c(@® _ @%@ %
e CONINC L D W R L T

Using (5.1), we readily find that the right side above equals o(—q)/¢*(—¢%), and
the proof of (5.6) is complete.
Again, from (5.5) and (5.3),
g _ 2@ ¢')%@% 6%
3c(g?) @*% 99%@% g9,
which, by (5.2), is seen to equal ¢?¥*(g®)/¥(g?). Thus, (5.7) is proved.
Lastly, (5.8) follows from combining (5.6) and (5.7).

1 emiina ar

. We have

R G LIRS C )

o (=g o)’

Proof. By (5.8), we want to prove that

2 ¥ (@%0(—9) )”’

2 3 2 2 3
0 (~q7) — p°(—q) = 4p°(— (
¢ (-g7) | ¢q NAPESW T
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By Entry 10(ii) of Chapter 17 of the second notebook (Part I1I [3, p. 122]),
o~ = Vol - ad  e(-gY=Jal -, (9
where B has degree 3 over a. Thus, by (2.13) and (5.9), it suffices to prove that
/N 1 o \'/B

a1 =B - al -0 =20 - () T 55)

Since m = z,/2a, the last equality is equivalent to the equality,

1= 12 3\ /8 _ 1/8
n(i55) -2 () (=)
1-8 a -8y
By (2.14), (2.15), (3.10), and (3.11), the last equality can be written entirely in
terms of m, namely,

3-m m—1 2
Mamt D - 2 m+l
This equality is trivially verified, and so the proof is complete.

Lemma 5.3. We have

Proof. By (5.8), the proposed identity is equivalent to the idcntity
(vf(ql)w(qﬁ)w - q’))

a¥v* @) + ¥ @) = ———
kAN
By (2.13) and (5.9), the previous identity is equivalent to the identity,
f e NV - m3\"3

1+m(§)l =2(z) (e

By (2.14),(2.15),(3.10), and (3.11), the last equality can be expressed completely
in terms of m as

3 2 1
1+m__+,m_ =2___&.

m(m — 1) m-—1 2
Since this last equality is trivially verified, the proof is complete.

Lemma 5.4. We have

@ (—g") ¥ (@)

¢(—q) th V@

a(g) =

Proof. By Entry 11(i) in Chapter 17 (Part I (3, p. 123D,
V@) = Jiu@/@"t  and  ¥@)= Lo Bl”)VR. (5.10)

33. Elliptic Functions to Alternative Bases 111

Thus, by Entry 3(i) of Chapter 21 of Ramanujan’s second notebook
(Part I 3, p.
460]), (5.10), (2.14), (2.15), (3.10), and (3.11), B

v (g) (@)
+3
v@» Ty

M1, 3\ 1/ 33
_ A (a_) +3q'lf(CI)

a(g) =

222\ B v(g)
_almidm v
7 4 v
372
_ z?ﬁ ((m+ 1)? Lme 1\ +3a\w(q-‘)
27\ 4 a )7 "y

57 f(a-p\" 1\ ¥ig?
"‘{( l-a) 2(0:) )+3q1/,(q)‘

By (5.9) and (5.10), the right-hand side above equals

9>(—-q>)  ¥3q?) VO]
+ 3 R
o Ty Ty

The desired result now follows.

Lemma 5.5. If p := p(q) := —2c(q*)/c(q), then

27 A
| p2p= YD
2= G1D
] c(@®) ¥%(gh)
24p=2842Y 9"
(@) 99°@" 12
c(=q) @)
1 + pP=— = .
c(q) c(q)c(@®) G.13)
and
l+p+pt= 1a(qz)c(qz)
T (5.14)

Proof. Equations (5.11)and (5.12) follow from Lemmas 5.2 and 5.3, respectively.

Asobserved by the Borweins and F. G. Garvan (1], it foll iti
@) o e s (1], it follows from the definition

(@) + c(—q) = 2c(g*). (5.15)
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Thus, by (5.15), (5.5), and (5.3),
c(-q) _ (9% —4")%(q: 9
@) (-4 —@oolg’ gDk
(4% 93.@% 9959 9)oo
T (=4 4900(@% 1D0(@% 4D
(9% 49245 49%(@; D@ 42
T (@ 99%@% 19207 4@’ 4%
(4% 99%@: P%9* 4

T @5 %@ )% @' a",
CR

T cg)e(gh)’

Thus, (5.13) has been verified.

Lastly, by Lemma 5.4, (5.6), and (5.7),

2 V(@D cz(q“)) 5.16
a(@g’) = §(C(q4) +4—c(q2) . (5.16)

i+p=-

Hence, by (5.13) and (5.16),
(g% 4cz(q‘)
c2(g)c(g®) 2(q)
_clgh (cz(qz) 4cz(q‘)) _ 3e(gPa@’)
T g \c@h)  clg) c2(q)

1+p+p' =

which proves (5.14).

Theorem 5.6 (p. 258). If

P2+ p) _ a9 +py
"= ™M P
then, for0 < p < 1,
(1+p+p2)2Fl(%,%;l;a)=\/l+2p2F|(%,§ll:ﬂ)~ (.17

Proof. By Lemma 5.5 and (5.8),
g ' (=) ¥P@)
cg) ¢*(—q) 9¥*(¢®)

5 ¥4(@% RCR)

__ (5.18)

=) o)
by Jacobi’s identity for fourth powers, (2.1), with ¢ replaced by g>. Thus (Part III
(3, p. 98, Entry 3]), with g replaced by —¢°,

2Fi (3 Le) = 07 (=¢). (.19
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Also, by Lemma 5.5,

)
p= 03(q2).
Thus, by Lemma 2.6,
2F (3,315 8) = a@?). (5.20)

By Lemma 5.5, (5.19), and (5.6),

a(g?)c(@e*(—q?)
c2(q)

w(_Q) )

o(-¢) "

=V1+2pa(gh)

=V1+2p,F (3.3 1;8),

A+p+p)a2F (3 hina)=3

3
J

by (5.20).
Lastly, we show that our proof of (5.17) above is valid for0 < p < 1.
Observe that

da _6p*(+p)® o dB _ 27p(l— p)(1+2p)2+p)

dp  (1+2p) dp 41+ p + p2*

Hence, a(p) and B(p) are monotonically increasing on (0,1). Since «(0) = 0 =
B(0) and a(l) = 1 = B(1), it follows that Theorem 5.6 is valid for0 < p < 1.

We now prove a corresponding theorem with o and B replaced by 1 — o and
1 — B, respectively.

Corollary 5.7. Let o and B be as defined in Theorem 5.6. Then, for0 < p < 1,

A+p+p)oF (3.5 L1-e)=3+6p2F (1,2, 1,1-8). (521)

Proof, By (5.19) and (5.20), with g replaced by —g¢,

~ {1 2. . SEhH)
a@gh) 2 135 L ogn) 522
2003y T 1.1 TR .
R Y O )
Thus, by (5.21) and (5.22), it sufficcs to prove that
1 2.9, 3g?)
a(q2) _ 32Fl (3:5, ].l—aj—qﬁ—(q )) (523)
2(g3) 111, 20 )
v*@) 2F (34515 2628))
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By Lemma 2.9,
L2, T‘q"r‘
, / T 2 Fy (3;3 I; liaw l)\
q° = exp (—ﬁ - {1 2. (g?) ) (524)
2P (iai L3 a¥q? >)

and by Entry 5 of Chapter 17 in Ramanujan’s second notebook (Part Iii {3, p.

100}),
2B ; —(‘_4-
g = exp (— (2 AR ‘:’(i )_) ) . (5.25)
2Fl(2s2v]'l—w%)—)

Combining (5.24) and (5.25), we find that

ﬁm(“'l l_!;f’%) _h (35 1%2 . (5.26)
F(5E05E) A(L B -5EE)

We now see that (5.23) follows from combining (5.22) and (5.26).

Corollary 5.8. With a and B as above, for0 < p < |,
P 3 1—a) 2R3 51-5)

= 5.27)
V3:RGdihe)  2RGLHLA
Proof. Divide (5.21) by (5.17).
The authors’ first proof of Corollary 5.7 employed Theorem 5.6 and a lemma

arising from the hypergeometric differential equation satisfied by 2 F; (a, b, ¢, x)
and ,Fi(a, b; c; 1 — x). We are grateful to Heng Huat Chan for providing the
lJlUUf that is E!VB“ above. He has also shown that still another tt;rnnf of r‘nrn"ary
5.7 can be effected by combining Theorem 5.6 with Entry 6(i) in Chapter 19 of
Ramanujan’s second notebook (Part 111 [3, p. 238]). We leave this proof as an
exercise for readers.

Corollary 5.8 is important, for from (5.27) and (1.7),

=1 g}() = ¢*(@) :=¢’, (5.28)

where g = q(a) denotes the classical base. Thus, from Theorem 5.6 and (5.28),
we can deduce the following theorem.

Theorem 5.9 (Transfer Principle). Suppose that we have a formula
2(g’@). 22 a(p)) =0 (5.29)

in the classical situation. Then

Q (qi(ﬁ). ——‘H 2(3; ﬁ(p))) (5.30)
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in the theory of signature 3.

If the formula (5.29) involves o, in addition to its appearance through ¢ and z,

it may be possible to convert (5.29) into a formula (5.30) involving only 8, g3,

and z(3). This good fortune is manifest in the next three instances, as we offer
alternative proofs of (‘r\rr\llar\l 3 5 Theorem 4 4, and Theorem 4.5.

ve PIeQCis O1

Second Proof of Corollary 3.5. By elementary calculations,

_U=papy g @400 +2p00 = p)

1 -
1+2p a1+ p+ p*»

.30
From Entry 12(iii) of Chapter 17 (Part III [3, p. 124]), Theorcm 5.6, (5.28), and
(5 30\

=2V,

(=g = f(—¢») = V227 {a(l — @)/q}'""

112
- (14 2p)'/4 ‘/1(3)2-1/5 P2+ p)(1l — p)(1 + N\ _1_
(1 +p+ pd)ii k (1 +2p)? ) "

EE) ( 21p*(1 + p)? )"" ((2 + P)(1L+2p)A(1 — p>2)‘”"

g/* s \al+p+p?) AL+ p+p)
= 1/§(3) B =)',
q3 33/8

by Theorem 5.6 and (5.31). This completes our second proof of Corollary 3.5.
Second Proof of Theorem 4.4. By Entry 13(i) of Chapter 17 (Part ITi (3, p. 126)),
Theorem 5.6, (5.28), and (5.30),
M(g) =M@ =" -a+a?)
1+ 2p)’ 2 + (2 + p)*
__a+ p)24z4(3)(1_p( p) , P p)2)
A+p+p?H) 1+2p (1+2p)

l+3p—5p3+3ps-i-p6

_ 4

=TT A ey

_ oyl p+ )’ - 6p7 + pr)
- 1+ p+p%)’

=2'Q) (1 - §p).

Second Proof of Theorem 4.5. By Entry 13(i1) of Chapter 17 (Part II1 [3, p. 126]),
Theorem 5.6, (5.28), and (5.30),
N(g}) = Ng* = 220 + &)1 — Ja)(1 — 20)
2°Q3)

= 30t p it P (1+2p+p’2+p) (20 +2p) - P’ + p))
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x(1+2p- 2p*(2 + p)

_ 16(3) {191 4 o 1 a2
T2 tp+p)t T TR

+27p*(1 + p)*}
=) (1-38+38).

Having thus proved Corollary 3.5, Theorem 4.4, and Theorem 4.5, we may use
the process of trimidiation to reprove Corollary 3.4, Theorem 4.2, and Theorem
43.

6. More Higher Order Transformations for Hypergeometric
Series

The first theorem will be used to prove Ramanujan’s modular equations of degree
2 in the theory of signature 3.

Theorem 6.1 (p. 258). If

P(3+ 1’)2 p ( + p)
= = ————— = = 77 6.1
a = o(p) 20 1 p) and  B:=B(p) = . (6.1)
then, for0 < p <1,
2R3 LLe)=a+p) R (5.5 18). 6.2)
Proof. We first prove that
2 2
a(g) —alg®) = (9 ) (6.3)

c(q)

From Entry 3(i), (ii) of Chapter 21 of Ramanujan’s second notebook (Part 111
(3, p. 460)),
o ) | 39’
do(g®)  de(g)
Thus, by (6.4), Theorem 2.13, (1.17), (2.13), (2.14),(2.15),(5.10), and 5.1,
v @)  150°(q°) _ '@
¥(q®) 40(q) @)

_a (a_’) _By 4
Z‘I;/Z B 4 :/2 425/1

ﬁ m2(3+m)2 _E_lm2)
o7 am? 4 4

a(g) —ag>h =4
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" x/z 3/2 g\
- 1/2 -= 355 72 \ g
2y

9|

vig®)  cHgH

= = 2 N
64 v(g) <(q)

11 = PR ) = Vol Y P, BN
whnicn Compicics e prooil o1 (0.5).
Second, we prove that

2
alg) +2a(gh) = SD.
c(g?)

By (6.4), Theorem 2.13, (1.17), (2.13), (2.14), (2.15), (3.10), (3.11), (5.9), and
(5.6),

(6.5)

- B3a) 311)3(113\ 3a)
a(q)+2a(qz) = 4"' \‘16/ _ Y N7 s 5’-' \‘1731
¥(q®) 20(q)  2¢(q°)

A RN E G

= — ] — —_——  —
22 \s/ 247 21;/2

2 (BG+m? 3 1
:ZT/Z. —4————

! 5
L3 i (U222
Z:/2 1/2 1-
_39°9) _ )
o(-q) <@’
which proves (6.5).
Now let
. _aq)
p:=p@)=——. - L 6.6)
avy )

(Note that p tends to 0 as g tends to 0, by (2.2).) Then by (6.6), (6.3), and (6.5),
_pB+p? (a(q) 1) (a(q) N 2)2 2"
201 + p)? a(g?) a(g?) a’(g)

_(a@ -a@)) (e@ + 2a(¢%)’

243(q)
@)t 1 _d@
=2 =
@) @) 2@ @) 67
Also, by (6.6), (6.3), and (6.5),
2 2
_ p(3+p)_1 ag) a(q)
P=—"7—=3 (a(q2) l) (a(qz) * 2)
1 4(4 2 3 2
@) @) _ @) ©63)

T 2a3@) ) (gd)  agd)



(" Y

WE NOW dEICIMINe MOSe values 01 p 10T WIHCH OuUl Pprool 01 \V.4) dUuUve LIUIUS.

By (6.1),
da 3C+pU-p) . df 3pQ+p)

[A9

dp ~ 20+ p)? “ dp 4
Thus, a(p) and B(p) are monotonically increasing on (0, 1). Since a(0) = 0 =
B(0) and a(1) = 1 = B(1), it follows that (6.2) holds for 0 < p < 1.

As functions of p, the left and right sides of (6.2) are solutions of the differential
equation,

—f1

SN )
P piarp)

Corollary 6.2. Let o and B be defined by (6.1). Then, for0 < p < 1,
P EL1—a)=30+paF (3.3 L1 -8). 6.9)

Proof. By Lemma 2.9 and (6.7) and (6.8), respectively,
wmaFRG L -
q = €xp (—-ﬁm) (6.10)
and
o = exp ((2maRG LAY
\"V3 LRG. 5L
The desired result now follows easily from (6.2), (6.10), and (6.11).

—
[#,
—
—

S’

Corollary 6.3. Let a(p) and B(p) be given by (6.1). Then, for 0 < p < 1,

2Fi(35ih1-0) oF (55 161-8) 612

2F (3.5 1) NACERY)

and
m3)=1+p, (6.13)
where m(3) is the multiplier of degree 2 for the theory of signature 3.

Proof. Divide (6.9) by (6.2). Since (6.12) is the defining r relation for a modular
equation of degree 2 in the theory of sngnatur 3, (6.13) follows from (1.10) and

(6.2).

The next transformation is useful in establishing Ramanujan’s modular equation
of degree 4.

R O I T T R Y i A
(614

Then, for0 < p < 1,
C+2p-pHFi (3. L e)=200+4p+ PR (3. 3 1:8).  (6.15)

Proof. For brevity, set z(x) = , F (3, I; x) In view of Theorem 6.1, we want
to find x and y so that

y3+ ¥\ Y3 +y)
Z(mwﬁ)‘“””( a )

_ xB+ )%\ G +x)
=(1+y)z (m) =1+ y(1 +x)z (#) ,
”

yB+y)?  27p(1 + p)*

200+)? 201 +4p + p?)*’ (6.17)
¥G+x)  27p*(1+p)
4 202 +2p - p)¥’ (6.18)
and
201 + 4 2
L+ +x=d+dptp) 6.19)

24+2p-p?
Solving (6.18) for x, or judiciously guessing the solution with the help of (6.19),
we find that

3p?

Substituting (6.20) into (6.19) and solving for y, we find that
3p
- — 6.21
it e ©2b

Substituting (6.21) into the left side of (6.17), we see that, indeed, (6.17) holds.
Lastly, it is easily checked that, with x and y as chosen above,

+x? 4 7
i.e., the middle equality of (6.16) holds. Hence, (6.15) is valid, and the interval of

validity, 0 < p < I, follows by an elementary argument like that in the proof of
Theorem 6.1.

Corollary 6.5. Let « and B be defined by (6.14). Then, for0 < p < 1,
2Q+2p-pHFi (3. 511 —a) = (A+4p+pY)Fi (3, 5151 - B). (6.22)
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Therefore, combining (7.3) and (7.5), we deduce that

] */3+ ‘1—;8)""_1(’;8(1—;3)‘)”"
a 1 -« m \a(l —a)
2L +4p+ P+ 2p) 2

T Q@t2p-p)A+p)(I-p  (d+p)(1-p2+2p-p?)
2l +4p+pH
T o242p-p2

)

by (7.4), and the proof is complete.

L _ A . A0A NTD A T s O ~eades b Aoaesoe senortively
L NEOTem /.0 (P. 404, IND 1), LEIT, P, ARG Y NAVE GEGTCES i, <,4N4 5, respelivesy.
Let my and m, denote the multipliers associated with the pairs «, § and 8, v,
respectively. Then

V3[8(1 — BHYVe _om

a0l = N3 —(y(l—a)}' 3" my’

Proof. In (6.14), replace 8 by y, so that, for0 < p < 1,

27p(1 4 27p(1 +
- % and y = _p(____p_z_j (7.6)
2(1+4p+ p?) 2+ 2p - p?)
From the proof of Theorem 6.4, B has the representations
Voa \ o 2
y3+y x(3 4+ x)*
< - d —_—
4 R TTRFSE
where x and y are given by (6.20) and (6.21), respectively. In either case, a short

a
ang y are
S

ar
gi
calculation shows that

27p%( + p)?

= . 7.7)
b=+ pr iy
Using (7.6) and (7.7), we find that
o 2p5-3p°—6p*+14p°—6p* —3p+2
B 2(1 +4p + p?)}
(p - *@2p? +5P+2) (1.8)
2(i + 4p + p¥)®
| 4p® +12p° - 3p* —26p®> —3p>+12p+4
—h= 4(1 +p+p)°
_12 2

41+ p+p»?
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and
206 _ 1555 —30p% —32p3 12452 1 485 + 16
1 - y = v ¥ ¥ TS0 T AP0

2Q+2p - p»?
(- +2’p’ +5p+2)
224 2p - p?)?

—_~
~
(=]

S

Hence, from (7.6)-(7.10),
V3{B(1 — B))'/°
(el =) —{y (1 —a))'?
27p2(1 + p)* (p - D*2p* +Sp+2*\"°
ﬁ( pi+p)y (p—-1)2p°+5p+ ))

. 41+ p+ ph)? a1 +?+?2\3
- [’PUq' P) U—P)(P'*‘l) (Zp~ +3P+l)
l(2(1 +4p + p2)? 22+2p - p?? )
2p% +p) (p— DY@ +5p + 2\
- (2(2 +2p-p)  2L+4p+p?) ) }
B (1+4p+pHQ+2p — p?)
T A+ p+ AU+ P2+ p) - p(1 - p))
_(+4p+pH2+2p-p)
- 21+ p + pH)? '
On the other hand, from the proof of Theorem 6.4, and from (6.20) and (6.21),
m 1+y (+4p+pH2+2p-p)
m,  14x 2(1 + p + p?)?
Combining (7.11) and (7.12), we complete the proof.

(7.11)

(7.12)

nwu, we show that l\dllldllujall ’s wauufu} cubic uauz.fuuuauuu in CGI‘GH’&:’)’
2.4 yields the defining relation for modular equations of degree 3. We then iterate
the transformation in order to derive Ramanujan’s modular equation of degree 9.

Lemma 7.4. If

1- g3 3
a:=1- (W) s (7.13)
then
2Fi (%’,.%‘.“ ) _42h (g,_g;_l; 1 —a)_ 714
P (3.5 1,8) P55 La) R

Furthermore, the multiplier m is equal to 1 + 2'/>.

Proof. In (2.23) and (2.25), set x = B'/3. Dividing (2.25) by (2.23), we deduce
(7.14). The formulam = 1 + 28'/3 is an immediate consequence of (2.23).
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Theorem 7.5 (p. 259). If m is the multiplier for modular equations of degree 9,
then

1 +28'°

+2(1 — )/ (7.13)

where B has degree 9.

Proof. Let « be given by (7.13), but with  replaced by

) ﬁl/!
t=1-— (l+2ﬂl/3) .

1g (2.23) twice, we find that
A ha)=0+20 R (3.5 )
= (1+2"1 +28'"%)F (3.5 1:8).
We want to express the multiplier
m=(+2t'"%)(1+28") (7.16)

entirely in terms of & and 8. Solving for /2 in (7.13) and then replacing 8 by ¢,
we find that

g 10—l
20 -a) 4
Thus,
2 1/1 3
- 201 —a)F 4 1

Using this in (7.16), we deduce (7.15) to complete the proof.

Theorem 7.6 (p. 259). If B has degree S, then
@)+ {1 —a)1 - NP +3{ef —a)(1 - B)) =1 (717

Proof. By Corollary 3.2, we may rewrite (7.17) in the form

b@)b(@®) + c(g)c@®) + 3Vb(@)c(@b(g*)c(g®) = a(@lag®).  (7.18)
From Theorem 2.2 and (5.4) and (5.5) of Lemma 5.1, we find that

£2(=q) + 2791 (=¢M "
a(‘]) = { 3 3 3 -
L= f(—9)

(7.19)
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(In fact, (7.19) is given by Ramanujan in his second notebook (Part III (3, p. 460,
Entry 3(i)}.) Thus, by (5.4), (5.5), and (7.19), (7.18) is equivalent to the identity
LCl =8 L =) (=)
F(=4f(=q") ) f(=¢°)
3 [le(_q) " 27qf12(_q3)]l/3 [fl2(_q5) + 27q5/‘l2(_q15)'|/3
B fEDf gD f(=¢)f(=¢") "(7.20)

+9f(—q9) f(—a*) f(—g") f(=¢")

Cubing both sides of (7.20), simplifying, and setting
A=f(-9), B=/f(-¢>), C=/[(-¢), and

we deduce that (7.13) is equivalent to the proposed identity

D= f(-¢"),

45¢2ASBSCOD® + 10 ASC*B*D* + 9043 A*C*BED® + A C0B2D?

1 8!”4.42(:‘2.8‘0[)‘0 — n4A|2D|2 @ B|2cl2; 7.21
Setting
A ) 0= f(=4)
- ql/lZf(_q3) - qS/l2f(_qIS)

and dividing both sides of (7.21) by g’(ABC D)%, we find that (7.21) can be
written in the equivalent form

81 Q6

2 2 -
45 + 10P2Q? + P4Q4_Q6 =

+ PO +

P2 Q2

or

l(PQ)2+5+ 4 ,l \ —(P\l (1.22)
l PO |\P/] \@Q/ |

By examining P and Q in a neighborhood of ¢ = 0, so that the proper square
root can be taken on the right side of (7.22), we find that (7.22) is equivalent to

the identity
(PQ? +5+ LA (2)3 - (5)3 (7.23)
(PO~ \P e/ )

Now (7.23) is stated by Ramanujan on page 324 of his second notebook and has
been proved in Part IV [4, p. 221, Entry 62). (See also a paper by the author and

L-C. 7l-mnn Hl \ This therefore completes the nroof of (7.1
13 MVAVIUVIV wullll.llblba wiv l.llUUl i \I L l}

Theorem 7.7 (p. 259). If B has degree 7, then

B ﬁ 1/3 1-— ﬁ 1/3 7 ﬁ(l _ ﬁ) 1/3 ﬂ(l _ﬂ) 1/6
m—(;) +(l—a) _;(a(l-—a)) _3(a(l—a)) - 029
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Next, employing (5.4), (5.5), and (7.12), we translate (7.40)-(7.42) into the equiv-
alent eta—function identities,

{[£2(=q) + 279/ 2(=¢H)) " {F2(=¢*) + 274" F 2(=¢*))""
Ff (=) f(=4") f(—=¢*)
WP L) P (-4Y)
f(=q)f(—q®) g (=g
=99/ (=4") f(~¢") f(=9%) f(=¢""), (1.43)
[f”(—q) +27qf‘2(—q3)]]/3 [le(_q14)+ 27q”f”(—q“2)}”3
S (= f(=4') f(—q*)
+1fsqs,,ﬁ(—q’)f-’(—q IPYAGY AT I
f(=q)f(=g") f(=g)f (- q“z)
_ 72 =a) + 278 £ 2=} (=g + 279" £ 2(-¢*))
(=4 f (=4 f(—=q") f(—¢®")
4 18 1 £740 (=g | L 4D (=)
f(—=¢))f(=q") f(=¢9f(=¢*)’

173

1/3

(7.44)

and

{20 + 27472} " {112(-4™) + 279 £ 2(q*)} "
FDf (=g f (=a*) f (%)
1SR =a™) (")

Jr(_q)f(_,ﬂox r(_.nl)f(_nw)

B {fl2(_q4) + 27q"f‘2(—q'2)}”3 (fIZ(_qS) +27q5fl2(—q'5)}l/3
T4 —aD (=g f(=a")
U= =g =%
f(=af(=¢%) f=aDf(=¢")
Recall that if ¢ = exp(2miz), where Im(z) > 0, then 5(z) = ¢"/** f(—q) isa

a b
d

system v,( \ is given by (Knopp [1, p. 51])
) \e a8 Y pp Ll p

+ 18¢

+18¢ (7.45)

modular formon I"'(1) of weight 5 1f ( € I'(1) andd is odd, the multiplier

<
-
AN
(SRR~

3) -+ (Ij_i) etrifaci=dh+d(b-a+3d-1}/24. (7.46)
</ \iét/

where ( ﬁ) denotes the Legendre symbol, the plus sign istakenifc > Oord > 0,
and the minus sign is chosen if ¢ < 0 and d < 0. Using (7.46), we find that each
of the four expressions in (7.43) and each of the six expressions in both (7.44)
and (7.45) has a multiplier system identically equal to 1, provided, of course, that
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c is divisible by 24, 42, and 60, respectively. Hence, both sides of (7.43)-(7.45)
belong to M (I"o(n), 2, 1), where n = 24, 42, and 60, respectively.

If 0o denotes the number of inequivaient cusps of a fundamental region for
[y(n), then (B. Schoeneberg [1, p. 102})

[2)

where ¢ denotes Euler’s p—function and (a, b) denotes the greatest common di-
visor of a and b. Thus, for n = 24, 42, and 60, there are 8, 8, and 12 cusps,
respectively. Usmg a procedure found in Schoeneberg s book [1, pp. 86—87] we
findthat [0, 3, 3.3, & 5 5. 00F: {0 5.3, 5. 7. 35, 3p. cofsand (0,4, 4, 1.4, 4,
W TS ﬁ, % 6] constitute complete sets of inequivalent cusps for ['y(24),
I'p(42), and I'y( 60\ , respectively. Emploving (7.34), we calculate the order of each
expression in (7.43)-(7.45) at each finite cusp. In each instance, we find that each
order is nonnegative.

Let Fy4, Fs3, and Fgy denote the differcnces of the left and right sides ef (7.43)

42, anud CelOle INe QRIICTENCes O 1N i anC Igan siQ 53 )

(7.45), respectively. Since the order of Fz4, Fy;, and Feg at each point of a funda-
mental set is nonnegative, we deduce from the valence formula that

rprym = ord(Fy; 0o), n = 24,42, 60, (7.47)
provided that F,, is not constant, where r is the weight of F, and
Prom = (1) : To(m)). (7.48)
Now (Schoeneberg [1, p. 79]),

[Ty : Tom)) =nl] (1 + 1) (7.49)

where the product is over all primes p dividing n. Thus, by (7.48) and (7.49),
Proay = 4, Pproa) = 8, and pryeoy = 12. Since r = 2 in each case, by (7.47),
ord(Fy4; 00) < 8, ord(Fqy; 00) < 16, ord(Fgp; 00) <24, (7.50)

unless Faq, Fyy, or Fg, tespectively, is constant.
Using the pentagonal number theorem, (1.14), i.e.,

X
f(—q) = Z (=1)g"Cn-172 = | —q—q2+q5+q7—q'2—q'5+q22+--- ,

and Mathematica, we expanded the left and right sides of (7.43)-(7.45) about the
cusp oo (g = 0). We found that the left and right sides of (7.43)-(7.45) are equal
to, respectively,
99 — 9¢° — 18¢° + 0(g°).
3+ 18g” + 18g° + 18¢° + 369" + 54¢° + 18¢'° + 364!
+ 189" +18¢" + 364" + 904" + 0(q'"), (1.51)
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and

a9 A 1l o2z 12 4 Ar 13 4

3+ 18¢° + i8¢’ + 18¢® + 54¢° + 364" + 364'* + 364 + 18¢"°

+364'% +36"7 + 369" + 12697 + 5497 + 9097 + 0(¢™).
(7.52)

Thus, Fay = 0(g%), Fso = 0(q'"), and Fep = O(¢%), which contradicts (7.50)
unless Fy4, F4, and Fg are each constant. These constants are obviously equal to
0, and hence (7.43)-(7.45) are established. This completes the proofs of Theorems
7.9 and 7.10.

On page 328 in his first notebook, Ramanujan gives another modular equation of

deerese 8 in the theory of sienature 3. This equation is quite |nmrpcnno hecause it
\l\rsl\/\' U IR1 WL LUy UL SRRl I BN ALS BIRVAL OISy R EERASN 28

is the only known modular equation of Weber type (H. Weber [1]) in the alternative
theories.

Theorem 7.11 (p. 328, NB 1). Let

P:=1-(af)?—{(1-a)l-pB)",
T:= @) + {1 —a)(1 - B)}'"*,

and

R:=9%aB(l —a)(1 — B},
Then
P*— RP(5P +9T) —2R*=0. (1.53)

Proof. As with the proof of Theorem 7.9, we utilize the theory of modular forms.
Transcribing (7.53) via Corollary 3.2, we determine that it suffices to prove that

p*—rp(Sp+91) - 2r* =0, (7.54)

where p := z123P, t := 7123T, and r = z?zZR. Employing (5.4), (5.5), and
(7.19), we find that (7.54) is equivalent to an eta—function identity in the spirit of
(7.43)—(7.45). Because the identity contains the same eta-function products and
quotients as (7.43), it follows from our previous work that each term has multiplier
system identically equal to 1. Furthermore, it is easy to see that r = 8; recall also
from the proof of Theorem 7.9 that pry24y = 4. Thus, from the valence formula,
in order to prove (7.54), it suffices to show that

p'—rpGSp+91) — 27 = 0(g™) (1.55)

as ¢ tends to 0. Indecd, we have used the pentagonal number theorem (1.14) in
connection with Mathematica to prove (7.55). This completes the proof.
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8. The Inversion of an Analogue of K (k) in Signature 3

Mhnsnee O 1 fa V8T T e - - ll’l L P 3 1 s 2
ANCOIEIN 0.1 \P. &O7). L€ G = g3 be af:_]lnea Uy( ), ana et 7 ve aegpnea oy
(1.6)withr =3.For 0 < ¢ <1 /2, defined = 9(<p)by
[W
No (1 2.1 AY di sa 1y
\74—] 2r1(3> 3535 X8 } (0.1)
0

Then, for0 <0 < /2,

sin(2n8) =~ sin(2n8)q” .
$=0+3 Z n(l + 2 cosh(ny)) 9+3; m = o). @2

where g =: e77.

Recall from Entry 35(iii) of Chapter 11 (Part II [2, p. 99]) that
2Fi (3405 —n; 35x%) = (1 —x%) 7" cos (2n sin~'x) (8.3)

where n is arbitrary. With n = % in (8.3), we see that the integral in (8.1) is
an analogue of the incomplete integral of the first kind, which arises from the
case n = 0 in (8.3). Since 2 Fy (4, %; 1; x sin’#) is a nonnegative, monotonically
increasing function on [0, /2], there exists a unique inverse function g = p(@).
Thus, (8.2) gives the “Fourier series” of this inverse function and is analogous to
familiar Fourier series for the Jacobian elliptic functions (Whittaker and Watson
[1, pp. 511-512]). The function ¢ may therefore be considered a cubic analogue
of the Jacobian functions. Theorem 8.1 is also remindful of some new inversion
formulas in the classical setting which are found on pages 283, 285, and 286 in
Ramanujan’s second notebook and which have been proved by the author and S.
Bhargava [1]. (See also Part IV [4, Chap. 26].)
When ¢ =0 =40, (8.2) is trivial. When ¢ = /2,

Y
¥

jo 2Fi (3,35 3; xsin’t)dt = Z—‘-

Thus, § = rr/? which ig |mnl ici

it
We now give an outline of the proof of Theore
observe that

in onr
a1 O

S = 2F (3, 5 5:x%) = = xH) V2 cos (dsin"'x),  IxI <1, (8.4)
is that unique, real-valued function on (-1, 1) satisfying the properties

S(x) is continuous on (-1,1), 8.5)
S0) =1, (8.6)
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and

~ans_

41 - x)$*(x) - 38(x) -1 =0. (8.7
Properties (8.5) and (8.6) are obvious, and (8.7) follows from the elemental.'y
identity 4cos’ 8 = 3cos 6 + cos(30). To see that S(x) is unique, set y = S(x) in
(8.7) and solve for x2. Thus,

oo =had 2y)?
= ___——4y3 .
Since S(x) is real valued, either y < Qory 2 1. Since S(0) = 1 and S is
continuous, we conclude that y > 1. Hence

x = +g(y),

where

N VI @y + D)

5{
B -— 2y

Now, g(y) is monotonically increasing on [1, c0). Thus, g7 x) ?xisls, and if
0<x<1,y=g '(x), whileif -1 < x < 0, we have y = g~ '(—x). Thus,
S(x) is uniquely determined.

(Ve’c fix qcf Oy< g <1 Setx = c*(g)/a*(g). so by (2.5), 0 <x< 1. Then,
by Lemma 2.6, Z = A ('5, %; 1; x) = a(q). (We use the notfmon VA mstead of
z = z(3), because in this section 2 will denote a complex variable.) With o)
defined in (8.2), we shall prove that

do@)

10
ao

> 0, 0<60 <n/2, (8.8)

and )
a1 (dOY 3 [dd)
4x sin ((D(d)):ii-?\d—g} 22\d0} .
By (8.8), we may define ® = &' : [0,#n/2] — [0, n/2]. Setting § =
Z d® /dg, we see from (8.9) that
483(1 — xsin’g) —35—1=0.

®9

~—

Hence, (8.7) holds with x* replaced by x sin” ¢. Now, from (8.2),

0 q!!
YO =146y ——5 =2
;1+q”+q"

PR N o T

by Theorem 2.12. Thus,
50 = Z/¥'O® =L

Hence, by (8.4)-(8.7), we conclude that

Z:iT@= R (43 Lxsin’e),  O<g@<m/2,
p _
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and so

Proof of Theorem 8.1. For |¢| < |z| < 1/]q|, define

o0 -
@"+z27"q"
,q):=1+4+3 —_— 8.10
v(z,9) §'+q"+q2" (8.10)
We note, by Theorem 2.12, that v(1, g) = a(q), and, by (8.2), that
20 gy = 4P
V(@) :=vEe",q) TR (8.11)

By expanding 1/(1 — ¢**) in a geometric series and inverting the order of sum-
mation, we find that

v(z,q) =1 +3i

{ zq3n+l Zq3n-}-2
n=0 1

— zq3n+l 1 — zq3n+2

—1,3n+1 -1 _3n+2
: 4 ‘4 } (8.12)

1 —z-lgitl 1 —z-'gn+2
As a function of z, v(z, g) can be analytically continued to C \ {0}, where the
analytic continuation v(z, q) is analytic except for simple poles atz = g™, where m
is aninteger such thatm % 0 (mod 3). Using (8.12), we find, by a straightforward

calculation, that

calculiation 5 Hiat

v(zg>, 9) = v(z, 9). (8.13)

M. Hirschhorn, F. Garvan, and J. M. Borwein [1] have studied generalizations
of a(q), b(q), and c(g) in two variables. In particular, they defined

o
b(z,q) = Z wm—nqm1+mn+n7zn

mn=—00

and showed that {1, eq. (1.22))

(29: Q02793 oo
 (24% 3% oo(2719% )0
_ ]"—"[ a-gq" ﬁ (1 —2¢")(1 —27'q")

n=1

1 —93” (] _qn)l

b(z,q) = (g; 9)(@’; 37)

8.14)
3n

and {1, eq. (1.17)}
b(zg%,q) = 27247 *b(z, q). (8.15)

We next show that v(z, g) can be written in terms of b(z, ¢) and b(—z, g).
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Lemma 8.2. If
(g:9)%(a% a)%
YO G )l 1)
and
@) = (q;q)ﬁo(q°;76)w ,
(4% 99%@% %
then

bz 1 (8.16)
b2.9) 7P@)-

3
v(z.9) = ia(q)

The case z = 1 of (8.16) follows from the paper by Hirschhom, Gmm, and
Borwein [1, eq. (1.29)). To prove Lemma 8.2, we employ the following lemma
due to A. O. L. Atkin and P, Swinnerton—Dyer [1].

Lemma8.3. Letq, 0 < q < 1, be fixed. Suppose that f(z) isan analytic function
of 2, except for possibly a finite number of poles, in everyregion,0 < z; < |2} < z2.
If

fzg) = A f @)
for some integer k (positive, zero, or negative) and some constant A, then either

f(z) has k more poles than zeros in the region |q| < |z] < 1, or f(2) vanishes
identically.

Proof of Lemma 8.2. Definc
F(2) := bz, @v(z, @) — 3a(@)b(—2,9) + ;8(@b(z.9). 8.17)

Examining (8.16), we see that our goai is to prove thai F{z) = 0. From {(8.13) and
(8.15),
Fg")=q 7 F@.

From our previous identification of the poles of v(z, ¢) and from the definition
(8.14) of b(z, q), we see that the singularities of F(z) are removable. Thus, by
Lemma 8.3, to show that F(z) = 0, we need only show that F(z) = 0 for
three distinct values of z in the region |g|> < |z| < 1. We choose the values
7z = —1,w,0?, where @ = exp(2mi/3).

For z = —1, by (8.17) and (8.14), we want to prove that

(@ D&9% 4%

% 4%(q% 9%
But this has been proved by N. J. Fine [1, p. 84, eq. (32.64)).

For the values z = w, w?, we need the evaluations

v(w, q) = v(@?, q) = b@) (8.19)

v(—1,q) = %a(q) - %ﬂ(q) = B(g). (8.18)
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The first equality follows from the representation of v(z, ¢) in (8.12). To prove
the second, we first find from (8.10) that

Tl v =249 — L _ 3.0
Fvilq) tv(w.q —2+ n=,1+q3”+q°"_2aq ,

by Theorem 2.12. Since v(l, g) = a(q), by Theorem 2.12, we deduce that
v(w,q) = 2a(g’) — La(g).

By (2.8), we conclude that b(g) = v(w, ¢) to complete the proof of (8.19).
Now setting z = w, we see from (8.17) that we are required to prove that

émrn\b—(_w’,@ _ l
27 bw,q) 2
3
2

TP
rP\q)

-3 @956% @5 1,
@%49%00% 99%@% 9% 27
2
¢ (—9q) 9
= o B9(=9) —9(-9)), 8.20
20(—gh C¢CT) 0 (-0) (8.20)

where we employed (8.14), much simplification, and (5.1). From Entry 1ii) of
Chapter 20 of Ramanujan’s second notebook (Part I1I (3, p. 345]),

—a° 403 13

N q)_lz(gw( q)~l) ‘
¢ (—q) ¢*(-9)

Thus, by (5.9), (1.17), (3.10), and (3.11),

¢’(=q) (3«)(-&19) _ 1): ¢*(=q) (9«)“(—q3) _1)”3
20(-¢") \" ¢(—9) 20-)\" ¢*-a)
(1 - ) (9 1-8 )‘”
= = -1
21;/2(1 —pa\mil —a

_ z?/2(3_m)2 (imZ(m + 1)2 5 ])1/3

823/’ m? m? (3 —m)?

3-—m)y¥3 /7 5 '
= Bom vz — 2 (m? + 3m)'3

= b(q), 8.21)

by (2.11). (Sec also the Borweins’ book [1, p. 143, Theorem 4.1 1(b)].) Thus, (8.20)
has been proved. (Note that in (8.21) & and 8 are squares of moduli and are not to
be confused with the definitions of «(q) and 8(q) in Lemma 8.2.)

In conclusion, we have shown that F(z) = 0 for z = —1,w,w?, and so the
proof of Lemma 8.2 is complete.
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From (8.18), .
V(r/2) = v(-1,9) = B(@)- (8.39)
It follows from (8.38) and (8.39) that
= = 0<8 <mn/2
0<Blg)=V(@m/2) < V(@) < V({0) =uv(l,q)=2Z, <0 < /(8.40)
Observe that (8.8) follows from (8.11) and (8.40).
Combining (8.31) and (8.38), we find that
0 < V(@) < W(n/2). (8.41)

We now calculate W(}7). By (8.39) and (8.22),

3, o Ay
Z-V(®/2)=alq)-BQ) = 2% E/’ (8.42)

and
2

V) +2Z = 2 (8.43)

B
Thus, by (8.28), (8.42), and (8.43),

1 (3« 3B)9%* 270 (@ F) =1,

R =rrn) (% T2)F T w0

by (8.23). So, from (8.41),

0<V¥@®) <1, 0<8 <mn/2 (8.44)
Now, by (8.38) and (8.31), d¥/d0 > 0, and again by (8.11)and (8.40),d®/d6 >
0. Also noting (8.44), we conclude from (8.30) that

1 dv _ Q
PVETCOOVSEE T LA - .

Since V(0) = Z, from (8.28), we see that ¥ (0) = 0. By definition, ®(0) = 0.
Hence, by (8.45),

0<6 <m/2 (8.45)

4

do 1 [f 1
AT Eﬁ N TN 10)
1 [ du

200 JuT-d

=/~/W(9—) dx 2=mcsin(m)v

Jo ,I—X

dw

—d
@©) = a

ie.,
W(6) = sin? ($(9)), 0<9 <m/2

This proves (8.29). Thus, (8.8) and (8.9) have been proved, and this finally com-

pletes the proof of Theorem 8.1.
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Theorem 8.1 will be used to prove Ramanujan’s next result, Theorem 8.7 below.
For each positive integer r, define

Sy = i&

5
= 1+q" +q¥

Ramanujan evaluated S, in closed form for r —

1,2,3,4. Ramanujan’s claimed
value for S3, namely,

Sg = Fx(1 + 8x)7°,
is actually incorrect. We shall

values for S,, S, S5, and Ss
but give no details.

prove a general formula for S,, from which the
follow. J. M. and P. B. Borwein (5] have evaluated S,

Theorem 8.7 (p. 257). Forr > 1,

— r
o

2 = m-ﬁr(zdf, Z),

(%%

where the polynomials s,,(V, x, Z) are defined by (8.49)~(8.52) below. In partic-
ular,

X

S2 = 523,

Se= 2"—725,

S6 = J%z%
and

5 = x(81 +64~87x + 80x2) 29
Proof. Define

9V, x,2) 1= =5 (xZ° + (V - Z)(V +22)%) (v - 2).

Then, by (8.32),

v\?2
V.x,Zy = (d—g—) . (8.46)

By a straightforward calculation,

18
1% =
p(V,x,2) 2‘,wq(V,x.Z)

1

-8vidviz g VZ - 5x22 4+ 828
~5(2x2° + (v - 23V +22)02v + 2)).

(8.47)
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It is interesting that the two previous results have simpler formulations in the
theory of signature 4 than in the classical theory.

J Vet

Theorem 9.9 (p. 260). We have y
Yot 1
% f(—ga) = V@24 = )7
Proof. From Entry 12(iii) of Chapter 17 (Pant 111 (3, p. 124D,
Flegh) = V22 P - 0/g)
Hence, by (9.7),

/12
1 -
24 o0 v (14 mll"A/;'Ez_]/;( 2«/x—’_‘ \/:
g, J—qa =0 TvE VY \—1+4’_~/x1+~/x/
/12
— 2(4)2—I/4x1/24 (1 + J’x')l/l?. (1 _ ‘/a
— m2—|/4xl/‘24(1 _ x)'l/’i2’
Theorem 9.10 (p. 260). We have
q‘:/lzf(_qz) = 2(4)2_”2X1/l2(] _ x)l/Zd‘
Proof. By Entry 12(iv) of Chapter 17 (Part III (3, p- 124)),
qlfﬁf(_q'i) — ﬁ4-—|/1(1 _ 1)1/24xl/6.
D,
Thus, by (9.7) ' e e
1— 2

7 1\ \
1/4 -1/3 v ~-
0/ f(—ad) = (1+ V%) V(D4 (Hﬁ) \i7 %)
= Je@2 A 4 R - S

= V@2 xR - 0

Recall the definition of L(g) at the beginning of Section 4. The follqwir‘:g
intriguing formula does not appear in the second notebook but can be found in the
first notebook [9].

Theorem 9.11 (p. 214, NB 1). We have

P2 (4, 31 x) =2Lg0) — L)

1). Fi (4.2) and coréim =,
Proof. For brevity, setg = qa and z = z(4). From (4.2) an@ 1 nco

d 2n—-6 )2
L@) =q;a108 (qf“(-—q)) = quog(Zl 27%x(1 — x) )

&

d 124-6 2
= q— 2 l_x)
97 log (z x( ) ©38)
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By Entry 30 in Chapter 11 of Ramanujan’s second notebook (Part II [2, p. 87]),
with q = 44,

dg q

—_—=——. 9.9

dx  x(1 —x)z? ©9)
Using (9.9) in (9.8), we deduce that

_ 12dz 1 2 )
L(q)_(zdx+x l—)c)x(l_x)Z

d
= 12x(1 —x)zﬁ + (0 =302 (9.10)

Repeating the same argument, but with g replaced by g and with an application
of Theorem 9.10 instead of Theorem 9.9, we find that

| d

Lg% = 2972 log (¢ F**(—¢%)
d
dx

1/12d 2 1
(——z+ s- x(1 = 022
zdx x 1-x

= 6x(1 —x)zE + 32 -30)7% 9.11)
dx

*®

1
= %q log (z'*27"2x%(1 - x))

Q."h.
£

2

Our theorem now easily follows from (9.10) and (9.11).

We conclude this section with a new transformation formula for 5 F; (%‘, %; 1; x)
found also on page 260. We need to first establish some ancillary lemmas.

Lemma 9.12. We have

al@) +a(gh =229 9.12)
7 V@) ‘
and
3
)
2a(g?) - a(g) = 9.13)
R TerD)
Proof. By Entries 4(iii), (iv) of Chapter 19 of Ramanujan’s second notebook (Part
111 (3, pp. 226-227, 229)),
3 i ont 6n+5
WZ)=‘T3Z< ! 6n+1 . (wﬁ\
¥(g?) —=S\l-g¢q l—q+}
and

3(— 0 3n+1 Int2
o (-9) _ | _ 62( 9 9 .
(P("(]’) 1+ q3n+l 1+ q3n+2
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Using (2.6) to calculate the Lambert series for 3 {a(g) +a(q %)} and comparing
it with the Lambert series above, we deduce (9.12). The proof of (9.13) is similar

3 ar

and follows by substituting x = ¢>"+, g>*+2 in the eiemeniary identiiy

2x? x x
T—x2 1—-x 141
Lemma 9.13. We have
3
¥o(q) 2 10ia®) — 2102 9 _ gy + 1600 (@Y 9.14)
TP + 18q¥*(q)¥°(q") Ty %
and
60,3
V@ _ 6o utii@)) - 3 L) = pg) + 16700 919
wz(q3) a7 A A x w‘(q)

Proof. For brevity, set @ := a(g) and A := a(g?). Then, squaring (9.12), we find
that

¥8(q) )
= (a + A). (9.16)
v2g? @+t
From (5.7), (6.3), and 9.12),
12993 (q)¥2(@°) = a* — A 9.17)
and
2@ A, ©.18)
36 ¥2(q) (@

Hence, from (9.16)-(9.18),

60,3
V@ | gaurinte) - 21920 a4 2aa - 24 O19)
(g% ’ ¥igq)
Next, from (9.16) and (9.18),

VARC) ) (6 ‘113((13)) —@+APa-4) (920

48qv%(q) = (8

NS Y ANKR?)
and
3
2427308023y — {zlﬁnx wg(qa)\ (2¢ (q)\ =(a— A)s(a + A). 9.21)
FAVITTTT v /Uve)/
From (5.6) and (6.5),
326 _ i aa, 9.22)
v(—q)

Thus, from (9.13) and (9.22),

9 33 1
8_oy o 20D ) Los @24 9.23)
D=5 vep 3
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and

9 3y 3

¢’ (—q°) 0’(—q) 1 ) an3

LA IR AR T (a_'_zA)J ZA_a. 9.24
0(-q) o(-¢*) 27 ( ) ( )

Lastly, we need the elementary identity (Part I11 [3, p. 40, Entry 25(iv)])

v(gHe(g) = v (g?). (9.25)
Hence, from (2.1), (9.25), (9.23), and (9.20),

¢*(—¢") =

('@ + 169v* @)} = [¢*@) — 169¥(gD)) + 6490 ¥ (@)

=0’ (=q) +649y°(9)
=31Q2A-a)@+24)+3a+ A @ -4

=a* + 44 + 4aA(@® - 247
= (@* — 2A%)? 4 4aA(a? - 2A%) + 402 A?
= (a® + 2aA - 24Y)%. (9.26)

Equality (9.14) now follows from (9.19) and (9.26), upon taking the square root

of both sides of (9.26) and checking agreement at g = 0 to ensure that the correct
square root is taken.

The proof of (9.15) is similar. Thus, from (9.16)—(9.18),

o 6,3
v A

Proceeding as in the proof of (9.14), from (2.1), (9.25), (9.24), and (9.21), we
find that

- 6q¥*(@)v(g") - 3¢

[¢'@") +169°w @)}’ = o*(-¢") + 649’4 (@")
3@ +24) 24 - a) + $(@@ - A (a + 4)
5 (@* +4A% + 424247 - 29)

Il

(@ —2A4% — 2aA)*. (9.28)
Equality (9.15) now

Lastly, we need the following lemma connecting , Fy (!;, %; 1; x) with theta—-

functiane
muncuons.

Lemma 9.14. We have

(L3 1.( 8/7¥*(4)¢* @) )2
'\ 44 \ptg) + 1699%(g2)

) =¢' (@) +169¥*(¢Y).  (9.29)
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Proof. Let
vi(g )m?'(az)
X ( )+ 6‘121,/4(‘]4)
Then
4,2
2 __16g92@Y0G) e ¥°@) (9.30)

T+x (o) + 4qv2@) T

where we have employed (9.25) and the clementary identity
2 (@*) + 49y’ (¢") = 9’ @, 931
which is achieved by adding Entries 25(v), (vi) of Chapter 16 of Ramanujan’s

...... 01 /MOANY 02T

second notebook (Part III [3 p. 40J). Hence, from Theorem 3.1, (3.5U), (5.51),
(2.1), and (5.19), with —g* replaced by g,

3 )\ 1 ./11A'Zx\
lp'kaalx) l+x21\22 1+x)

0'@) +16°9°@) | o (l, L ‘,,‘:(q%)
l«o2(q2)+4qw2(q4)] 22 ¥*(q)
402 2.4,4(,4
v(q )+:6q v(q )1!’4(4)
0*(q)

= ¢*(¢%) + 1697y (q").
Replacing ¢ by ¢, we deduce (9.29).
Lemma 9.14 was first proved by the Borwein brothers (1, p. 179, Prop. 5.7(a)],
(S, Theorem 2.6(b)].

Theorem 9.15 (p. 260). If
___o» g S
T (3+6p—pH)? T (27— 18p — p)*’
then, for0 < p < 1,

J2T—18p— p2oF (3. L lie) =3V3+6p— p22Fi (5. 5 1 B). (933)

9.32)

Proof. Let
R YN 'i\
viq’)
9 (9.34)
P="%qy
Then, by (9.14) and (9.15), respectively,
VP 4 4, 2
(g) + 16 @) 9.35)
3+6p—p’ = '@ ){w q) + 169¥*(g))}
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and
2 n3/2 [ 3 A a PR
27—18p — p* = —— {0*(q’) + 169° ¥ (g®)].
p—r ‘13/21/14((]3) {@ (q”) 697y (q )l ©936)
From (9.32) and (9.35),
64gy*(q) ( 8./3¥*(g%)e*(q) )2
me= = 9.37
“lali=e %@ + 16¢nl/“(q"-)}2 0*(q) + 16q ¢ (¢?) .37

by (9.25). Similarly, by (9.32) and (9.36),

{88 )2 _ s
Blgl:=g = (¢4(q3)+ 164°9°@9), = alq’}, (9.38)

by (9.37).
Hence, from (9.36), (9.37), Lemma 9.14, (9.38), (9.35), and (9.34),
V21 -18p—p*2F (3.3 1 @)
_ i
T @Y
374 1/4 2
_rm ) 9"V Q)
7@ 2 Fi(; 308 ) P 3+6p-p?
VPYig) 13
= —__,/3+6 -p 2R (5L
ﬂwz(q3) p p 2 1(4 4 ﬂ)
=3V3+6p-p2 R (L3 158).

Thus, (9.33) has been proved.

Lastly, it is easily checked that @ =: a(p) and B =: B(p) are monotonically
increasing functions of p on (0,1). Since a(0) = 0 = (0) anda(1) = 1 = (1),
(9.33)isvalidfor0 < p < 1.

(0%(a® + 168’y @) {o%@) + 16q¥ @D}’

10. Modular Equations in the Theory of Signature 4

Page 261 in Ramanujan’s second notebook is devoted to modular equations in the
theory of signature 4. In each case, our proofs rely on (9.7). Thus, we will employ
modular equations from Chapiers 19 and 20 of the second noiebook and convert
them via the transformations

w2 -V 2B, 1-VB
o= i & — R P ' 11— pi .
1+ Ja' 1+ Ja 1+ B 14+ /B
(10.1)

Theorem 10.1 (p. 261). If B has degree 3, then
@)+ {1 —a)(1 - B} + 4{aB(l —a)(1 - BN =1. (10.2)
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Proof. From Entry 5(ii) of Chapter 19 (Part Il (3, p. 230]),
@)+l -1 -8} = 1. (10.3)
By (10.1), (10.3) is transformed from the classical theory to
V2(eB)\/ ((1— Syl =B
{a+vaa+ vB) Harmarvpl

in the theory of signature 4, or

1/4 1/4
Va@p) = [a+vaa + Ve - {0 - vaa-vB)
Squaring both sides yields

2@B)t +2{(1 —a)(1 — B} = I(l+ﬁ)(l+ﬁ)]ifz
[0 v - /B)”

Y
V&R TVEg

+

Squaring each side once again, we find that
2B)? +2{(1 —e)(1 = B)'? + 4{aB(1 — a)(1 ~ B)}'/*
=1+ @) +{(1-a)1- 8"
Collecting terms, we deduce (10.2).
Theorem 10.2 (p. 261). If B has degree 5, then

@)\ +{(1 —a)(1 — B)}'/?

+8{aB(l ~a)(1 — B (@B)/* + {1 —a)(1 = B)}'/C) = 1.
(10.4)

Proof. By Entry 13(i) of Chapter 19 of Ramanujan’s second notebook (Part III
(3, p. 280D),

@B+ ((1 — o)1 = B} +2(16aB(1 —a)(1 = B)}/* = 1. (10.5)

Transforming (10.5) by (10.1) and simplifying, we find that, in the theory of
signature 4,

H — 1 ( . — a2
2ep)'* +2 i64\/a,8(1 —a)(1 - ﬁ)}w = |(l + V) (1 + VB
12
- {a-vaa-va)

Squaring each side and collecting terms, we deduce that

2ap) + 4 [64/aB(1 — @)1 - ﬂ)l”j +8(@p)' (6401 — o)1 — )}
=2-2{(0 - - B
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Further simplification easily yields (10.4).

Theorem 10.3 (p. 261). If B has degree 7, then

@B + (1 —a)(1 = B2 + 20{aB(1 — a)(1 — B)}"/*

+8v2{ap(l — )1 — BN (@B + (1 —a)(1 - B))74) = 1.
(10.6)

Proof. From Entry 19(i) of Chapter 19 of Ramanujan’s second notebook (Part 111
(3, p. 314)]),

@B+ {1 -e)(1 - )P =1. (10.7)
Using (10.1) to transform (10.7) into the theory of signature 4, we find that

(16aﬁ)'/'°—{(1+f)(1+f)] -[(1—«/&)(1—\/5)]”8

Squaring both sides, we deduce that

(16a) +2((1 - )1 = I = {1 + v 1 + VB "
+[a-vaa-yp)”

Squaring again and simplifying slightly, we find that
(168)'* +2((1 — )(1 = BN + 4(16aB(1 — a)(1 — B}/

={o+vma+vB}” +{a-vma-vB)”

q g one more ume, we nnauy QCGUCC mal
4@p)'? + 4{(1 —e)(1 = BY/? +32{aB (1l — )(1 — B}/
L RIxBIY — o1 — AW 4 181 /41164811 _
v (AT 2N o PAT 192] LA\ 5 [ AN
+16((1 —a)(1 = B)}/*{16aB(1 — a)(1 — B)}'7®
=2+2@B)'? +2((1 - )1 - B))'2.
Coliecting terms and dividing both sides by 2, we complete the proof of (10.6).

A1 . anl/8
P AR 1284]

Theorem 10.4 (p. 261). If B has degree 11, then
@AV £ 11 — o)1 _ an DO i
(oF o) T Gy — Py T U0 (xpul @)1 Pl
+161@B(l — a)(1 = B ((eB)'? + (1 — ) (1 — B}'7°)
+ 48 {aB(1 — a)(1 — BI}V/O ((B)'/6 4 {(1 — a)(1 — BNV/O) = 1
X 7 \\< s LI AN AN ) } X
(10.8)

Proof. By Entry 7(i) of Chapter 20 (Part 11 3, p. 363)),
@B* + (1 — )1 — B +2(16aB(1 —a)(1 = B))/? = 1. (10.9)



156 Ramanujan’s Notebooks, Part V

Transforming (10.9) into an equality in the theory of signature 4, we find that

e
174
}1/12_ l\ /a1 + N

- l VAT Vr‘ll

1/4
- |a - vaa - VB
Squaring both sides and simplifying slightly, we deduce that

2af) + 211 — a)(1 — B}V + 8@B) /{1 —ed(1 — BN'/®
+8(f) {1 — )1 - B}/

~{a+vma+ve)"+ o -vaa-vB)”

Squaring both sides again, we see that
4B)* + 4((1 — o)1 — P))'/'? + 64(@p) /S {1 — ) (1 — BN
+64@B) 3 {(1 —a)(1 — B/® + 8 (@Bl —a)(1 — B}
+32) 2 ((1 - ) = B))'7® + 32aB)” 1 {1 — )1 — B}/
+32(eB) 2 {(1 — )1 — B/ + 32@@p) /(1 — )1 — BN
+128{eB( — a)(1 — B4 = 2+ 2(aB)"* + 2{(1 —a)(1 — BN}'/2.

Collecting terms and dividing both sides by 2, we complete the proof.

The last six entries on page 261 in Ramanujan’s second notebook give formulas
for multipliers. By (9.1),

1 1.1, 2/
zFl('L;,:;';l;a)_/1+J3\‘/22Fl(§,§, ’|+J&)
1
2

RG3HLA) \T+v=) LR (1, Y l_zg_ﬂ)

Thus, to obtain formulas for multipliers in the theory of signature 4, take formulas

from the classical theory, replace m by V(1 + Ja)/(1 + /B) m(4), and utilize
the transformations in (10.1).

=
S

~

m(4) =

~~
——

Theorem 10.5 (p. 261). The multiplier for degree 3 is given by
12 _a\12 1-B) 1/2
2= (8 1-8 d (ﬂ ( ) . 10.11)
" (4)_(01) +(l—a) “m@ \a(l —a) {

Proof. From Entry S(vii) of Chapter 19 (Part 111 (3, p. 230}),
1B\ [BO- g\ "2

- ka(l _a)) (10.12)

12 2 aq _a))l/z
— . 10.13)
) + ( ) (ﬁ(l ) (

+

o
Ld
o

= (%)
G

and

2
m?
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Using (10.1) and (10.10), we convert (10.12) into an equality in the theory of
signature 4, namely,
L4 V& 2= (ﬁ(l + ﬁ))'“ . ((l - VB + ﬁ))‘”
1+ /B Ja(l + /B) (1 +/A0 - Ja)
_ («/B(l ~ VB + ﬁ)z)”2
Va(l — Ja)(1 + /B)?

or, upon rearrangement,

1-8\" (JE(1+JB>)' (f(l x/sz))”2
2(4) — =({X=— ¥~ . (10.

wo-(i22) - (Far s Jau—yay) 09
By (10.13), (10.14), and symmetry,

: _(l—a)'”_(ﬁ(1+ﬁ>)"’_(ﬁ<l—ﬁ>)‘” (10.15)
mx@ \1-8) — \VB(1+B) vBa-VvB) T
Multiplying both sides of (10.15) by «/B(1 — B)/(x(1 — a)), we find that
W) ()" - (F=8) - B)
m2(4) \ (1l - ) Va(l — ) Va(l + /o) i

a
Comparing (10.14) and (10.16), we arrive at (10.11).

Theorem 10.6 (p. 261). If m(4) is the multiplier of degree S, then
1/4 1/4 _ 1/4
m(d) = (ﬂ) 1_ _ 3 (BU=ANT (10.17)

m(a \ (1l — )
AT/ AW 77

Proof. By Entry 13(xii) of Chapter 19 (Part III [3, pp. 281-282]),
174 a4 . 1/4
m= (é) + (] ﬁ) - (ﬁ(] ﬂ)) (10.18)
o 11—« ao(l —a)
b )\ 1-a\'* a(l —a) lr4
»=() +(=5) -Gazp) - ow

Transforming (10.18) into the theory of signature 4 via (10.1) and (10.10), we
find, after a slight amount of rearrangement, that

_(VBAVBN"  (1-8\"_(BU- VB
“\ e+ v/ \I-a/ \Gmi-va) "
From (10.19) and symmetry,

= (o)™ (1) (D) o

and

Ay
U)

=)
[
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Multiplying both sides of (10.21) by /(I - B)/(a(1 — a)) and comparing the
result with (10.20), we readily deduce (10.17).
Theorem 10.7 (p. 261). Let m(4) denote the multiplier of degree 9. Then

_ /B\'® \' 3 (Ba =B\ U
Vm4) = k ) +kl—a) (4 \a(]—a)) (10.22)

Proof. The proof is almost identical to the two previous proofs. By Entries 3(x),
(xi), respectively, of Chapter 20 (Part III {3, p. 352]),

e (1_3_)‘/“+ (1 -8\ _ (ﬂ(l -ﬂ))"" (10.23)

& J -« a(l —a),

and
3 (e 1=\ (e —a)\"® )
o \g) T\ims) “\sa-») '
The transforming of (10.23) and (10.24) via (10.1) and (10.10) yields the equalities

and

= () () (=) oo

L SRTT " AN and o naml
respectively. A muitipiication of {i0.26) by ¥/(i — £)/{&{} — )} and a com

parison of the resulting equality with (10.25) gives (10.22).

Theorem 10.8 (p. 261). if m(4) denotes the muliipiier of degree 7, then
B\ (1-8\"__® (ﬂ(l—ﬁ))"2
m*(4) = ) +(1-—0:) T @ \e( —a)
1/6 1/6 A\ 116
(=)0 (=)
a(l — a) (] l-a (10.27)

Proof. By Entry 19(v) of Chapter 19 (Part Il {3, p. 314]),
(BN (1-A\" (O -BN\" _ (B0~ '

m? = k’c_;) + K] _; ka(l —a)) ka(l —a)} (10.28)

and

49 o\'? 1 —a\'? a(l—a))"2_8<a(l—a))‘/3 (1029
F=(B) +(1—5) _(ﬁ(l—ﬁ) sa-p) U
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Transforming (10.28) and (10.29) into the theory of signature 4 via (10.1) and
(10.10), we find that, after simplification,

o= (i) (=)

(BB ()

9 _ (Jal+ym\'"  1-a)”
mi@ (JB(1+JB)) *(ﬂ)
_(J&(l—ﬁ) V(B =@\
«/E(I—JB)) - (ﬂ(l—ﬁ)) " 03

respectively. Multiplying both sides of (10.31) by /B(T — B)/(a(I — @)), we
deduce that

49 (ﬁ(l_ﬁ))llz— («/B‘(l—ﬂ))lﬂ B 172

m@ \a(l-a))  \Jal - Ja) +(5)
(f(1+f))‘”_ (ﬁ\/_)'”
Va(l + /o) (10.32)

Combining (10.30) and (10.32), we complete the proof of (10.27).

and

|-«

Theorem 10.9 (p. 261). If m(4) denotes the multiplier of degree 13, then

_ (BN, (1=B\ 13 (pa-p\"
m(4)_(a) +(l—a> —m(4)(a(l—a)>

ﬂ(l_ﬁ))l/u (ﬁ)l/lz (l_ﬁ)l/lz
—4 L ’
(a(l_“) «) "\« (10.33)

Ramanujan's second notebook (Part

M mcbn -~
Chapter 200

e /1 B\"4 (B0 =B\, (B0 -p)\" o3
\a(l—a) ka(]—a) (1034

13 a\" 1—a\"* (o —a)\V* a(l —a)\"®
wo\g) * - -4 . (10.
m (ﬂ) (1 —ﬁ) (ﬂ(l —ﬁ)) (;su —ﬂ)) (10.35)
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Transforming (10.34) and (10.35) into the system of signature 4 by means of (10.1)
and (10.10), we find, after some simplification, that

m(4) = (M)m N (]___ﬁ)w

Va(l + /@) l-a

_ (M)"‘ 4 (_@-_ﬁ))”"

Va(l - Ja) va(l - (10.36)
and
13 Je( + a4 -\
mid) (JB(I +JB)) * (1 —ﬁ)

~ (J&(l —m)"“ _ 4(J5(1 —a))”"

1/3(1 - «/H) VB - B) ’ (1037

respectively. Multiplying both sides of (10.37) by JB(A = B)/(a(l —e)) and
combining the resulting equality with (10.36), we finish the proof of (10.33).

Theorem 10.10 (p. 261). If m(4) denotes the multiplier of degree 25, then
—~=_(8\" (l—ﬁ)”* 5 (ﬁ(l—ﬂ))”"
m(d) = (a) t\i-e Jm@ \a(l - o)
1/24 1/24 _ 1724
~2(G=m) (&) (=)}
a(l —a) o |l —a (10.38)
Proof. By Entries 15(i), (i) of Chapter 19 of Ramanu jan's second notebook (Part

I [3, p. 291]),

1/8 a8 _ 1/8 _ 112
e (2) (22) ) (58) oo
o l-a a(l —a) a(l —a)

and

5 A\ 1=\ fa( =)\ a(l—a))””
S (¢ _ - . (10.40
J (B) +(l—ﬂ) (Fi=p) (5ap) - a0

Transforming (10.39) and (10.40) by means of (10.1) and (10.10) into equalities
in the theory of signature 4, we find that

_ (J’E(l - JE))"“ _Z(JB(I - ﬁ))"”
Vol — Ja) Ja(l —a) (10.41)
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and

5 [ Ja(l + S\ 11—\ VB
7w~ (Fars) +(15)
[ Jal = Jay\ Z/ﬁ(]-a)\mz
“\VBO-vB)/ \VBa-p/) (10.42)

respe(ftiyely. Multiplying both sides of (10.42) by /B(1 = B)/(a(l — a)) and
combining the resulting equality with (10.41), we finish the proof of (10.38).

11. The Theory for Signature 6

The most important theorem in this section is Theorem 11.3 below. This result
allows us to employ formulas in the classical theory to prove corresponding theo-

rems in the theory of signature 6. To prove Theorem 11.3, we need the following
two results.

Theorem 11.1 (p. 262). If

_p2+p) 27p%(1 + p)?
a = —m—
1+2p 41+ p+ p?)¥’

QaLnn
then, for0 < p < 1,

VI+2p2F (53 1:8) = Vi+p+p2aF (L i o). (11.2)

Proof. From Erdélyi’s treatise [1, p. 114, €q. (42)],
IR A & T O D S o JAN— - . 277 —
Filp b =0 -9 R (S S 622 - 97, (1)

for z sufficiently near the origin. By Example (i) in Section 33 of
h;
11 [2, p. 95)), ple (i) in Section 33 of Chapter 11 (Part

11 11 4
m( lz)—(l—z) ”2F( )
2 2 ) 4y 4v + a —Z)Z ) (114)

for || sufficiently small. Thus, combining (11.3) and (11.4), we find that

1 ~1/4
F == Z
2 1(2 7 B z) -2 <1+(1—Z)2)

15 2772 z -3
xFAil=. 5
: '(12 12 4(1-2)4((1_2)2“) )

=(l=z+25)71/ F.( 3. 2712(1-2)2)
11.5)

12°12° 7 41 =z + 22)?



ZAN\G* G’ “*~) LT vNNT LT — -
for z in some neighborhood of the origin. Examining (11.5) and (11.6) in relation
to (11.2), we see that we want to solve the equation

2722(1 - 2)°
l-x)= ————>3.
Sl =0 = v oy
Solving this quadratic equationin x and choosing that root which is near the origin
when z is close to 0, we find that

1 (1 {4(1 — 242} —272(1 - 2)° lm)
x=-(1-

2 4(1 - z +2%)°
=1 l_(1+3)(2—52+212))' (117)
2 201 — z + 222

Thus, by (11.5)-(11.7), we have shown that

15 ] 1_(1+z)(2-sz+2z2>))
Filg s 2 W -2+

11
— - 241/4 F, _,_;l; . 118)
a-z+2) 21(22 Z) (
Now set
_p2+p
1+2p
Then elementary calculations give
(14 p+p?)?
-2+ =——F0—
‘ (1 +2p)?
and

(I +2@=52+27) _ 27p*(1 +p)?
T2 -+ 2+p+p
Using these calculations in (11.8), we deduce (11.2). .
Lastly, « and § are monotonically increasing functions of p on‘[O, 1]. with
a(0) = 0 = B0) and a(l) = 1 = A(1). It follows that (11.2) is valid for
0<p<i.

Corollary 11.2. Let a and B be defined by (11.1). ForO < p < 1,

—_—

\/1+2p2F.(%,%;l;1~ﬂ)=\/1+p+p2zF.(‘5,-;;i;i—a-}. (11.9)
Proof. From (11.1),
— 2 2 22_+_ 2
l—a=l—p2 and 1_,3=(l Py +2p)C2+p) (11.10)

1+2p 41+ p+p»?

_’ — R i ——— cinimi :l — g’)‘(l + 22) in (11.8), we complete the proof.

Theorem 11.3. Let o and B be defined by (11.1).If0 < p < 1, then
g6 =: qs(B) = ¢" (@) := ¢’ (111
where q denotes the classical base.
Proof. Divide (11.9) by (11.2) to obtain the equality
RG.HL1-B) _ ARG LI -
2RG31B) 2AGL3 La)

valid for 0 < p < 1. From (11.12) and (1.9), we immediately deduce (i1.11).

, 11.12)

From Theorem 11.1, we also can deduce that
V1+2p2(6;8):=+/1+2pz(6)
=J1+p+p2zQ2) = V1 +p+p?2(2; ).

(11.13)

Hence, from (11.1), (11.11), and (11.13), we derive the following principle. Sup-
pose that we have an equality

Q(¢% 2(2;a(p))) =0

in the classical theory. Then in the theory of signature 6, we may deduce the
corresponding equality

1+2p : ) _
Q (qfn (—1 PP p2) z(6; ﬂ(p))\) =0.

\ 7

We now give some applications of this principle.

Theorem 11.4 (p. 262). We have
M (gg) = 2*(6).

Proof. By Entry 13(i) of Chapter 17 of Ramanujan’s second notebook (Part Il
(3, p. 126]), (11.11), and (11.1),

[, _P2+P) P 2 + p)*\
\ 1+2p  (Q+2p2 )

by (11.13).









e | (4 E)y e e == § () 250 Qancliqriof ¢ Pefine

2(0) = o*(g) + 169¥%(%). 12.17)
Then, by Lemma 9.14,
R 31 x0) = V0. (12.18)
We will prove that
x(2/) =1 —x(t) (12.19)
and
2(2/1) = 31%2(0). (12.20)

We first show that (12.19) and (12.20) imply (12.14). To that end, by (12.2),
(12.19), (12.18), and (12.20),

WFi(4 3 51— x()
2R3 LX)
1 3.9,
_ iﬂ(,‘.l 4,31,1(2/0) _ [za/0) _ o 12.21)
ZFI(E'E; 1;1(‘)) V Z(t) \/2
Hence, by (12.13), (12.21), and (12.15),
qa(x (1)) = exp(—mV/2y) = exp(-71) =4,

which is (12.14). It remains to prove (12.19) and (12.20).
We will need the transformation formulas (Part 111 (3, p- 43, Entry 27(i), ()])

2e‘”/“”l/1(e'2"/‘) = Jig(—e™™) 12.22)

and
(e = Sipe™. (1229
Thus, by (12.23), (12.22), 2.1), (9.31), and (9.25).
22/ = 42 (0" (WD) + ¢ (VD)
L2 (204 (VD) - (9 (VD) — ¢ (VD))
= 12 (20" (VD) — 161/3¥*@)
12 (2(6%@) + WAV @)’ — 1641V @@

by (9.25). Hence. bv (12.16) and 12,17)

_ v
R0

x(t)
Now, by (12.24), (12.22), and (2.1),
w(2/t) = 3t%0%(—q)

= 1* (p*(@) - 16q¥4(@D))’

1 (o' @ + 1699 gH)’ - 649 (@")¢*(@))

= 14 (220 — w()),

by (12.17) and (12.24). Hence, by (12.25), (12.26), and (12.20),
w(2/t) _ @) ~ w()

2 =
SR e=To7n ST
which is (12.19).
Hence, from (12.1), (12.14), and (12.18),
(( 8/3¥2(g")¢*(@) )2 1\ _ @)
9¥g) + 16qyt(g?)) 4] T (pY(g) + 16g¥(gD) /e
If we let
-~ 169y4(¢%)
a=alg)=—
T T
then
- ( NARCRIEORY
P @) +16g9%g) ) T 1+’
and so, by (12.27),
w(ed) = oo
T A+
By (2.1) and (5.1),
LT AC R N ) B (q: 4%,

viq) ) Cqd

(12.25)

(12.26)

(12.27)

(12.28)

(12.29)

(12.30)
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the following claims:

113
1+5.§. P (1l —x)+---
i [4] & » & )
= | SRl -8 — 16
=\ Ll T Taer—1 TEem -1 e
and
tra b 20004
2 3 N
&0 00
__ {1—[31—62 "8y ——.
1-2x\ Lyl el =TT 132

These two claims were very difficult for us to interpret. First, Ramanujan did
not provide enough terms on the left sides to determine a generai term in eiifier
case, and it would appear that the series on the left sides do not converge for any
x, except trivially for x = 0, 1. Second, although y is not defined, it is reasonable

to guess (from Chapter 17) that
NACRERES))
G LG

Third, Ramanujan had never before used the notation [ ], and so we did not know
if (4/y] = 4/y and [3/y] = 3/y, or if some other meaning should be attached to
the notation ( ]. (Ramanujan never used [ ] to denote the greatest integer function.)
Fourth, by (13.3), the right sides of (13.1) and (13.2) have singularitiesatx =0, 1,
but if the left sides are convergent series, they must be analytic at x = 0,1.

Eventually, we determined that the nth terms of the series on the left sides of
(13.1) and (13.2) have (n!)? in the denominators, which is not evident from Ra-
manujan’s formulations. The conjectured definition of y in (13.3) is incorrect, and
the expressions [4/y] and (3/y) indicate that the results belong to Ramanujan’s
alternative theories of signatures 4 and 3, respectively. (See (1.8) and (1.7), re-
spectively, for the definitions of y in these theories.) Moreover, the expressions
{4/y] and (3/y] should be deleted from (13.1) and (13.2), respectively. For some
inexplicable reason, Ramanujan indicated that his identities arose from the two
altemative theories by placing the “symbols” [4/y] and (3/y] in the midst of the
formulas.

We now offer precise renditions of (13.1) and (13.2).

(13.3)

Entry13.1(p.392). Let 0 <x < 1.Ify isgivenby(1.8)andz = 2F|(‘3, %; 1; x),
then

= (4n + D) (3 n
§ oy {4x(1 — x)}
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1

= — —_ - n = n
1—21(] sgen)‘_l_mzzzn,-—_])- (13.4)

n=1

Ify is givenby (1.7)and z = 2F\(3, %; 1; x), then

& Brn+ D (De ()

e (n1y? — {41 - x))
1 > n X
= 1— _r _"
I—Zx( sn};en},_l xsgem_l). (13.5)
Proof. We first prove (13.4). Recall that
L) =1 —24%——""" , (13.6)
n=l1 1= q" )
where g = e7*. From the definition (13.6), it is easy to see that
= n & n 1 2
1-8 - — 2
;eﬂ = 16;82"y — = 3L@ +3L@). (13.7)
From the proof of Theorem 9.11,
L) = (1 — 2 dz
q)=(1-3x)z"+ 12x(1 - x)zd— (13.8)
X
and
Lgh = 32— 3x)2% + 6x(1 —x‘zd=z (13.9)
7 X. \1J.7)
Thus, by (13.7)-(13.9), it suffices to prove that
S (@n + DG
Zjo g {4x(1 = )}
1 d
- 2 Z
=15 ((1 —2x)2% + 8x(1 —x)zg;). (13.10)

In Clausen’s formula, Entry 13 of Chaj
, pter 11 (Part II 2, p. S8)), put « =
—4 8= -1, and y = } to deduce that P

2
PG H L0 =3R3G, 3. 5150, a3.11)
In Entry 12 of Chapter 11 (Part I [2, p. 56]), setx = =1,y = 2,2 = 1, and
P = dx{i — x). Accordingiy, 8 8 '
2P, 5 L a1 —x0) = R, 3 b (13.12)

Thus, from (13.11) and (13.12),

2¢1 3.4. —
PG, 1 B0 = 3FRG, 3,51, 1 4 — ). (13.13)
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Using (13.13), we see that (13.10) is equivalent to the identity

- A
),.( In(3n PO . .4 (13.19)
z:n( o 3 - {ax(1 = x)} 70 = 20) dx

n=1

Differentiating (13.13), we find that

de _ S nDnrDe g oyt a8
223 = Z (nh)3 tx(

n=1

which is readily seen to be equivalent to (13.14), and so the proof of (13.4) is

lete. .
co?t[:eeproof of (13.5) is similar. First, from (13.6), we easily find that

J 1 3@ 15
n " _CL(g)+-L@). (13.15)
1—62;;_—1-‘82e3~y-1 aH9 TS
n=1 n=
From Lemma 4.1, d
4
L(g) = (1 - 402" +12x() =)z (1316

3

where z = 2F1( . 1: x). We need a similar representation for L(g*). To that
= 3,

end, from Corollary 3 5 and (4.4), we find that

d
L@g® = -;—q ” log (¢° f*(-9))

o4 g (2370530 —x)) —
T 3%dx 7Y dq
1 (12dz 3 1 )x(l-xM
=-3_q\—z—7:+;—‘—r q
dz 2 13.17)
=4x(l—x)zd—;+(l—§x)z. (
Hence, from (13.15)~(13.17),
iL(g® 2x)z% + 6x(1 —x)ziz—. (13.18)
LL(g) +3L(@) = (1 - 202 T
Thus, by (13.5), (13.15), and (13.18), it is sufficient to prove that
Y\(3"+ 1)( )n( )n( I (4x( - OF"
knc\,‘(
n“O J 9
& 13.19
= ——_%—((1—2x)22+6x(1—x)zdx). (
_1
Proceeding as in the proof of (13.4), we put @ = -4.8= -4 andy =

in Clausen’s formula, Entry 13 of Chapter 11 (Part II [2 p. 58]) ’I‘hen we se
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x=—¢,y=-%z=1and p = 4x(1 — x) in Entry 12 of Chapter 11 (Part Il
[2, p. 56]). Combining these two formulas together, we deduce that

= 3R 55 L4aA - x)). (13.20)
Using (13.20) in (13.19), we find that it suffices to prove that

& n(%)n(%)n(%)n A=l _ Z dz
2Ty e = s

Differentiating (13.20), we achieve (13.21) to complete the proof.

(13.21)

At the very bottom of page 392, Ramanujan [9] wrote

1+ —-

’ 4 '

o = 22O 22t e

3 (GG ) 3 (gg ) 13.22)
The notations G, G’, g, and g’ were not defined by Ramanujan. In view of the
appearance of , F| (%, %; 1; ), it would appear that the latter two equalities pertain
to a new (unknown) type of class invariant associated with the theory of signature
3. Chapter 34 is devoted to class invariants, and in the table of class invariants
in his second notebook, Ramanujan uses the notations G := G, and g = g,.
However, no dependence on r is indicated in (13.22). Also, the appearance of two
invariants in each equality should be reflected in the appearance of two distinct
moduli on the left side. Thus, we are left with the conclusion that Ramanujan is
v!.:-.m..mg two g—series identitics, one for the pair G, G, and the other for the pair

;

8, &', whatever these “invariants” might be.
Now, by Corollary 3.2 and Lemma 5.1,

b 3913 £2(_0) F2(—qg?
(11— 1)) = @@ _397f (zq)f (=9”)
a(g) a(q) a*(q)
=¢q'" (3 - 429 + 3939 — 3240¢° + - --),
(13.23)
where we employed Mathematica to obtain the g—expansion. Ramanujan, in his
second notebook, defined G by

1/4,,172
G724 — 2!/4g1 128

(-4:9%0’
and later, in his paper [3], he gave the different definition

G =247"(—4; ¢))eo
Using either definition, and any similar representation for G’, we do not obtain an
expansion for the middle expression in (13.22) that is close to that in (13.23).
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More generally, suppose that
GG =221 +bg" +---)

Then

22- (GG 229401+ (/g + )

37 (GG 251+ (b/6)g + )
Thus, clearly, if (13.22) holds, we must have a = 4. It then further follows that
c=3}andb=-9: 22/3_We are unable to use the resulting expansion

GG =16(1 -9 -2 +--)

2
T3

to identify GG’ in any meaningful way.

14. Concluding Remarks

1t seems inconceivable that Ramanujan could have developed the theory of signa-
ture 3 without being aware of the cubic theta—function identity (2.5), andin Lemma
2.1 and Theorem 2.2 we showed how (2.5) follows from results of Ramanujan. H.
H. Chan [1] has found a much shorter proof of (2.5) based upon results found in
Ramanujan’s notebooks.

H. E. Farkas and L. Kra [1, p. 124] have discovered two cubic theta-function
identities different from that found by the Borweins. Let @ = exp(27i/6). Then,
in Ramanujan’s notation,

wt f? (wa/a’a)qz/s) + (qu/s'a-)ql/z) = wf? (_ql/3' -¢*%)
and
7 (quzs’(‘-)qn/a) -f (qu/s’@qm) — g3 (wg., @)
H. F. Farkas and Y. Kopeliovich 1] have generalized this to a pth order identity.
Garvan [2] has recently found elementary proofs of the cubic identity and the pth
order identities, and has found more general relations.

Almost all of the results on pages 257-262 in Ramanujan’s second notebook
devoted to his alternative theories are found in the first notebook, but they are
scattered. In particular, they can be found on pages 96, 162,204,210,212,214, 216
218, 220, 242, 300, 301, 310, and 328 of the first notebook. Moreover, Theoren
9.11 is only found in the first notebook.

In Section 8, we crucially used properties of b(z, ¢), a two variable analogu
of b(g). The theory of two variable analogues of a(g), b(q), and ¢(q) has beei
extensively developed by Hirschhom, Garvan, and J. M. Rorwein [1] and by S
Bhargava [1]).

Some of Ramanujan’s formulas for Eisenstein series in this chapter were als
established by Venkatachaliengar ).

In [3], Garvan describes how the computer algebra package MAPLE was us¢
1o understand, prove, and generalize some of the results in this chapter.
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Small portions of the material in this chaj ibed i i
pter have been described
lectures by Berndt [10] and Garvan [1]. hed mexpostioy
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Class Invariants and Singular Moduli

So that we may define Ramanujan’s class invariants, set
00
@ P =1 —ag™, gl <1,
=0

and

xX(@) = (=95 ¢Dco- (L.
If

q = exp(—m/n), (1.2)

where n is a positive rational number, the two class invariants G, and g, are
defined by

defined by

Gn:=2""'qMx(@) and g :=27"q7x(-g).  (3)
In the notation of Weber [2), G, =: 2-/%§(/=n) and g,, =: 27'/*f;(/—n). The
definition of G, employed by Ramanujan in his paper (3], [10, pp. 23-39] is not
the same as that used by him in his notebooks [9}], while his definition of g, in {3]
is that used in his first notebook but not in his second notebook. More precisely, If

we replace G and g in the second notebook by H and &, respectively, the relations
between the definitions are given by

1 1
2 __ 4 _
G,,_."_ and 8 =
H L

As usual, in the theory of elliptic functions, let k := k(gq), 0 < k < 1, denote
the modulus. The singular modulus &, is defined by &, := k(e~"v"), where n is
a natural number. Following Ramanujan, set ¢ = k% and a,, = k?.

It is well known that G, and g, are algebraic; for example, see Cox’s book (1,
p. 214, Theorem 10.23; p. 257, Theorem 12.17]. However, much more is known.
Weber [2, p. 540] and, more recently, H. H. Chan and S.-S. Huang (1], using a
result of Deuring (1], have proved the following theorem,
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Theorem L.1.

(@) Ifn =1 (mod 4), then G, and 20, are units.

(b)Ifn =3 (mod 8), then 2-1U1G, and 2%, are units.

(c)Ifn =7 (mod 8), then 2-V/4G, and 2°a, are units.

d)lfn=2 (mod 4), then g, and a, are units.

As G. N. Watson [6] remarked, “For reasons which had commended themselves
10 Weber and Ramanujan independently, it is customary to determine G, for odd
values of n, and g, for even values of n.”

At scattered places in his first notebook [9), Ramanujan recorded the values for
107 class invariants, or polynomials satisfied by them. On pages 294-299 in his
second notebook [9], Ramanujan gave a table of values for 77 class invariants,
three of which are not found in the first notebook. Since the second notebook
is an enlarged revision of the first, it is unclear why Ramanujan failed to record
13 class invariants that he offered in the first notebook. By the time Ramanujan
wrote his paper (3], {10, pp. 23-39], he was aware of Welei’s work [2], and
so his table of 46 class invariants in [3] does not contain any that are found in
Weber's book [2). Except for Gizs and Ge3, all of the remaining values are
found in Ramanujan’s notebooks; twenty-one of these class invariants are found

in his second notebook. At scattered places in the second and third notebooks,
Ramanujan recorded irreducible polynomials satisfied by four further invariants.
In conclusion, to the best of our tallying, Ramanujan calculated a total of 1 16 class
invariants, or monic, irreducible polynomials satisfied by them.

In two papers [6], [7], Watson proved 24 of Ramanujan’s class invariants from
Ramanujan’s paper [3}. In the first [6), Watson devised an “empirical process” to
calculate 14 of the 24 invariants, while in the second {71, he employed modular
equations to prove 10 invariants. In another paper [5], Watson established Ra-
manujan’s value for Gas3, communicated by Ramanujan [10, p. xxix} in his first
ieiter o Hardy, and also stated in his paper {3]. In the introduction to [6], Watson
remarked, “It is intended to publish the calculations involved in the construction
of the set N + Q (the invariants appearing in both Ramanujan’s paper [3] and
the second notebook) as part of the commentary on the notebooks by Dr. B. M.
Wilson and myself.” Although Watson and Wilson’s efforts to edit Ramanujan’s
notebooks have been preserved in the library at Trinity College, Cambridge, Wat-

son's calculations of these twenty-one invariants are not found there. If Watson
actually calculated these invariants, it appears that his work has been lost. The
twenly-one values of n are: 65,69, 77,81,117,141, 145, 147, 153, 205, 213, 217,
265, 289, 301, 441, 445, 505, 553, 90, and 198.

Watson wrote four further papers (9], (10}, (12}, (13] on the calculation of
class invariants. The values of n considered by Watson depend upon the class
numbers for positive definite quadratic forms of discriminant —». In the course of
his evaluations, he determined the class invariants for n = 81 [12], 147 [12}, and
289 [13]. Thus, after Watson’s work, 18 invariants of Ramanujan from his paper

(3] and notebooks {9] remained to be verified.
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vall::'se clatl” 7these invariants are established in Section 3. For each of these five
» 117, 153, 441, 90, and 198, n is a muitiple of 9, and proofs are effected

| P P ] [ " Y
:;;:f"[l;::: relating u(g),él with G, and gg,, With g,, which we establish by using
anujan’s modular equations of de;
gree 3. The latter formula i

on page 318 of Ramanujan’s first n i ook while
on pag otebook, but not in his second i
u‘ncsfur‘mcr formuia is not found in any of the notebooks notebook, while
. ince rr(niodul_ar equations are crucial in our work on class invariants, we now give

l:{mgnsg efinition of a modular equation. Let K, K/, L, and L’ der;otc com gletjt:
:n ;p;c_ integrals 02f the first kind associated with the moduli k, k' ;= +/1 — lcg 74

= V1 — €2, respectively, where 0 < k, ¢ < 1. Suppose that o

.
=T (1.9)

for some positive integer 7. A relati
‘ . A relation between k and £ induced b i
a modular equation of degree n. Following Ramanujan, set Y (19 called

a=k and g=4¢,

We often say that 8 has degree n over «.
As usual, in the theory of elliptic functions, set

q :=exp(—nK'/K). (1.5)

Since x (q) = 2"/%{a(1 —a)/q) and
. x(— — 2I/6 =2 _
N1 (3, p. 1241, it ollows from (1.1, (10, and 015y thae 2 (Par

Gu =41 —a))™™  and g, = (4, (1 — )2}~ (16)

lhlis gomuia for G,, will be used in certain modular equations.
- nl 4Ta1l(r§ls ;(—);, \;';33estzalblish the remaining 13 values, each for G,,, n = 65, 69
77, 141,145, 205, 213, 217, 265, 301, 445, 505, and 553, claim i anus-
K 'y ) ) » y ed by Ram: -
;iz:;a;)gze rer:)arkablly, 2;herv:lass number for each of the 13 imaginar;, quad?:llilc
+/—n) equals 8. Morcover, there are precisel i
t T, y two classes per
(f::f:, lflase. ;)-ur f?rst proofs, given in Sections 4 and S, employ Krongzkegr?: 11115"11::
eta_funac,li\:nxscil; |tse :IS,Cd ;c; ﬁr()id representations for certain products of Dedekind
s of fundamental units; see Th
o : 4 eorems 4.1, 4.2, and 4.7,
the 13 values of n is a product of a small prime (3, 5, or 7) and a larger prl;:;c:

Thus, our i
of de-grcmp’:o‘:fs :rl;o :Tl'lCl.allz e‘r‘nploy certain modular equations of Ramanujan
egrees 3, 5, and 7. It is highly uplikely that Ram .
Kronecker’ A Sy .u-umwy uiaL namanujan was famlhar with
certainly ar: l;n:ntt hformula and the arithmetic of quadratic fields, and so our proofs
ot those found by Ramanujan. However, Ramanujan obviously dis-

cerned some unigue arithmetical properties in th :
2: properties in these instances, and it wouid be

i“ating t dlsc €r i S pp .
tabc 0 Qv Ralllallll an's 3 loacll Ihe methOdS m Sectlo"s 4 a"d 5
have been ful [hel eanded by L.—C. leang [2], [3] WhO has rigOIOUSly eswb‘

li a“ the inVa.ri i pe 6 that were calcu Wi
{lShed ants 1n WatSOn'S a
° . P T [ ] h al lated lhere ilh his



Ramanujan used modular equations to calculate only a couple of simple in-
variants in [3). This fact and the sentence, “The values of G, and gz, are got
from the same modular equation.” [3], {10, p. 25] are the only clues i0 his
methods that Ramanujan provided for us. It would seem that if Ramanujan had
employed another type of reasoning, he would have dropped some hint about
it. As mentioned earlier, Watson [7] used moduiar equations 1o estabiish some
of Ramanujan’s invariants. However, for his calculations of G,, it is impor-
tant that n be a square or a simple multiple of a square. We have been able to
prove six of the remaining thirteen values for G, namely, for n = 65, 69, 77,
141, 145, and 213, by using modular equations. As will be seen in our proofs
in Section 6, we need some new ideas to effect proofs of these six invariants
via modular equations. To prove the remaining seven invariants by employing
modular equations, we would need modular equations of degrees 31, 41, 43,
53, 79, 89, and 101. Apparently, only for degree 31 did Ramanujan derive a
modular equation, for he recorded no modular equations for the other six de-
grees in his notebooks. Thus, Ramanujan’s methods appear to be even more elu-
sive.

Watson (6, p. 82] opined that “I believe that fourteen were obtained by Ra-
manujan by means of the empirical process which I described in the discussion
of Gi3s3.” We are not so confident that Ramanujan used this empirical process,
for which Watson offered little explanation. In fact, Watson’s “empirical process”
is not rigorous. However, in Section 7 we shall use class field theory to make
Watson's procedure rigorous for a large class of invariants including those 13 in-
variants mentioned above, and we use the process to calculate two new invariants
as well. Chan [3] has further extended the methods of Section 7 and calculated 27
new class invariants.

Section 8 is devoted to some miscellaneous results on class invariants, including
1wo entries to which we have not been able 10 attach any meaning. Here we also
establish Ramanujan’s more detailed assertions about the inTeducible polynomials
satisfied by G9 and Gg.

In Section 9, we turn to Ramanujan’s singular moduli. Once G, or g, is known,
then it is easy to calculate a,, from (1.6) by simply solving a quadratic equation.
However, this expression for c, that one trivially obtains from the quadratic for-
mula is usually not very interesting or attractive. Thus, it is desirable to develop
other algorithms for the calculation of &, that will reflect the unit structure of o
described in Theorem 1.1. For the calculation of «,,, when n is even, Ramanujan
devised a very clever algorithm given in Theorem 9.1, For odd », we do not have
such an inclusive algorithm, and so we had to develop some lemmas to facilitate
calculations.

In Section 10, a simple function of singular moduli is studied.

In the last two pages of his notebooks, Ramanujan studied the j—invariant.
He seems to have quoted some results from the literature. However, Ramanujan
made some remarkable discoveries, including very simple polynomials satisfied
by certain algebraic functions of the j-invariant. Ramanujan’s work on the j-
invariant is the topic of Section 11.

2. Table of Class Invariants

Both prior to his table of class invariants in his second notebook and at the begin-
ning of his paper (3, egs. (5), (7)1, {10, p. 23], Ramanujan recorded two simple
formulas relating these invariants, and so we first state and prove these here. See

Mo nenlon &

aloa P P P R L . + . . P
also Exercise 5c on page 73 of the Borweins’ ireatise {i].

Entry 2.1 (p. 294,NB 2). Forn > 0,
8an = 2"8,G,.
Mf. This identity is an immediate consequence of the definitions of G, and g,
in (1.1)~(1.3) and the elementary identity
@ 490 = (@ 4)oo(—43 4o @2.1)
). Forn > 0,

(8.G)*(G —gd) = 1.

294, NB2

Proof. Jac'obi's identity for fourth powers of theta—functions (Part III [3, p. 40,
Entry 25(vii)]) can be written in the form (Whittaker and Watson [1, p. 470])

(—4:99% — (g: )%, = 169(—g% g%, = —216-(]7' @2
(g% 99%
where we used Euler’s identity
(95 Po0 = 57 .
®T @ )
By (2.1), we can write (2.2) in the form
272471%(g; ¢H)%,272¢7" (45 ¢P)%,
-2 13, -2, -
x (2747 (-4:45 - 2777 (@: %) = 4.
that is, by (1.1)-(1.3), when ¢ = exp(—n /n),
(8:Gn)* (G} - gl = §.

Recall from Part II (3, pp. 91, 102] the definition

G L1 -x)
F(x) =exp _”L
( ZFI(%y%;];X) s 0<x <1, 2.3

where , F, (%‘ %; 1; x) denotes the ordinary hypergeometric function. Recall also
from Part Il (3, p. 36] or Chapter 33 the theta-function

@)= ¢%. i<, 2.4

n=-00
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W13, p. 102)) For convenience, we use the following abbreviations in citing sources for the
and the fundamental formula (Part I1I 3, p. listed invariants:

TR \ =1 1100y = Laol(a), (2.5) Ramanuian’s frot notahank: N1

K(k):iﬂ 21‘1\5,5, LR 20 Y 2

naifafidjait S 15t O OO0K! Iv1,
i ¢ is given by (1.9). (The evaluations of x(q) and x (~q) used in (1.6) depend Ramanujan’s thid notebook N3,
upon (2.5).) M x = @, in (2.3). then Ramanujan’s paper [3]: RP, ,
F(a,) = exp(—7 Jn). 2.6 Watson’s paper [S]: WXIV,
Watson'’s paper [6]: WI,
Now from (1.6), Watson’s paper [7]: WII,
+ 1 —0 vX)) Watson’s paper (9]: W3,
= On 2 : Watson’s paper (10): W4,
Watson’s paper [12]; W5,
and so, since &, = % Watson's paper [13]: W6,

Weber's treatise [2]: We,
an=§(1-,/1—1/6%4)- 28

Brillhart and Morton’s corrections (1]: BM.
o TN INIL PRs [ iﬂ
In the first notebook, Ramanujan frequently records Gy, OF €qUIVAIETRL, Sn-

the form Table of G,
F (% (1 ~Ji- 1/63“)) = exp(—7 /1), 29

indi tation in the tables by placing
. d (2.8). We have indicated such arepresen s by plac
Eé’igl:?he(page number in the first notebook where the corresponding invanant R
i i is located.
or, equivalently, singular modulus) is . -
( w;l next give a table of all the values of G, and ﬁ" found tt))z dez;:frxe\:\;:x‘j?:b \:; »
e that formulas for certain values of G, and g, may ol
fhlgp;::tl z;‘xd :ecor.d notebooks and Ramanujan’s paper [312 In most cases, it is P
not difficult to verify that Ramanu jan’s formulations are equivalem: In pa‘;'u;u:;r; s
j f calculation is needed.
amanujan employs (2.9), a2 modest amount 0
gﬁ: ]'lle suc,nllcalcu!atiens are necessary on pages 284, 287, 292, 293, 296, :nd / \
311 {)n z;]l these instances, the calculations are routine, and_ there is no ne;O ;:) \ . }
ive. them here. In other instances, for example, on page 314in the lifsl no_te ho ; R
gRamanujzm records the value for G, 2* in the notation “48(1 — B),” thatis, he 1 i
n=
ing (1.6) with a,, replaced by 8. - ' .
USI\I):/ghE:n t)he inva:iant is a root of a cubic polynomial, Ramanu%n, as wel(l, r::
Weber [2], normally, but not always, only gives the polynomial. There gre 5 e NS A
instances ;vhen Ramanujan calculated the appropriate root but Weber did not.

21/4

‘- s in Qantion 8, How- " 9
i i ian’s values for Gs and U5 il SULLGE ©. 250 n=29
particular, we establish Ramanujan’s va o G ey, mstead of G
ever, Ramanujan’s polynomials are those satisfied by Gan)s G (
b

S

14 1/3
Thus. on page 345 in his ﬁrs}1 notebook, Ramgr;uj}a;'l rieico;';c; ;hz i’rrfg:c‘igle 'EI(:ZE s )
T T T \ — 73,31, 11, 19,27, 43, and 67. Thes |
g((;;;;aol?'rl?::;s::edr:gealtéfizo; g;g)c; ;(5)‘; :Iogetht:rl witlh/ (rg?/r;ié i;re;dnu;i‘te)l::a‘t):l);zr;gr}r:;

s satisfied by 1/(271°G) and by (OO 37 a7, e
Secf:s(:l;,ot;e ren;ark that the tables of Weber (2] contain some exrors. Correction: ,

Refs.: N1(295F,345,351)N2,W3,We
have been made by . Brillhart and P. Morton [1].

Refs.: N1(284F,287F),N2,RP,We
n=11
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n=13
n=15
n=17
n=19
n =21
n=23
n=25
n=27
n =29
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Table of G, (Continued)

34+ v3\ "
2

Refs.: N1(292F),N2,RP,We

173
9174 (ﬁ)
2

Refs.: N1(289F),N2,W4,We

5+/17 V17-3
23 + 3
L} ~ Y =

Refs.: N1(296F),N2,RP,We

2-14x where x3 —2x —2=0

Refs.: N1{295F,345,351),N2,W3,We

S+ VT 1/4 34 7 1/6
2 V2
Refs.: N1(293F),N2,We

21/4x wherex?*—x—1=0
Refs.: N1(295F,345,351),N2,W3,wW4,We

1+45
2

Refs.: N1(287F),N2,RP,We

-1
21/12 ( 3 - 1)
Refs.: N1(305F,345,351),N2,W3,We

G% =x, wherexS—9x%+5x* 423 —5x - 9x —1=0
Refs.: N2(263),We

n =41
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Table of G, (Continued)

274, wherex’—x2—1=0

Refs.: N1(296F,345,351),N2,W3, W4 We

3+m 1/6 1+\/§ 1/2
72 72

Refs.: N1(311F),N2,We

s \ 174
(6 + Jﬁ)
Refs.: N1(305F),N2,RP,We

e (VB +3)" ‘/5+J1_3 ‘/m—3
2 g TV B

Refs.: N1(305F),N2,W4,We

1\’ 5++/41
Gy =x, wherc(x+;) - +“/-(x+l)+7+m=0

n=43
n=4;5
n=47
n=49

2 2

Refs.: N3(382), WE,BM

x

274 wherex®—2x1—-2=0
Refs.: N1(313F345,351),N2,W3,We

(2+ ﬁ)"‘(ﬁjiﬂ)m

Refs.: N2,We

2Y4%,  where x° = (1 + x)(1 + x + x2)

Refs.: N1(234),N2(263),We

7%+ Va4 /7
2
Refs.: N1(293F)N2,RP,We
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Table of G, (Continued)

n =55
ve( [14+5  [5- 1)
174
2 (ﬁ + 2) ( AR
\ ’

Refs.: NI(315),N2,W4,We

n=>57
1/6
1 1/4
(————3‘/?;; 3) (2+J§)

Refs.: N1(315),N2,We

n =263
1/6
e (st (s, [vai-3)
\ 2 ) \‘V 8 y 8 )
Refs.: N1(305F),N2,W4,We
n =65 ,
1/4 1/4 y
J13+3 i+l 9 + /65 Ak V65
2 2 8 8

Refs.: N1(315),N2 RP

n =67
2= wherex®* —2x2-2x-2=0

Refs.: N1(345,351),N2,W3 ,We

n==56

1/2

s+va\" (33+vB\ " ‘/;3\/3 ‘/2+3J§
( V2 ) 2 FE 4

Refs.: N1(314F,315),N2,RP

Refs.: N1(313F),N2,RP,We

3 .25/I2
V5+ 1(10),/3 + #41/3 516 — /5~ 1
2
Refs.: N1(311),We
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Table of G,, (Continued)
n=77

(8+3ﬁ)|/s(\/ﬁ2+~/7)”8(‘/6+4~/ﬁ+\/2+«/ﬁ\l”2
\ / i ' 4

Refs.: N1(315),N2,RP

n=179
t=24/Gy, wheret>—r*4+ 2243 _1=0
Refs.: N2(263,300)
n =81
. 1/3
( 23+ 1) + 1)
’}")/ /’; -1 1
\y «lvo 1)y—=1y
Refs.: N2, WS ,RP
n=_8§s
1++5) (v85+9\"
2 2
Refs.: N1(315),N2,RP,We
n =293
1/6
(39 +7v31\ " (A1 +3,3\"
\vi ) T
Refs.: N1(315), N2,We
n =97
/13 + /97 \/5 + /97
+
8 8
Refs.: N1(305F), N2, RP,We
n = 105

n=117

(3+m)m(m+m)”° (L ¢4+~/§)

2 2

Refs.: N1(315),N2,RP
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Table of G, (Continued)

(11 43viT "
3Ji[( ) s

x ( 3V 1+3J3+4) +(3\/11—3«/3+4) )+z]
Refs.: N1(294F,317),RP,WIL,W5

n=133 e
(8+3ﬁ)l/4(5‘ﬁ+3m)
2
Refs.: N1(315),N2,We
n =141 o
w3 \/_ e (74 V@ { ~3+ 144 9V3
i) () ([ )
Refs.: N1(320),N2,RP
n =145 ”
1/4
1 145 94 4145
WE+ 32D T4 VA | 94V
2 8 8
Refs.: N1(315),N2,RP
n = 147
1
l/l2( I‘/> (28)1/6})
Refs.: N2,RP,WS
n=153

(/Tm \[m_s)’(\/mgm me)‘“
8 + 8 4 + 4

Refs.: N1(315),N2,RP

n =163
2=V  wherex® —6x2+4x-2=0
Refs.: N2(300),We

n =165
(4+ JE)W (3v5+ 2«/ﬁ)”6 (‘/_ t “/_) (V5+ 2)'/‘S
Refs.: N1(317),N2,We
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Table of G, (Continued)

n =169
1 134+3v13\"”’
5[(m+2) + (—2—)
173 1/3
11 +4/13 11
l( . 3[) +( +‘/_—3f) ]]
Refs.: N1(294F,317),RP.WIL, W5
n=175
3.21/4
Vi-1

5 +(5_4“/§) (\Vs—aﬁ+3J2_1+\78—3J5—3J2—1)

Refs.: N1(316),We
n=177

(3J5_9+23 e\
7o) (5
Refs.: N1(315),N2,We
n = 205

(1+~/§)(3~/§+~/ﬁ\)'/4(\/7+~/ﬁ \/m-l)
2 /v 2 ) Vs Y8

/
Refs.: N1(314),N2,RP

n =213

(5¢§+~/7T " (so47vaT\ " ‘/21+12\/§ 9+ 123\
2 ) 2 T 2

Refs.: N1(315),N2,RP

n =217

( lo+avi [0

n =225

(155 o (L sy

Refs.: N1(293F),RP,WII

N
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Table of G, (Continued)

(5 +ﬁ§)"z (13ﬁ7+9¢i§)'/4
NG 2

Refs.: N1(315),N2,We

n =265
i/4
v, / J265 |81+ 54265
(2+J§)|/4(7+2 53) ( 89+Z 26 +\/ +8 )

Refs.: N1(314),N2,RP

172

n=273
/1:/54||~/—\//\/—+3\ /\/_+~/_\]/2 =\ M4

=) () (5) )

Refs.: N1(317),N2,We

n = 289
(\/17+J_+(17)’/4(5+«/') ﬁ+(17)'/4(5+«/_))

16
Refs.: N1(317),N2,RP,Wé6

»

N1
V1

(8 3\/_)1/3(23J_+57f (\/;6+7J_ P+7\/—)

Refs.: N1(325), N2 RP

4

n =325

1/4 2 2
(3+~/ﬁ) f wheret3+12(1~2~/ﬁ) +t(l+£/ﬁ) +1=
2
{1+ /13\ /l—x/ﬁ\ N

ﬁ{ﬁ-:k . )HK > )7

Refs.: RR,WII

n=1333

T+2/3+V3+42V/3
6+ V3DV4TV/3 + 23DV ( )

Refs.: N1(314,315),RP,W1
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Table of G, (Continued)
n = 345

1+ 45 (l+~/§)l/2 (3ﬁ+ \/2_3)'/2(15\6+7«/§§)”6
2 V2 2 V2

Refs.: N1(317),N2,We

n =357
V3+7 YT+ v\ 11+ v\ ¢
(‘2 )<s+3ﬁ>w( ‘ ) ( - )

Refs.: N1(317),N2,We,BM

n =363
2%, where 2 — i [(4+ V33) + V11 + 233 3}
—:ll +m—} —1=0

Refs.: RP,WII

n =385
3G+ VIDWE + VDT +VIDG + V5)

Refs.: N1(317),N2,RP,We

n = 441

= e AN
\/———V“”'(2+~/§)1/6\/2+~/7+\/7+4\/7\J V34T + (6T
2

2 V3 + V7 - 6Y

Refs.: N1(46),N2,RP

n = 445
m(zwg/ﬂs)l“ (\/13 +8J@+\/5 +8«/@)
Refs.: N1(320),N2,RP
n = 465
2+ /374 (l+—2‘/—§)”4 (3f2+31\m (5+/5 + 231/

2+4/31 6 ++/31 11+ 2431 13 + 231 2
X T 4 2 + 2

Refs.: N1(319),RP,WI
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Table of G, (Continued)

n = 505
(2+5) (1 A “/g) (10 + VIOV
' 12
113+5~/10 105+5«/10
-8 8
Refs.: N1(344),N2,RP
n = 553 "
{ oot 11y [1004+ 11479
T iiv /7
Ve )
"
l4l+16~/l9 143 + 16479
()
Refs.: N1(320),N2,RP
n = 765

yEas (16+J27)‘/‘2<4+ VT (9+‘/_)
V51 10+ 18+3f_ 22+3
\/6+ f } / / )

Refs.: N 1(343),RPWI

X
4

=777

1/12
@2+ V346 + VI ( f) (246\/7 + 107~/3_7)

({6+3f 10+3f (\/Ewﬁ /17+6f)
2

Refs.: N1(319),RP,WI

n = 897

J2+f\/ 4«/’1— 3V

(- (=

,r:\lll? /3\/§+\/2—3—\l/4
j e

’ \ /

2
1/2
/4+J3_§)
+ 4

Refs.: N1(320),WI
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Table of G, (Continued)
n = 1225

1/7

1+f(6+J—)‘/4(7 +\/4+\/—)

x(\/’43+15\ﬁ+(8+3ﬁ)\/10\f7 \/35+15f7+(8+3\/7)\/10\/7)

8 8

Refs.: N1(46),RP,WII
n = 1353

1/4 1/12
(3 +\/11)'“ (5+3\/§)'“(11 +~/123) ! (6817+321J451)
7z 72 7 7

\ / \
V33 Nex)
(‘/17+3 ‘/25+3 )

\' N

s (‘/561 +99v33 +\/569+99«/3_3)
8 8

Refs.: N1(319),RP,WXIV

1/2

( (143 + 414335 [751 + 414329 )
X 3 + 8

Refs.: N1(320),RP,W1
n = 1677

(441W+2427J:t_3)‘/'2(‘/1_32+3) (~/_+J—)'/‘
A 7

+2/3)4 (\/355 +454«/4_3 N ‘/351 +:4JE)
h : /

1/2
(\/17+2~/43 \/13+2J43)
x i + .

Refs.: N1(320),WI
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Table of g, Table of g, (Continued)
n =38
=2
" 1 g =g, where g3+gﬁ=\/1+ﬁ(1+g2\/i)
Refs.: N1(316),N2,We Refs.: N1(344), We
n==56 n=142
176 1/2
(1++2) QY3+ V)6 V347
Refs.: N1(316),N2,We 2
n=10 Refs.: N1(316),N2,We BM
1+ /5 n =46 !
Vo2 3+/2+V7+64/2
Refs.: N1(316),N2,RP,We >
n=14 Refs.: N1(316),N2,We
1+ V2+V2V2 -1 n =50 .
2 1 5+5) /.
Refs.: N1(316),N2,We 5(1 +( y ) (\71 +7V5 + 68 + /1 +7¢§_6Jg))
n=18 Refs.: N1(318,344) W5 We
V2+ V3 .
Refs.: N1(316),N2,RP,We
5429
n=22 >
V142
Refs.: N1(316),N2,RP,We, BM Refs.: N1(316),N2,RP,We
n=62
" 4+ V143491572 | [Vis a4 ’
+V1+V2+V9+ 542 ‘/ 1+ V24+v9+5/2-4
1 3
_ o /
3( 2+Jﬁ+\/;2+ﬁ5) 2+ V134336 +V/13) ( s + .
N ‘ﬁz L JTWIE T - 336+ «/1—3')) Refs.: N1(319),RP,WIL, W6
Refs.: N1(318,344),WS,We n =66
{ 3. AV = \1/'2(/7+Jﬁ /‘/3_3—1\”2
n=730 \vx.+~/3} \7v2+3\/ri—‘l) + .=
2 + V553 + V10)'/¢ U 8 \/ 8
Refs.: N1(316),N2,RP,We Refs.: N1(319) RPWI
n =34 n =170

/3+m+¢m+wﬁ [B+ V5 +v2)
4 4 2

Refs.: N1(316),N2,RP,We Refs.: N1(316),N2.RP.We
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Table of g, (Continued)

12
(?iz‘/_ﬁ) (5 + v26)'/

il
~J
oo

Refs.: N1(316),N2,We

n=_82
/]3 + fS +
Refs.: N1(316),N2,We, BM
n =90
l(2+«/§)(«/§+ «/5)]‘/6 ( & +4J6 + Jg4_ !
| \ Refs.: N1(318),N2,RP
n =94

2
(\/;+\/7+~/i+\/7+5~/§+[\/7+«/§+\/7+5~/i—4)
3 8

Refs.: N1(319),RP,WIL,W6
n =98

2
b/‘4+vz+vm+‘w14 ¢[v_/§+\.'!4+4~fl_-—4\
8 8

Refs.: N1(318),RP,WIL,W6

n=102
QA+ V2 2EV2+ VD
Refs.: N1(316),N2,We
n=114
/= 4y Ji+ \1/12(]23+3 R /l5+3 \
(\/ + ~/3) \5 ) \v 4
Refs.: N](319) RP,WI
n=126

1/6 3+42 V2 -1 i
D ([

Refs.: N1(318),RP,WI
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Table of g, (Continued)

145\ (3+vi3)"”
2 2

Refs.: N1(316),N2,RP,We

n =130

n =138

1/4 1/2
(3&;«/53) (78«/§+23«/§§)|m (\/5+3~/6+\/1+:.~/3)

Refs.: N1(319),RP,WI

\/9+5Ji+\/|27+90ﬁ
V 2

Refs.: N1(316),N2,We

1/4 174 "
(2Ji+ﬂ)/ (ﬁ;«/l—l) (\/13+f«/2_2+\/9+i~/2_2)

Refs.: N1(319),RP,WI

n =158
{/4+J9+Ji+\/17+13ﬁ ] /J9+ﬁ+J17+13J§—4\2

\V 8 Ty T8 }

Refs.: N1(319),RP,WII, W6

n =190
32
1 5
( +2‘/-) (3 + V/10)'2
Refs.: N1(316),N2,RP,We
n =198
/ IQ_I_ /a1 II 4 /—\
V1+ V2442 + V/33)6 U’ — +\/ '8"“)
Refs.: N1(318).N2,RP
n =210

VB4 TA3Ta+ 5Y5)6 Jﬁ; V3 \/ﬁ; !

Refs.: N1(320),We,BM
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Table of g, (Continued)

238
1+2V2  [5+2v2 1+3Ji+ 54342
rEn 4 4 4
\ 7 N\

Refs.: N1(319),RP,W1

n =310
1++/5 7+24/10  [3+2/10
( 5 )\/1+~/§(‘F4 + n
Refs.: N1(319),RP,WI
n =330
s [T (51 v o
\/‘\/o"‘VJV 2 \ 2 }\V-' TV AV
Refs.: N1(320),We
n=>522

,/5+2‘/2—9 (5~/§§+ IIJE)U(' (,/9+3J3 +,/5+:“/6 '

Refs.: N1(318),RP,WI

n = 630

[ ; \ V- —_

(via+ Jﬁ)”"\] ((1 +42) (3 +2~/5) («/s : ¢7‘)‘)

[ +/T+2 \/Tmﬁ—z‘
4 + 4

X

(\/71_5'+~/7+4+‘Fﬁ+f7—4)
% 8 8

Refs.: N1(318),RP,WI

3. Computation of G,, and g, when 9|n

In this section, we establish Ramanujan’s class invaria.nts for. n = 117, ]?3, 441,
90, and 198. Note that for each such r, 9in. Our st.art.mg point is a relation con-
necting g, and gv,., found on page 318 of Ramgnulan s first l}OlC!)OOk, but not in
his second notebook. K. G. Ramanathan [4] noticed this relation in the first note-

book, but apparently he never gave a proof. Also unaware of its appearance in the
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first notebook, J. M. and P. B. Borwein [1, pp. 145, 149], although not stating the
results explicitly, derived a formula connecting g, and gy,, as well as a formula
reiating G, and Gg,. We use one of Ramanujan’s moduiar equations of degree
3 10 establish the aforementioned formulas connecting G, and Gy,, and g, and
gon. The former formula is not found in the notebooks, but it can be proved along
the same iines as the iawter. The Borweins 1, pp. 143, 146] aiso derived formuias
connecting Gy, with G, and Gy, and gz, with g, and gg,.

Of course, the theorems described above can be utilized to establish other class
invariants found by Ramanujan when 9|n, in particular, for n = 27, 45, 63, 81,
225, 333, 765, 18, 126, 522, and 630. Undoubtedly, some of these proofs would
be simpler than previous proofs, for example, for 81, 225, 333, 765, 126, 522, and
630. In particular, Watson’s proofs for n = 333, 765, 522, and 630 [6] were based
on his “empirical method.” In fact, the Borweins [1, pp. 147, 149, 150) employed
the aforementioned formulas to calculate the invariants G217, Ggy, G225, and gs2;.
Moreover, previously undetermined class invariants, for example, for n = 171,
189, and 279 can be calculated. However, we shall confine ourselves here to the

cases,n = 117, 153, 441, 90, and 98.

Theorem 3.1. Let
P=G;‘;+G;4. 3.1)
Then

176 2 24 SRS D=
G‘)n = Gn (P + m) \/p (p2 )(P )

— — 3
G R
(3.2)

2

Proof. For brevity, we set G = G, in most of the proof.
We shall employ Eniry 15(xii) of Chapter 19 of Ramanujan’s second notebook
(Part 111 (3, p. 231]). Let

— 1/4
P = (16ap(1 —e)(1 - $)'*  and Q=(M) 63

oa(l —a)
where 8 has degree 3. Then

Q+é+2«/§(P—%)=O. (3.9

Recall from (1.6) that, when ¢ = exp(—n \/n),
G, = (4 (1 — )}~ "% and Gon = {4B,(1 — B}~/
Hence, by (3.3), P = (G,Gsa)~* and Q = (G,/Gy,)®. Thus, from (3.4),
(Gn/Gon)® + (Gn/Gsa)™® +2v2((GoGoa) ™ — (GaGon)®) =0.  (3.5)
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Set x = (Gon/ Gn)*. Then (3.5) can be rewritten in the form

o 226853 +2v2G 8x + 1 = 0. (3.6)
X T LV LU A

Rearranging and using the notation (3.1), we find that we can recast (3.6) in the
form

(x? = V2G5x + p)? = 2(p? —1)( )
Since x > 1,

xz—\/iGﬁx-f-p 2(P2"| ( )

xz—s/iGz(G“+ pz—l)x+p+ pr-1=0

— |:_. £
1

Remembering that x > 1 when

x::/—iGz(G4+\/P2~|)

+:}__ G°(Gx+2G4 /p2_|+p2—l)—2p—2\/p2—1.
2

3.7
Now,

ct=1i(p+ p2-—4) and G* —%(P -2+ pVpt - )
Thaus, squaring and expanding, we find that

=4 (p+ VP =43 (i 24 pVP —4)
+(h-2+p p? - 4) p2—1+l§(p+\/pT—‘Z)(pz—l)
= (p+VP-1) (P -2+ VG- DO - ») 3.3)

and
G* (GS+2G"~/pT:T+p2— 1) -2p-2/p ~ 1
=12(P+\/;2_—‘—1)%(p2—2+p\/pT——_Z)
+(p2—2+p\/;2_——4)\/pT:_1
+i(p+Vr -4 (P-1-2p-2/p* -1
= (p+vP 1) (P -4+ V- DF —9). (3.9)
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Using (3.8) and (3.9) in (3.7), we deduce that

[/ N\ {
x=7.iv(p+\/p2—l)(p2 2+\/(p—1)(P 4))

N N e Y e —
P AV TV S P -4+ VP - D(p? - 4).

(3.10)

Recalling that x = (Gy,/G)?, we see that (3.10) is equivalent to (3.2), and so the
proof is complete.

We next prove the aforementioned result found on page 318 in Ramanujan’s
first notebook.

Theorem 3.2 (p. 318). Ler

p=2g-8" (3.11)
Then

1/6 244 \/_2“2
ggnzgn(p+ /p2+_l) [‘/p + 4+ (P2+l)(p +4)

\/p +2+¢(p + 1(p* + 4)

@a. 12)
Proof. Set ¢ = g, throughout the proof.
Using (1.3) and (1.1), we rewrite (3.5) in the form
Va(-4:4D% | (=q%¢%5, N 8,4
(=9%4%%  Va(—4:9)%  (—q4; 9D (-g% O
_ g -aeN% _
Va ‘
Multiplying both sides by /9 and then replacing q by —q, we find that
_9@:9)% | (4% 495, 84 23 (3. 643
@O @ @oR@gn | = e =0
I]smo (13)and (1.1) PN SR

—(8/89)° + (89n/8)° — 2v/2(ggan) > — 2v/2(ggon)* = 0.
Setting x = (gs,/g)°, we deduce that

xt~ 2‘/5861‘3 —2v2g7% —1=0.
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Recalling the notation (3.11), we see that the last equation can be rewritten in the

form
orm

2
(x* - V2% = p) = 200+ 1D (gzx + —%) .

It should now be clear that the remainder of the proof is completely anaiogous i0
that for Theorem 3.1, and so we omit the rest of the proof.

As a bonus, the formulas connecting Gy, with Gy, and gg, with gn led to
closed form evaluations of Ramanujan’s cubic continued fraction at the arguments
+ exp(—m 4/n) by the author, H. H. Chan, and L.-C. Zhang (1.

The cube roots in (3.2) and (3.12) are not very attractive, and usually in ap-
plications Ramanujan found more appealing exprcssions for these cube roots.
Ramanujan had an amazing ability for denesting and simplifying radicals, and we

do not have the insights into radicals that Ramanujan had. However, it seems quite
likely that in several instances Ramanujan used the following clementary result

from Carr’s book [1, p. 52). Since Carr does not give a proof and since he adds the
extraneous hypothesis that (a* — b)'/3 be a perfect cube, we provide a proof here.

Lemma 3.3. Suppose that ¢ = (a* — b)'/3. Then we can write

(@a+ Vb =x+ Y. (3.13)
where
4x* —3cx=a (3.14)
and
y =x—-c. (3.15)

Proof. From (3.13), we easily see that
@-vb)'"’ _x—y

c x2-y

Suppose we set ¢ = x% — y, so that

@-Vb)P=x—y. (3.16)
Cubing both sides of (3.13) and (3.16) and solving for a, we find that
a=x*+3xy. 3.17

But since y = x? — ¢, we deduce (3.14) from (3.17).

Usually, it is best to soive (3.14) by trial or inspection, for if, for example,
Cardan's method is used, the value of x so obtained most frequently is the cube

root that we originally sought to simplify.
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S' 9, .
mat;;lscei tCsa:: “s; blol(:kl (1) was Ramapujan’s primary source for leaming mathe-
\ s likely that Ramanujan employed Lemma 3.3 in simplifications

Howaouvar hansnsiias ociact ~F A
P PP

OCWEVEE, 5CCause most of us do not cepce Ra .

. ! : possess Ramanujan’s ability to di i

gebraic rela ) jan’s ability to discern ai-
tionships, we describe another procedure that rests upon elementary

Consi i i i an
ns :icfrallgns in algebraic number theory and involves less guessing
we see from Theorems 3.1 and 3.2 that it id :
. .2 ihai 1t i i find
ey s wouid be advantageous to find a

3._
a ._\/b+l+cﬁ+\/b+c~/¢7. (3.18)
Then
-3
a =\/b+l+c~/3—\/b+m/3
and
3, -3
@ +a>=2yb+1+cVd.
Since | -
3, -3 1\’ 1
at+ta " =|la+-) —
(a+2) -2(e+2).
set
1
u—a+‘—z, (3.20)
so that, after squaring, (3.19) takes the shape
20,2
=D =4(b+1+cvd). 321

A S| mlng th el an! p i 3
‘ " P
ssu e‘I (eV t)ex ressions ab()ve are algeblalc lnteg(:l S, We ﬁ“d l‘lat, upOll

N@W)N* @2 —3) = N (4 (b 1+ cﬁ)) : (3.22)
Using (3.22), we determine u. We then solve (3.20) for a.
Entry 3.4.
C;ll7=1/3_<!”—\/ﬁ\”4 3 s 44 3)
3 \ > ) V3 +V13)!° (3'/‘ +Va4+ JE) . ()

Proof. Letn = 131
tn = 13 in Theorem 3.1. From Weber's treatise (2, p. 721}, or from the

tables of the last section,
3 1/4
Grr = <_+2_ m) ,
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By (3.1), p = ~/13. Thus, by a direct application of (3.2),

= r—-———]ua
G|17—(3+JT) (2f+f)l/6\\/11+6J3+‘j9+2645

(On page314in his first notebook [9}, Ramanu jan recorded G117 in the form given
above, which is strong evidence that Ramanujan utilized Theorem 3.1 as we have
done.) It therefore remains to show that

‘/11+6f /9+6~f\ =‘§ 3n/4+,/4+¢§), (324

We apply Lemma 3.3 with

i 1n+6v3 9+6v3

Thus, c = 1. We therefore need to solve

4X3"3x= _]_1.16_\-/-3
J 2 :
2

To solve this by inspection, it perhaps is best to square both sides and set 1 = x~.
Thus,

w

=]
=N
o
i

11+6~/§

14 =3 =

It is not difficult to see that ¢ = 1 + +/3/4. Hence, x = —\/4 + /3, and, from
(3.15),y = J/3/4. Thus, (3.24) follows, and the proof is complete
Altemanvely, in the notation (3.18) and (3. 20), by (3.21), we want to solve

Wl - 3 =22+ 12V3. (3.25)
Factoring in Z{+/3] and using (3. 22), we find that
NGHNGE —3) = N@2+12V3) =20 13.
Then
= N =3 = N@A+BID =4~ 38,
Choose A = 1 = B. We now observe that
N@) = N@+¥3) =
as required. Itis casily checked that, whenu = m , (3.25) holds. We readily

then find that
- % (3‘/‘+\/4+~/—’
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Thus, (3.24) has been shown once again.

2

v“‘s}:(/5+~/l_7+/\/ﬁ—3\ (
J \

‘v/37 +49\/ﬁ . ‘V/33 +:m\ 1/3

\'V 8 'V 8
(3.26)

[loof. Set n= 1 ; m Iheolcm 3.[ FlOlll Webe eat| ;2] Or1 il()
T'S treatise [2, p. ], m[hc

Gy = y 3 Hy R (3.27)
Since
5+/17 (1 +V/17D*?
G':7 _ 3 + 1+ +17) ‘
w2

from (3.1) we find that p = (5 + V/17)/2. Also

p+J;ﬂ——=5+2‘/ﬁ+ 19 + 5417
3 .
Thus, from Theorem 3.1,

Gis {/5*'“/‘_. /~/1_'7 3\(5+¢— W\l/é
J\ 2 N J

\113+5J_+\/(19+5~/_)(13+5~/_)
4

However, note that

19 + 5VTH(13 + 5/17) = 672 + 16017 = (20 + 4/17)%.

Hence,

Giss = \/5+~/ﬁ+‘/\/ﬁ—3 5+/17 19+ 5717 1/6
8 8 2 T 2
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feout=ag

Comparing the equahty above with (3.26), by (3.27), we see that it remains to
show that

=GS%;, (3.28)

5+~/1’7Jr 19 + 5/17
2 2

which is rather curious indeed. Note that

/V]7+~/ﬁ+V13+«/ﬁ}\2_5+\/l—’7L 19+ 517
4 a2 ) 2

e

Thus, by (3.28), it suffices to show that

/7 + J_ /3 + _a,. (329)

In the notation (3.18) and (3.20), we solve
2t -3 =T+V17, (3.30)

We now factor in the principal ideal domain Z [(l + V17 / 2] . Thus,
N@HNYE —3) = NO+Y17) =

We attempt 0 solve

L VT

/ ) Y
+B— = A? — 4B°.
i4=N(u2——3)=:N(A B 2 )—A + AB

Take A = —1and B = 1. Thenu? = 5 + J17)/2 and N(u?) = 2. A simpl
calculation shows that (3.30) indeed holds. Lastty, we find that

’5+~)17 ’«/17—3
a =\ o +\ Q .
y o Y S

By (3.27), we conclude that (3.29) holds to complete the proof.

Entry 3.6.
V3+V7+6"7Y
T4VT+adT [VB3+VT 6
GM,:,V_._F_.—-————*‘/_ . ,/————-2 @B | == T

(3.2
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Proof. We apply Theorem 3.1 with n = 49. From Weber’s treatise (2, p. 723], or
from the tables of Section 2,

Va+V7+7'
Go=—"""7—"" (3.32)

\/4+~/_+7‘/4 J2+ﬁ+m
> .

(3.33)
After a somewhat lengthy calculation, we find that
Gre L 2HAT O+ V7'
49 — 2 2\/2 M
Thus, p = 9 + 4+/7. After a mild calculation,
prvpr—-1=9+ ‘VCTL‘V’:VIUTU‘V’I’ (3.34)
=9+ 4T +2V33+VT
=Q2+V3)3V3+2VD
3
3 7
Using (3.32)-(3.34) in Theorem 3.1, we deduce that
7 7+ 447 3 7
o :‘ﬁhmf + f‘/f:f(2+ﬁ)l,6
' 173
) [ /191 + 7247+ A +J189+72ﬁ+A!
\ ’
/ 2 v 2 J (3.35)

where

= /192 + 7247189 + 72¢/)

= 642016 + 762v7 = 6- 774 /13 + VT,

Using this calculation in (3.35), we see from (3.35) and (3.31) that it remains to
prove that

n-.e\l»-_r

\\ 191 4+ 7 VI+6-7”4\/5(3+V”?)2

3

\] 189+72\/’7+6.71/4\/§(3 + V2
+
A

2
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SRR
\ V3 + VT - 64718

W3+ T+6747V3+ 7 +6'271
4

il

g‘/ 16 + 6+/7 + (3 + V16 27V4 + !;\ﬁﬁ +03+ \/7)6'/27'/8.36)

We apply Lemma 3.3 with

191 4+ 7247 + 6 774,13 + VI

|
a= >

189 + 72¢/7 + 6 774 /33 + V77!

Again, ¢ = 1. Setting x2 = ¢ in (3.14), we see that we must solve

and

b

; 191 +72V7 + 674 [13 + V)
t(4t —-3)' = 2

(16 + 3WDGB + VD? + 6v6- 73 + VT)’
= 2

= (_3_+z§/__7ﬁ(16+3\/7+6\/6~7'/“).

We now verify that

(=Y (3 ).
16

Thus,

/ 2 127114 = . Zgl/2
. Ve+YD + (3 + VD627 and y = 63T + (3 + VDT,
- 4

by (3.15). Thus, (3.36) follows, and the proof is complete.

Entry 3.7.

3++/6 V6-1
gw=(2+\/§)1/6(\/5_+\/6)”6(‘/ y +,/ y ' (3.37)
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Proof. Setn = 10 in Theorem 3.2. Now from Weber’s book (2, p. 721), or from
the tables of the preceding section,

1++/5
T

810 =

An easy calculation shows that p = /5. Note also that

3\ 1/6
g0 = ‘/ ! +2*/§ = ((1 +2‘/5) ) = Q2+ V5", (3.38)

Thus, from (3.12) and (3.38),

173
890 = 2+ V5)' (V5 + V6)!/ I\/9+73J6+‘/7+3ﬁl . (339
| R |

Comparing (3.39) and (3.37), we see that we must prove that

1/3
94136 7+3./6 3+6 V6 -1
{\/ > +J 3 I =J 2 +\/ Y (3.40)

In the notation (3.18) and (3.20), we solve

W?w? = 3)? = 18 + 6V6. 3.41)

Facioring in the unique factorization domain Z{+/6], we find that
NN (u? - 3) = N(18 + 6+/6) = 3 . 62,
We thus want to solve
£6 = N(u® — 3) =: N(A + BV6) = A> — 6B°.

Choose A = 0and B = 1, so that u? = 3 + /6 and N («2) = 3. Itis trivial to sie€
that (3.41) is satisfied. Then

[3+v8  [V6-1
) +V 7

and the verification of (3.40) is complete.

Entry 3.8.

giss =1 +ﬁ(4ﬂ+¢§)”6 (‘/9+;/§+‘/1 +8‘/3_3) (3.412)
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Proof. Set n = 22 in Theorem 3.2. From Weber’s work [2, p. 722], or from our

f.
tables in the foregoing section,
&n = \/ 1+ ’\/5

An easy calculation yields p = 4+/2. Thus, from Theorem 3.2,

gos = 1 +v2(42 +«/§)‘/° {\/18+3~/§ 17+ 3~/3—3}m.

(3.43)
By (3.42) and (3.43), we must show that
—— =" foxvB  [1+vB .
1\/18+3~/33+\/17+3~/331 =Vy—% Vs - %
In the notation of (3.18) and (3.20), we seek to solve
w2 (u? — 3)? = 4(18 + 3+/33). (3.45)

Thus,
NGON@E — 3) = N(4(18 + 3v33) =2* - 3°.
Factoring in Z[(1 + +/33)/2], we attempt to find a solution of

1+/33
2

:t6=N(u2—3)=:N(A+B )=A2+AB—8B2.

Let A = 1 = B, so that u? = (9 + +/33)/2 and N (u?) = 12. It is easily checked
that (3.45) holds. Hence,

| IS P
\/9+~/3‘3 \/1+J33
a=y—3 ty73

Thus, we can deduce (3.44), and the proof is complete.

4. Kronecker’s Limit Formula and General Formulas for
Class Invariants

Let Ou,v) := y~'(u + v2) (& + v2), where z = x + iy with y > 0. Epstein
zeta—function o (s) is defined forc = Res > 1 by
to(s) i= Y _(Q, v}, 4.1)
uv

where the sum is over all pairs of integers (4, v) except (0, 0). It is well known
that £go(s) can be analytically continued to the entire complex s—plane, where

34. Class Invariants 217

o(s) is analytic except for a simple pole at s = 1. The Kronecker limit formula
provides the constant term in the Laurent expansion about s = 1. More precisely,

fols) = — = -+ 27 (v —log2 —log (VY@ + 06 - 1), 42)

n@ =q""@ P = ¢V f(—@),  g=€""y>0,  (43)

where f(—q) is defined in (1.14) of Chapter 33.

Next, let K be an algebraic number field over the rational numbers. Let N (1)
denote the norm of an ideal 2. Then the Dedekind zeta—-function for K is defined
by

k() =Y _(N@A)™, o>1,
2

where the sum is over all nonzero integral ideals 2 of K. Let Ci denote the ideal
class group of K. Then the Dedekind zeta—function for an ideal class A of Cy is
defined by

s, A) =) (N, o>l

AeA

If x denotes an ideal class character, then the L —series for X is given, foro > 1,
by

L(s, x) ==Y x Q) (N@)~ = Y~ x(A)(s, A), (4.4)
A A

where the former sum is over all nonzero integral ideals 2 of K, and the latter
sum is over all ideal classes A of Cg.
In the sequel we assume that X is a gquadratic field. It is well known that (C. L.

Siegel (1, p. 58))

Iiml(s — D¢k (s) = hk, (4.5)
5§
where A is the class number of X, i.e., h = |Cg|, and where
2n if K is imagin
K._Iw-—d' B
) 2loge Nl
, if K is real.
vd

Here w is the number of roots of unity in X, d is the discriminant of K, and ¢ is
the fundamental unitin K.
Let

Ld(8)1=2(2)n_‘, o >1,

n=\
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where (d;) is the Kronecker symbol. Then (Siegel (1, p. 58))

¢k (8) = §(s)Lals), @7

where ¢ (s) denotes the Riemann zeta—function.
Now let d = dyd,, where dy > 1 and, fori =1,2,d, = 1(mod4)ord; = 0
(mod 4). Let B denote a prime ideal in K. Then a Gauss genus character x is

defined by
d ) .
., if N(P) 1 41,
(7o R
xP) = 4
— ), if N(B)Id1,
(N(‘n)) s
where (N—‘(’m—)) again denotes the Kronecker symbol. Note that N () t dy if

N(P)|d,. This definition can be extended to all ideals of K by multiplicativ-
ity. It is well known that the genus characters form an abelian group, denoted by
G(K), of order 2~!, where k is the number of distinct prime divisors of d.
Next define
Gy := (A€ Cx: x(A)=1,x € GK)),

which is named the principal genus. Clearly, Go is a subgroup of C, and Cx /Go
is called the genus group. Furthermore, Cx /Go = G(K). Obviously, Ay and A;
are in the same genus if and only if x(A)) = x(Az) foreach x € G(K).

Kronecker (Siegel [1, p. 62, Theorem 4]) proved that, for a genus character x
of K corresponding to the decomposition d = d1dy,

LK(S, X) = Ld] (S)Ldz(s)' (48)
Thus, by (4.4) and (4.8),

Lo, )a(s) = Y X(AXK(s, A).
AeCyx

For a fixed nonzero integral ideal B € A™',
t(s, A)= N(BY T (N@B)™ = N(®) 3 Won™,  o>1

AeA reBJU
“4.9)

where U is the group of units in K. Now assume that K = Q(/—m) is an

imaginary quadratic field, and so m is a squarefree positive integer. Recalling that

w is the number of roots of unity in K, we see that, from 4.9),
N(B)Y

(s, )= —= 3 (NOY™,  a>1 (4.10)
w rLEB
A#£0
Let
J—m, if —m=2,3 (mod 4),
B [ A+ /—m)/2, if —m=1 (mod 4).
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Then

—4m, if —m=2,3 (mod 4),
—m, if —m=1 (mod 4).
Itis known (R. Mollin and L.-C. Zhang [1]) that each ideal class contains primitive

HIE PO PO T NP, it N PP
w}acan winlntaie U‘lllUdu}Ub Ufihe f\‘j

d=

v P,

m B = (a, b+Q], where g and b are rational
integers, a > 0,a|N(b + Q), |b| < a/2, ais the smal,l t positi , integer in 1B,

s , ) < , est positive integer in B,
and N(B) = a. P 8

Let z = (b + 2)/a. Then, for A = ua + v(b + 92),
NQA) = (ua + vk + Q))ua + v(b + Q)
= a’(u + vz)(u + v7)

a/1d| /A./m\_l
=3 k?.a) (U + vz)(u + v2). (4.11)

Thus, for z = (b + Q)/a and y = Im z = /|d|/2a),

-\
Qu,v) = (g) (u + vz)(u + v2).
And, from (4.1), (4.10), and (4.11),

1 2 5
A = —( —
s ) w(Jlri_l) S0(s).
Thus, from (4.2),

1 2\ ( =
[l A = — T - - 7r
t(s, A) ” (m) (s — +2ny —2mlog2 + 5]og‘/|d|)
2 2\ | 5
~w \7m (—3l0g2a) + login(@)I*) + Os — 1).
. 4.12)
Since, for any nonprincipal genus character x,
Y x(a) =0,
AeCy
it follows from (4.4) and (4.12) that

27( 2 S
ey == (ﬁ) > x(A) (—}toga +logIn()1?) + O(s — 1).

A€l
Recall that in the decomposition d = d,d, we assume thatd, > 1 and dz(tj :(;)
Let K; = Q(J/d)).i = 1,2. By (4.7),
}EIII(S = D&k, (5) = Lq (1), i=12
Then, by (4.5) and (4.6),

2h) log e,

LaMy=—"7= (4.19)
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and
2h2ﬂ
Li(1) = , {4.15)
d\1J ws ,———-'ldzl \
where k; is the class number of K;,i = 1,2, € is the fundamental unit of K\,
and w,, is the number of roots of unity in ;. Thus, settings = 1 in{(4.13) and
using (4.8), we deduce that
ar
La(WLg(1) = ———=— ¥ x(A)(—1loga + log [n(2)I). (4.16)
DL = g K )

Thus, setting

F(A) = In(2)I*/ Va, (a.17)

where z = (b + Q)/a, with [a, b + ] € A~', we conclude from (4.14)-(4.17)
that, for x nonprincipal (Siegel {1, p. 72]),

whita 086 _ 5~ 4y log F(A),
w) AeCyx
or
E;L‘hl"l/”’Z: l_l F(A)_K(A)- (4.18)
AeCy

We remark that (4.18) was utilized by K. G. Ramanathan (1], [3], [4), (5], [7]
to calculate class invariants, values of the Rogers-Ramanujan continued fraction,
and certain other invariants of Ramanujan.

We next prove the three primary theorems that we need to calculate Ramanujan’s
class invariants G,, when K = Q(/—m) has class number 8. Let 1 = /—m.
Then, by (1.1), (1.3), and (4.3), it is easily seen that

n{(z+1)/2) _
n()

Equalities (4.18) and (4.19) are the key ingredients for deriving formulas that will

enable us to calculate G,,. We consider three different genus structures, and the

first two theorems that we prove can be utilized to determine G, for m = 65,

69, 77, 141, 145, 205, 213, 265, 301, 445, and 505. For m = 217, 553, the genus

structure is of a third type. In each case, K = Q(v/—m) has class number 8,

and the number of genera equals 4. Thus, each genus contains exactly two ideal
classes. Also note that A and A~ are clearly in the same genus.

Throughout the next two sections, for simplicity, we use the notation for a

primitive ideal to denote the ideal class containing it; this abuse of notation should

not cause difficulty.

Pl A 10N
U \2.17)

Theorem 4.1. Letm = 1 (mod 4), where m is a positive squarefree integer with
prime divisor p. Let K = Q(+/—m) be an imaginary quadratic field such that
each genus contains exactly two ideal classes and such that the principal genus
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Gy contains the classes (1, Q) and [2
i ) p.p+ Q) Let G, b incij
containing the two classes [2, 1 + Q) and(p, ). Thenl @ nonprincipal gerus

Gm hy2
- whihyfuy
(Gm/,ﬂ) ” € ,

x(Gy=-1

n./here h,hy, and h, are the class numbers of K, Q(J/dy), and Q) res

uve.ly, w and w, are the numbers of raots of unity in K and Q(V/dy) rei';;ectif elc-
€] is the fundamental unit in Q/d)), and the product is over all ,character: 4
(with x (Gy) = —1), associated with the decomposition d = dyd>. and th ‘
dy,d>, hy, by, w,, and €\ are dependent on x . e erefore

Proof. E.achoflheideals[lt ), [2p, p+Q), (2, 1+Q), and {p, Q] is ambiguo
If2 € A is any one of these ideals, then A ~ Y~! A -1 z;ndm € A-giu o

For any ideal class B € GoUG,, itis not difﬁc;xlt to— see that (Ramanathan (5

p.77)
Z x(B) =0,

X(Gy)=~1
which implies that
[1 Fyx® =y,
X(G)=-1

where F(B) is defined by (4.17). Therefore, by (4.18),

whyhy fw,
€ = Fa)=x4) - —x(Ah/4
X(G))=-1 xcall—! Aenc ) EIG:!JG e '
A !
. 420
since the number of genus characters equals k/2, and so the number of (genu:

characters with x (G,) = —1 is h/4.

Let Ao =[1,Q), Ay = [2 _ ,
by (420), ), A4 [p,p+Q],A|—[2,1+m,andA,=[p,Q].Then,

l-[ G;ulnhz/un - (F(An)/F(Ao))h“

X(G=-1 F(A))/F(A) 421
By (4.17) and (4.19),
Fa) _n*(#hwve o,
F(Ag) - n2(Q) =Un. (4.22)
Let & = Q/p = \/~m/p?. Again, by (4.17) and (4.19),
Fay _mCE0IVID @2y, 3
F(A) Tt MTT-7 e Gl (4.23)

The theorem now follows from (4.21)-(4.23).
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Theorem 4.2. Letm =1 (mod 4), wherem isa positive squarefree integer with
prime divisor p. Let K = Q(/=m) be an imaginary qlquirazzf ﬁelcf's‘z{c;hth:t
.each genus contains exactly two ideal classes and such m{ll Ir'te principal genus Go
contains the classes [1, Q) and [p, S2). LetG, bea ponprincipal genus containing

the twa classes (2,1 + Q1and (2p, p + §2). Then
whihz2/w
(GnGup) = T1 ™
x(G=-1
where h, hy, and h; are the class numbers of K, QWa@), and Q(Vda), respec-
tively, w and w; are the numbers of roots of unity inK ar{d Q(/d2), respectively,
€ is the fundamental unit in Q(/d)), and the p;o.dyct is over all characters x
(with x(Gy) = —1), associated with the decompovition d = didy, and therefore
w,, and €; are dependent on .

IR T N
al’uz"ll,llz,wl,“"“"

The proof of Theorem 4.2 is analogous to that for Theorem 4.1, and so we omit

h We say that m is of the first kind or second kind according as it satisfies the
- ively.

conditions of Theorem 4.1 or Theorem 4.2, respective

It is not difficult to show that [1, ], (2,1 + Q. [p, 1, and [2p, p + 2] are
representatives of different ideal classes (Mollin alnd Zhang [1]). ‘

Theorems 4.1 and 4.2 need to be combined with three modular equanor?s ?f
Ramanujan (Part 111 (3, pp. 231, 282, 315)) in crder tq calculate Ramanujan’s
class invariants. We have already employed Lemna 4.3 in our proof of Theorem

3.1

Lemma 4.3 (Modular Equation of Degree 3). 1e!

B - B\
P = {16aB(1 —a)(1 — pY/*  and Q=(——a(1_¢,)) :

Then |
Q+lQ+2~/§(P— )=0-

F

Lemma 4.4 (Modular Equation of Degree 5). Let

1 - 1/8
and Q= (u) .

P = {16aB(1 — a)(1 — B}/ all —a)

Then ]
N ‘+2(P_.l_|=0.
v P

z+a 4

Lemma 4.5 (Modular Equation of Degree 7). Let

1— B\
and Q= (_ﬁ:(——ﬂ) .

P = {16ap(1 — )1 — B/ a(d —a)
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Then

1
0

)

O+—=+7=2 (P+

\
) .

Let g = exp(—n/+/n). Since G, = Gy;, (Ramanujan [3], (10, p. 23]), by
(1.6), G, = {4a(l — a)}~'/2*. If B has degree p over , then G,/pr = G pryy =
(4B(1 — £))~'/?%. In summary, we can express the equalities of Lemmas 4.3-4.5
in terms of G, and G2, p = 3, 5, 7, respectively, by employing the formulas

G, = (da(1 —a)}™'**  and

|-

Gapr = {481 — B))"YVH.  (4.29)
The oenng strcturec far O/ _217) and M3 ../ S&A\ awma Ai6Famre Far o 2l
BV pRAIUS SUULIBITS 1UX W Y Ter iy alill W\ v —J0J) arc aincrit 1rom tnose

of the eleven imaginary quadratic fields to which either Theorem 4.1 or Theorem

4.2 applies, and so G;7 and G553 must be calculated by another means.

Lemma 4.6. Let m denote a positive integer with T\m. Let © = /=m/7 and
Q = (Gm/Gnmya9)*. Then

( n(on (£ )’_49( n(on ()

-2
- 032 1/2_an-1/2_ n-3/2
2o (55) wm(”—:‘)) ¢S

(4.25)

Proof. With g = exp(—n/m/7), it follows from (4.3) that
() \ | P %)
n(7on (55F) 2 fH—q") fAq") '

Next, by an entry from Ramanujan’s second notebook (Part IV (4, p. 209, Entry
55)),

FU=q) f (—q?%
43/Zf2(—q7)f2(—q 14)
fH=g> f*(~q")

A172 £20 N\ £2¢  _ 14N
7 J 7Yy

212 =a) (9" _ f(=a)fb (=g
+49 2 32 =35
fA=q) A (-¢% g*? f8(-q) fo(—q"")
_gd LUy | @) (=g
FH=4) 9" Fé(=4® f(—q"
Multiplying both sides by ¢*/> and then replacing g by —g, we find that
P@I=gY) @’ @) (=a") _ f(-g) ")
VECHYECPID) 1@ f =gy @ fS(—q")
+d2CAN@) (@4 @@ (-q"
A (—q' O T O B O Y
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Recall that g = exp(—m /m/7) and recall that G,,, /49 is then given by (1.3). Thus,
Gn =27"%q77%(~q"; ¢'*)ec. Hence,

( Gn )2_ (-4"; 4",
Gm/49

T 9'2(—q; g%,

(a2 222 (o7 _aT\2 £2_a2) F2(pT
\M M Jp0\ Y T 700 J N 1T ) 1

S Xy O T T L O YL Cr i M

Dividing (4.27) by g*/? and substituting (4.26) and (4.28) into the resulting equal-
ity, we deduce (4.25) to complete the proof.

Theorem 4.7. Let m be a squarefree positive integer with 7\m and m = 1(mod
4). Let K = Q(+/—m) be an imaginary quadratic field such thar each genus con-
tains exactly two classes and such that the principal genus Gy comprises (1, 2] and
(2,1 + 2], while [7, Q) and [14, 7 + 2] form a nonprincipal genus G,. Then

{ i / n(t)n(’%!) \ Yh/2Z

— | = e, (4.29)
i‘/'_’ ("(h)"(n_;l))} x(c]n_Ll '
where h, hy, and h; are the class numbers of K, Q(J/d)), and Q(/d3), respec-
tively, w and w, are the numbers of roots of unity in K and Q(/d3), respectively,
€ is the fundamental unit in Q(/d)), and the product is over all characters x

(with x(G\) = —1), associated with the decomposition d = d,d;, and therefore
dy, d>, hy, hy, w,, and €, are dependent on x .

Proof. Let Ao = [1,92), 45 = [2,1 + 2], A, = (7, Q], and A] = [14,7 + Q].
Then by the same reasoning that we used in the proof of Theorem 4.1,

7\ 174
(%) B x(c-ll-: . (4.30)
By (4.17),
F(Ao) = n*(Q) = n*(T1),
F(Ap) = n* () V2 = o (B31) V2,
F(A) =" (§)/VT=n* (@) /Y7,
and

F(AY) = n? (882) /V14 = n* (5) /14,
4, nd recalling that the number of genus char-
is equal to h/4, we deduce (4.29) to complete the

Substitutine t

o
Substituting these v
acters x with x (G,
proof.

The class numbers cited below for |d| < 500 can be found in tables in the
texts by Z. 1. Borevich and 1. R. Shafarevich (1, pp. 422-426], H. Cohen [1, pp.
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503-5091, and for 0 < d < 10, 000 in the book by D. A. Buell (1, pp- 224-234).
Lists of fundamental units can be found in the book by Borevich and Shafarevich
{ij(ford < 101), the book by M. Pohst and H. Zassenhaus [1, pp. 432-435) (upto
d < 299), and the tables of R. Kortum and G. McNiel (1] (up tod = 10, 000). In
E:ohin’slb_ook (1, pp. 262-274), there is a table providing the ideal class structure
for Q(v/=d), d < 97 and for Q(+/d), d < 97.

5. Class Invariants Via Kronecker’s Limit Formula

Theorem 5.1.

(BN (BN for s [

w=(757) (57) (=

1/2

Proof. The following table summarizes the needed information about ideal classes
and their characters.

4l a4 G c x(Go) x(Gy)
I 2 X X(GZ) X(G3) hl hz wy €)
1, Q] 1 1
1| -2 [
801x01Gol 11954 1
2,1+ Q) 1 -t V541
5] -52
x1{Gy 5. Q) ~1 ] 1{2]2 3
3,1+ Q) 1 -1 V1343
13| =20 G
X2 |G 3, -1+ 1 -1 1122 3
65 —4 G.| 161+l 1o
LI 6, -1+Q)1| -1 -1

Note that 65 is of the first kind. Applying Theorem 4.1 with h = 8 and w = 2,

we find that
(Ges )“z G\ (v +3) .l
Giyss 2 J\ 2 " G

Let Q = (G65/G|3/5)3 and P = (GﬁsGu/s)—z. Then, by (5.1),

(1N (3
Q=\ 3 ) k 3 ) =(V5+2'2 V13 +18)'2.  (52)

By Lemma 4.4,

P—l

Q+0H+ +0+16
_ 2 H+V(Q@+0 'V +16 5.3
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Now, by (5.2),

(n.;.n‘\2+]6._02+0 + 18
= (V5 + (VT3 +18) + (V5 - (VT3 - 18) +18
= (5 + V65, 5.4

0+ 07" =74+ 10/65. (5.5)
Thus, by (5.3)-(5.5),

P! = 174+ 10V65 + 4(5 + V69). (5.6)

Thus, by (5.2) and {3.6),
—1/4
Ges = QP

and, by (5.4),

/4

|

4 4 A\ !
3

e\ N\ —\'
_ («/5+ 1) (V_‘_L (g\/74+1o~/6§+§(5+«/65))
- 2

(&%

(%]

Thus, it remains to show that

2
9+ /65 1 + /65
};\/74+10J65+};(5+J€§)=( 3 +‘[8 )

which is easily shown by a routine calculation.

Theorem 5.2.
cm_(“"—) (3I+J_) (\Faf \/;M)

Proof. We summarize the needed information in the following table.

x(Go) x@GV |,

—_

hy | wy €)
dij & |x |G ¢ X(G x@Gy ||
(1,9 1ol
(2.1+9] 1 - 1|6|24+5v23
92| -3 |x |G| 13 g 1 —1 1
5.1+ 9] I N 25+3V69
69| —4 ix2 G [5’_]_*_9] -1 1 2
G 17,1 + )
12| =23 | x3 3 [7’_1+Q] -1 -1
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We apply Theorem 4.1 with k = 8 and w = 2, as 69 is of the first kind. Thus,

 Ge \ 4 /A 5 4 3/ /—,A\ 12
1/3
sz = (24 + 5v23) ( > ) . 6.7

) — 6 . o e
Let O = (Geo/G233)° and P = (G¢9Gayy3)~*. By (5.7),

3/4
0 = (24 + 523)12 (ZSL '69)
2

(5+J—)(36~/_+13f_)‘/2 (5+~/'~’_3) (3~/§+~/53)3/2

V2 V2 2 (5.8)
By Lemma 4.3,

i Lo on. ' rav oo

£ —4ﬁ\¥—r¥ JTnV\uTU 1)+ 32, 5.9
From (5.8),

0+0"' =V + 07 +2=/16(187 + 108V/3), (5.10)

and, from (5.10),
(Q+ 071 +32=16(9 + 6v3)2.
Putting these calculations in (5.9), we find that

1  _ 1
= —187 + 1083 + — (9 3). )
ﬁ‘/ f+ﬁ( +6y/3) (5.11)

By (5.8),

1712 1/8
—o\np-is_ [(3+¥23 3V3+423 s
69 = Q' P = PV,
V2 2

and thus, by (5.11), it remains to show that

3
6+3 [
{\/ +.\/§+\/2+3£\ =é\ 187+10Rﬁ+L(94.6~/')

\r 4 L BN v/

This can be achieved by a straightforward computation.

Theorem 5.3.

1/8 172
Gv7=(8+3ﬁ)‘/8(‘/ﬁ;ﬁ) (/6+4~/ﬁ+ /2+4~/ﬁ)
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Proof, We compose the following table giving needed information about ideal

acters.

classes and character

ol alxle] © X X ulnfuw| «
|08 oo 45 ¥ | 1
28| -11 |G [2'[7’,“;2191 R R EA LR
7| -4 |x2|62 !;3;‘_111%1 I AL 47‘”2‘/77
144 -7 0|0 [~[56,’—11++Qs%) -1 -1

We see from the table that 77 is of the first kind. Thus, by Theorem 4.1, since

h=8andw =2,
=(fl’_) (3+3f)( +‘F) (8+3~/’)(‘/—+“/-
Gup
(5.12)

If P = (G17G117)~°, then, from Lemma 45,

-1 \/———r_—'__'_
0+Q0'+7+ Q@+Q'+7? 32' 5.13)

-1
P~ = a1

Now

Q+Q_!+7:8vu+28=2 /2(2/22 + TV2).

Using this in (5.13), we find that

- =§(2~/—+7~/'+ 182 + 56v/11 ). (5.19)
By (5.12),
/ m . E\ 1/8

-~

Gn=Q"*P =08+ WD kil’l_;_j—_

) p-ie,
and thus by (5.14) it remains to show that

(‘f““/_ ,/““/—) 2«/—2+7«/‘+\/182+56~/1_”,

which is readily shown by a straightforward calculation.
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Theorem 5.4.
/ —_— 112 /]
c.4.=(4¢§+m)n/s(7+d47 \/18+9~/§ et o3}
72 i VT3 )
f. We record the necessary information in the following table:
xG) x(Gy |M [P @
1 _E’A ol []'Q] l
1 564 x0|G p 1
°l 16.3+9) o
188 -3 |y |G| 21+ bt
0 |G oG 11 Ihiletasrava
41| -4 [le,| B2+ 1 -1
5.-2 4+ Q| Loy 11| 4]9s+svial
12| —47 | 13| Gy| 1103+ € :
N0 -3+ -1 -1

We see that 141 is again of th i i
since h = 8 and w = 2g| e first kind. Applying Theorem 4.1, we find that,

(Gm A 4_ (48 + VA
(;47/3) = (48 + 7V47)' (95 + 8/ 141)'72. (5.15)

Let @ = (G 41/Gas3)°. Then, by (5.15),
= (48 + TV47)\/? 7+ /47
0 = (48 + 7V47)/(95 + 8V1a1)/ = < 7 ) @V3 + Va2

= (48 + 7/47)/2(756/3 + 191/4T)' 12, (5.16)

Let P = (G141Ga7/3)~>. Then, by Lemma 4.3,

pi - (@0 H+V(Q+01)2+32
W2 '

From the last representation of Q in (5.16)

Q'+ 0% +34= (36(7 + 4‘/5))2 '
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and so J—
0+07'= /0T + Q- +2= 4,/ 7855 + 4536v3.
Using these calculations in (5.17), we deduce that

s (5.18)
Pl _TWJFIGHI)

Hence, by (5.16) and (5.18),

1712
(125" s G
\

J2
h A 7

1‘/"__'_—7 __7+4~/—))
,<(\__,z 7855 + 45363 + =

It thus remains to show that

,
) 9
18 + 93 14+9v3) _ 1 [rgs5 4 453643+ —= (7 + 43,

which is a straightforward, albeit laborious, task.

~1/6 __
Gl = Q”‘ZP e =

1/6

Theorem 5.5.

. — — —\

1/4 / 145

ya[VO+S ‘7+_._—145+\/9f—’+J
Gl4s=(~/§+2) 3 8 8

Proof. We compose the following table:

1/2

1
xGo) x(Gv) By o | w2 €
d| & {x|G ¢ x(G) x(G3)
1. .9l 11
1 |—=580] x0}0o 5, 2l 1 1 5
2,1+9) L =b 122 VBt
M| —201lwilGy] cin & o 1 -1 2
Y24 " llU;J'T"“] \/_ 1
B (7,3 + 9] 1 -1 1lel2 5;
5 |-116|x2|G2) (7. _3+ Q) -1 1
I 11,3+ Q) L___—’—J
145 —4 103|631, —3+1| -1 -}
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Thus, 145 is of the second kind. Thus, by Theorem 4.2, since h = 8 and w = 2,

VB3N (V3+1\° (V29 +5)
(Gmsczo/s)“‘( ) ( ) ( : ) /5+2)°.
Hence,
2 5
= (G145Gaoy3)* = (‘/_92+ )(JE +2). (5.19)

By Lemma 4.4, with Q = (G 45/ G2;s)°,

Q=P ' ~P+J(P1-PP-1 (

5.20)
By (5.19), we readily find that
P! — P = 2429 + 54/5,
and so, by (5.20),
Q = 2v/29 + 5+/5 + /240 + 20/145. (5.21)

Thus, by (5.19) and (5.21),

1/4
Gs = P7'4Q'6 = (——J2—92+5) (V5+2)

1/6
x (2J2_9+ 5v/5 + /240 + 20v/145 ) )

Hence, it remains to show that

3
2V29 +5v/5 + /240 + 204135 = (\/1”8' 145 +‘/9+8' 145 ' ,

which is readily shown.

Theorem 5.6.

/. - — 14 [

f pa— —— \
V341 Vi+ V4l 7+ 41 Va1 -1
Gzns—( > )( 5 ) (\/ 3 +‘/ 3 )

Proof. We record the following table:
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X(GO) X(GI) hilk €
dif o |x |61 C e x@ |MM)
L. el 11

1 |—820]| x0|Go (5, Q] 1 1

5+1

2.1+9 I -1 |

5 |-164 016 10,5+ 9 EEE 2
(11,2 +Ql 1 ||| 4] B35

205) —4 |G\ 24| -1 1 2
13,4+ Q) i

4| -201616| g3 _gpq)| -1 -1

Note that 205 is of the second kind. Applying Theorem 4.2 with h = 8 and
w = 2, we deduce that

. (V31 (43437205
= (G25Gay5)" = ) 3

B 7+3«/§)2(3~/§+~/ﬁ)2.
_( 2 2 (5.22)

Letting Q = (Gaos/ Gayys)*» we deduce from Lemma 4.4 that

Q=(P "' =Py + V(P! =P -1 (5.23)
From (5.22),
" 45+ 7741
—P=
Thus, from (5.23),

0-1 (45 +73AT + /4030 + 630VT ) . (524)

If follows from (5.22) and (5.24) that

G piig (f+1\(3f+«/—\
Ga0s = T \ 2 \ 2

1/6
45 + T/31 + 4030 + 63041 ﬂ

(5

1
z\

« (1
2\

It thus remains to show that

(45+7~/_+ 4030 + 63041
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This is more readily accomplished if we first note that

(v [\ & | P————

rrvsl vai—i}  v4i+3 17 + 34/41
(\/8+\/8)_4+‘/ 8

Theorem 5.7.
1/8
G sv3 + v\ (59 + 7v7T\ "
213 =
2 V2
1/2
(\/21+12J§ ‘/19+12~/§\
x +
y 2 V 2
\ ]
Procf. We have the following table
i xG) x@y MM @
1,9
1 |-852]x0lGo [6[ A s]z] : :
2,14 Q -
284 3 |nlG| )4 U1 (1|1 6]sas0+ a3y
213 -4 |pl6,| 72+ Pl ] e BAov2as
1/, —2 4 82} -1 1 2
B (14,5 + Q) 11
121 =71 1x3|G; (14, -5+ Q)| -1 -1

Observe that 213 is of the first kind. Applying Theorem 4.1 with & = 8 and
w = 2, we find that

4 172
Q= (@) = (3480 + 413V/71)'/ (———73 A 2'3)
2

Gnp

(59+7~/_1) (5~/'+«/_)’

V2 2
so that
59+ 771\ {5
Q= ( t/i )(\/_-;-s/—) _(%)(lsoﬁﬂuyx/ﬁ)lﬂ_
(5.25)
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Let P = (G213Gny3) . Then, by Lemma 43,

P"=—\>—.((Q+Q“)+ @+ +32). (5.26)
a2

By (5.25) and moderate calculations,

2
Q+Q )V +32= (12(37 + soﬁ))

.—(Q + 0 I) "1—,-\/ Q2 +074+ 2= \/ %(135619 + 78300\/5).
42

av

and

N

Thus, by (5.26),

3
- 3) + —= (87 + SOv/3). (527
p-' = /1(135619 + 78300v/3) + 7

Thus, by (5.25) and 5.27),
112
573 + Jﬂ)"” (59+7J7’1)

~1/6 _
Gzns:Q””P e — (—-————2 7

1/6
3
—= soﬁ) .
x (,/%(135619+78300~/§) - ﬁ(87+ )

Hence, it remains to show that

/1135619 + 78300V3) + —(87+50f )
({21+12f 19+12J’

which is accomplished by a direct calculation.

Theorem 5.8. Ny

V53 +17

({89+5 763 {81+5J273')

Praof. The following table is casily verified:

Gaes = (V5+2* (

|
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il @ [i[e] e ey selafule] «
0600060 75y o
e lele) Seat | |2
265| -4 [x3|Gs [E:,—llisg] _} _:

Note that 265 is of the first kind. Applying Theorem 4.1 with h = 8and w = 2,
we find that

6
Q4/3.=(G26S)4__ V541 V5347 :
Gs3s 2 2 )
S0 that

9/2 32
S+1 534+ 7
Q:(‘/_"' ) (\/_32+ ) = (38 4+ 17V5)/2(182 + 25+/53) /2,

2
(5.28)
Let P = (G23sGsass) 2. Then, by Lemma 4.4,
pot_ (Q+O0H+V(@+0 1) +16 5 Ao
P = 2 . (5.29)
By using (5.28) and the identity @ + Q™' = \/Q* + 02 + 2in (5.29), we find

that
mnat

1
Pl = 6917 + 425v265 + — (85 + 54/265). .
Wi y + 4( + 65) (5.30)

By (5.28) and (5.30),

174

1 \/ﬁ 1 1/4
x [ —=y/6917 + 425V265 + - V265
(m +425V265 + (85 + 5 265)) .

Hence, 1t remains to show that

1
—=V 6917 + 425265 + %(85 + 5v265)

24/2
2
- ( 89 + 54/265 L /8 + 5+/265
8 8 ’
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which is easy to establish.
Theorem 5.9.

e /23J_+57~/'\
Gy = (84 3vDY* \-—-—‘—"

( 46+7 /42+7~/—)

nnose the following table:

x(Go) xGOp 11, o

di| & |x|G ¢ x(G) x(G»3) i e

(1,91 1 1
1 1-1204x0/Go| (147, Q) 11

2,1+ -1 2 8+ 37
281 —43 [x1|Gr (7. 9 1 1 1

(5,2 + v -t ha 22745 + 13114301
301 -4 \aiGil s’ 24 q) 1 -1 2

(10,3 + ) 11
172) =7 [0i6si 1o, 34+ @) -1 -
1 e

Thus, 301 is of the first kind. Applying Theorem 4.1 with h = 8 and w = 2,
we find that

12
4 22745 + 1311301
0= (6301 ) =8 +3V7 (_.#———)

G 2
B3+ 57V
— B+ 3D (Mz——) : (53D

3,7)”%. Then, by Lemma 4.5 and (5.31),

1 -1 7)2
P'= (Q+Q'+D+ V@+0 '+
4«/- a2

1 L J7(25941 + 3956+/43).
7(301 + 46/43) + ‘/:’(2 (5.32)

Therefore, by (5.31) and (5.32),

BBV
Gy = QP = (8+3f’”8( T2
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1 1 76
—— (301 + 46+/43) + —+/7(25941 43) .
x (ﬁ( ) ﬁ\/( +3956+/43)

It remains to show that

—(301 +46v/43) + —J7(25941 + 3956/43)

(\/46+7~/E \/42+7m)
- . 4 ’

which is a routine task.

Theorem S5.10.

1/4
e s () (518 115

Proof. We form the following table:

Ta I« @ @pl ] s
1 [-1780| x| Go {;g} i }
I [[126’151%1] R ¢§2+1
45| -4 |x|G; [g?'_éﬁ++szs;] } :} alila J4Tsz+21
89| —20 |x;|Gs lilg?'jf:g] B

Thus, 445 is of the second kind. Applying Theorem 4.2 with sz = 8 and w = 2,

we deduce that

2 (GussGroys)* = (~/§2+1)'2(‘/4752+21)2’

so that

/aac \

/ ke X1
1 = 9+ 4V5) (-——“ — ) : (5.33)

Let Q = (Gaas/Gsoys)®. Then, by Lemma 4.4 and (5.33),

Q=P '~ P)+/(P~1 = P)> =1 = 189 + 20v/89 + /71320 + 7560+/89.

(5.34)
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Therefore, by (5.33) and (5.34),

— .\ 1/
Gus = P74 = (9+4f)”“(ﬂ52+_21)

1/6

x (189 +207/89 + /71320 + 7560~/§§)

It thus remains to show that

6
139+20«@+\/71320+7560\/8_=(\ﬁﬂs‘@ﬂ/ﬂg/@) :

By first squaring the binomial on the right side and then cubing the resulting
expression, we can easily verify the desired equality.

Theorem 5.11.

1/4
Gsos = 5 +2)1? (@) (/101 + 10)*/*

1/2
" ( ’ll3+5\/505 + /105+5«/505)
8 8

Proof. We compose the following table:

e[l « [ s -
1 |-2020{x0[Go| 14 ) L
5 | —404 | x |G, [[126_151%]] R Rt ‘G;l
101 ~20 |x2|Gs [5112’_'11%1 2|2 |vioT 40
A

Hence, 505 is of the second kind. Applying Theorem 4.2 withh = 8andw = 2,

we find that

14
S54+1
= (GsosGroiys)? = (f;- ) (/101 + 10)?,
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so that

Pl = (IH) (/W+10)—(«/_+2)(‘/—+1) (/101 + 10)

7
(f+2)( +3*/_) (/101 + 10).
(5.35)

Let Q = (Gsos/G01/5)°. Then, by Lemma 4.4 and (5.35),

0=(P ' =P)+/(P-'-P) -1

= (130v/5 + 29V101) + \/169440 + 7540+/505. (5.36)

Therefore, by (5.35) and (5.36),

Gsps = P7H3Q16 = («/_+2)"2(f+1) (/101 + 10)/*

1/6
x ((130J§ +29/101) + Jm9440 + 7540J505) :

Thus, it remains to show that

(130+/5 + 29v101) + \/169440 + 7540+/505

3
_ (\/113+5\/50_5+‘/105+5«/5_(E)
8 8 ’

which is straightforward.

Theorem 5.12,

1/2
/114.44 /9+4R {/'5+5'\/- I!Z

e ()

Proof. We set up a table to summarize some information that we need.
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R K I e e e

| soslrolGnl 1y oy b

124) =7 0|6y [14[.75?-191 T 2| s0eandEl
27 -4 |G [511%'_5519321 _} _: 1| 1] 43844063 + 260952v217
o[ elol a1

It is clear that Q(+/—217) satisfies the conditions of Theorem 4.7. Thus, since
h = 8 and w = 2, we deduce that

NEGUGORY i .
= 20} = (1520 +273V/31)(3844063 + 260952V217)
72 \n(7v)n (5)

= (1520 + 273/31)(5244/7 + 249/31),

n(t)n () ’ 7
nron (5]

€ = (1520 + 273+/31)/2(5244/7 + 249312, (5.37

so that

1t follows from (4.25) that
02 + 80" 80712 — Q" =T(e — €7D, (5.38)
where O = (G217/G3,7)%. By an elementary calculation,

(e —e Y = et+er-2
= 41053643 + 398240v7) = 4(27 + 10v/7)2(367 + 140/7).

Letx = Q"% — Q~'/2, Then (5.38) can be recast in the form

4 1lx = 1427 + 103/7)y/ 367 + 140v7

= (367 + 140ﬁ)‘/§57 +1404/7 + ll\/;67 +140V7.

It is now obvious that
x = /367 + 140V7. (5.39)
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Solving (5.39) for Q'/2, we find that

Z\V N T yYia T

= 4(Va67+ 140v7 + 14+ 5v9)
J

=J16+5ﬁ 124507\
FEE 2 : (5.40)

Now let P = (G217G31;7)~>. Using Lemma 4.5 and (5.39), we deduce that

QI/Z =1 (\/367+ 140/7 + ./1’71 + 149Av/§)

Solving for P~', we find that

poi _ 944357 N [17409 + 6580./7
V2 2
3
A [u+avT . (9447

Thus, from (5.40) and (5.41),

172
Gay = P~V6QVE = (\/11+4~/7+‘/9+4\/7\'
\l 2 ¥ 2

172
X(J16+5ﬁ ‘/12+5ﬁ)
4 + 4 ’

which completes the proof.

2

11\/'5*‘/96441«/7_9\1/
4 oy 4 )

172
x (‘/143+;6V79+‘/141+16\/7_9)
> .

Gss3 = (-V/IOO +
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Proof. We set up the following table to summarize the information that we need.

al o lilel ¢ [xGo x@Gol bl 3
X(G2) x(Ga)
N lznnf]m 1 :
SR PN I I R I E 8+ 37
ssaf 4 fal@l o S| 1 D 1[4 ssesain oevsss

It is clear that Q(+/—553) satisfies the hypotheses of Theorem 4.7. Thus, since
h=8and w =2,

_1_( n(t)n () )4
7 \non ()
= (8 + 3+/7)°(624, 635, 837, 407 + 26, 562, 217, 704+/553)' /2,

so that

2
() \ e (5.42)
n(7on (%)

€ = (514,088 + 194, 307/7) 2211, 2277 + 62,876v/79) /2. (5.43)
Then an elementary calculation gives
(e—€e N =€et+e?-2
— 4(143, 650, 096, 411 + 16, 161, 898, 5444/79)

= (391 + 44+/79)(19170 + 2156+/79)". (5.44)
By Lemma 4.6 and (5.42)-(5.44), with @ = (Gss3/ G’

- — JE
= 74/ 391 + 444/79(19170 + 21567/79).

If x = QY2 — Q~'/2, then the foregoing equality may be written in the form

X2+ 1x = 74391 + 4479 (72(391 +44/79) + 11)‘
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from which it is obvious that

x = Q2 07 = 7,/391 + 4aV79. (5.45)

Solving for '/, we readily find that

V2 B — \
Q=1 (7\/391 +44/79 + (98 + 11J7_9))

2
100 + 1179 6
J +4 \/_+‘/9 +11J7—_9) ‘ 5:46)

Now let P = (0553079/7)“3. Then, by Lemma 4.5 and (5.45),

W2P+PH=0+0 " +7=x+9= 19168 + 2156+/79.
Solving for P~', we find that

1
Pl = 7 (4792 +539v79 + \/45. 914,421 + 5, 165, 776~/_7§)

3
143 + 16/79 141 + 167
= (‘/ +2 ‘/_+\/ +2 ﬁ) . (5.47)

Thus, by (5.46) and (5.47),

1/2

16 _ {/100+1]‘/7—9+ [96 + 11475\

G553 — Q 8 2 2

/T \ 112

y (\/l43+16«/ﬁ+\/141+16\/ﬁ)
2 2

)

and the proof is complete.

6. Class Invariants Via Modular Equations

In this section we establish six of Ramanujan’s class invariants by using tools well
known to Ramanujan, in particular, modular equations.

Second Proof of Theorem 5.1. From (1.1) and (4.3) it is easily seen that

S(=9)
f(_:z) = x(—q). (6.1)
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Using this equality, we rewrite two of Ramanujan’s eta-function identities in terms
of x. Thus (Part IV [4, pp. 206, 211])

b TIY A 12 o~ VA Va Vs 13\ 3
S f(=99) + 13 S e Df (e ( “in x(—q“;)
q’”f(—q”)f(—q”’) fFaf(=g») x(—q)
—4 Yy A ’ 2 X(=9) qi p X9 \ 6.2)
L x{(- q)) k x(- q”)) k x(-4"%)

and
fDf(—4) +Sq’”f(—qs)f(—q‘°)
q'2f(—4%) f(-q'% f=q) f(=g®
- (q_|/6X( q )) ( 176 X (= q) )
\ x{—q) x{—=g°)/ 6.3)
Replace g by —g in (6.2) and then set ¢ = exp(—m+/5/13). f
S @V f (7?13

.— B/ DJEI 6.4
A=e f(e—x\/@)f(_e—lrh/ﬁ_S) 69
and
-n/65
B = VB X ) (6.5)
X(e_"‘/S/] )
then (6.2) can be recast in the form
A-13A"'=B*+4B-4B"' - B~*. (6.6)
Next, replace g by —q in (6.3) and then set g = exp(—m /13/5). If
-nJT73Y £(_ 271373
A e pIVT feT™VP) f(—e ) ©7)
f(e—n\/6_5)f(_e—27r\/6_5)
and
e
B e ooV XETT) 6.8)
X (eI’
then (6.3) takes the shape
A —5A' = B? - B3, 6.9)
We shall prove that
B=pR and A= V/]—?:;-AI' (6.10)

Now, G, = 2-/4e"V"/ 2%y (e="V") and G;n = 27137/ Q4D y (e77IV), by
(1.3). Since G, = G/x, we find that
X(e-nﬁ) — e(n/za)u/\/fv—ﬁ)x(e—n/ﬁ). 6.11)
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(This could also be proved by using (6.1) along with the transformation formula
for £.) In particular, if n = 5/13, (6.11) yields the equality

—75/13 773 /65) o [TXTT
X(e 3 )=e ll-’vv.lx(e "VU/J)_ (6.12)

The aforementioned transformation formula for f(—q) is given by (Part I1I (3, p.
A Entrmg ’1‘”-"\1\

[O, Liddy Li\Mijj)
e""/'za"“f(—e'z“) - e—b/12b1/4f(_e—2b)’ (6.13)

where a,b > 0 withab = n2. If a = m/5/13, so that b = w\/T3/5, then we
deduce from (6.13) that

f(_e—er\/_”/l.) — (13/5)1/48—2#(3\/6)f(_e—-Z;r\/_IJ/S)’ (6.14)
First, from (6.5) and (6.12),
e(”/z)mX(e_”J—) (n/ﬁ),/]]/ x(e” nJ_S) ~- B
en/\yv\r.ux(e—nvu/_)) )((e‘"V"/ 7) ’

by (6.8). Thus, the first equality of (6.10) has been demonstrated. Second, by
(6.4), (6.1) with g = —exp(—n/5/13), (6.12), (6.14), and lastly (6.1) with
q = exp(—m/13/5),

A = o0 TS XV f—e 21T

fle V) f(—em2n V)
X(e7YT) f2(—e=2V15)
fle /) f(—em2nVE)

\/_3 rnrss S (€ TVPRY f (e VTB)
f(e="V85) f (—e~2n/85)
=J§A"

by (6.7). Thus, the second equality of (6.10) has been established.
Employing (6.10) in (6.9), we find that

Qe(nﬂ)s/lj/S
S

VA - V654" -B?=B-B"Y+3B-B".
Dividing both sides by  := 8 — B~'(#£ 0), we find that
—IT( P47 =u? +3.

Solving for u?, we find that u> = (+/65 — 1)/2. Thus, since, clearly, B > 1,

/65 — 1
R

B—B'=
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Now solving for B, we find that

- /JE—1+ /Jtﬁ-i-?’ 615
8 8

where in solving the quadratic equation we took the ,El_us sign since B > 0. )
If g = exp(—m+/13/5), then ¢° = exp(—m+/65). Hence, from (1.3) and
(6.5), we readily see that B = Ges/ G 3/s. Furthermore, from (1.6), Gi3/s 2:
(4 (1 — @)}~ "/2%. Hence, if B has degree 5 over @, then Ges = {48(1 — )} "/%.
We now employ Lemma 4.4, where it is to be noted that P = (GG .3/5!‘2
and Q = B~ = (655/013/5)'3_ We already know Q from (6.15). To determine

P from Lemma 4.4, we first calculate

0+Q ' =B +B =B+B ) B+B")-3)

=1/‘/§+7(‘/6—5+7-3)= 74 + 10v/65.
2\ 2 / (6.16)

Thus, using (6.16) in Lemma 4.4 and solving for P!, we find that

o (ﬁ+1o~/6+\/90+ 10«/@), 6.17)

since P > 0.
Hence, by (6.15) and (6.17),

172
Gee = BV2P-V4 — (\/J65+7+\/J65—1)
: 8 8
\ /

x (;‘ (\/74+ 1065 + \/9;+ 10~/€§))W1 S

/7 (6.18)

We must show that (6.18) can be transformed into the form of Theorem 5.1. First,

(\/;4+ 10~/6_5+\/90 + l()«/t?§)l/2

1
I

172 9+ /65 \/l+\/65
= (Vo + VB + V8B) + 5+ V6 ) / st
A v (6.19)
Second,

(\/\/6_58+7+\/1/6_58_1) 14(3 + V65 + /58 + 6+/65 |

=1 (3+v65+3V5+V13)
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VI343) (V5+1
() (£2).

Putting (6.19) and (6.20) in (6.18), we complete the proof.

Before commencing our second proof of Theorem 5.2, we establish a general

C314DIIMN a general

principle. Let p and r denote coprime, positive integers. Set ¢ = exp(— w/p/r)
and g’ = exp(—m /pr), and let 8 have degree r over «. Then, by (1.6),

Gpyr ={da(l -} and G, = (481 - P}~ (6.21)
Furthermore, from (1.2) and (1.5),
K/T=a) _ /E
v Y *
(V) v
and from the definition (1.4) of a modular equation,

(6.22)

KW/T—w) _ KW/T=P)

KV KW
If we solve (6.22) for r and substitute this in (6.23), we find that
K (/o) K(/1-8)
PxT=o = kB

From the last equality we conclude:

(6.23)

If B has degree r over a, then 8 has degree p over 1 — a. (6.24)
Furthermore, from (2.5) and (6.22),

eV K@) \/f
e ™VP)y T K(fT—-a) Vp

Second Proof of Theorem 5.2. We need two of Ramanujan’s modular cquations
of degree 23 (Part 111 (3, p. 411, Entry 15(i), (ii)]). If B has degree 23 over , then
@) + {1~ )1 = B/ + 2P (ap(1 —e)(1 - BN =1 (6.26)

and

(6.25)

L+ (@B)/* + (1 — a)(1 = Y* + 27 (aB(1 — @)1 — B))/™
= {200+ @B + (1 — )1 - p))'11)}"* . 6.27)

We also need two of Ramanujan’s modular equations of degree 3. The first is given
by Lemma 4.3, while the sccond is given by (Part 111 (3, p. 231 , Entry 5(ix)])

(@1 = B2+ {(1 - )B)'/? = 2{aB(1l — a)(1 — B)}'¥. (6.28)

We shall apply (6.24) with r = 3 and p = 23. Thus, 8 has degree 23 over
(1 — @). Thus, replacing & by (1 — «), from (6.26) and (6.27), we find that,
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respectively,
{Q-a)B)® + (a1 - BY/2 + 2PP{ap(1 —)(1 - B =1 (6.29)
and
1+ {1 =)}/ + (a(1 — B + 2%3(eB(1 — &)1 — B))'/7
= 2(1+ (1 - B2 + {1 - BYV2)} 2. (6.30)

For brevity, in the remainder of the proof, set G = Gg9 and G’ = G23/3. By (6.21),
we can rewrite {6.29) in the form

{1 =e)BY 8 + {a(l — ﬁ)}"“ =1-v2(GG)™".

{(1=a)B)* + {a(l — B}/ =1 + 2u® — 24/ 2u — V2u°. (6.31)
Substituting (6.31) into (6.30), we find that
2+ 4% —2v/2u - V2P = V2 (1 + (1 — )B)' 2 + (a1 — B2 (632)
Then, using (6.28) in (6.32), we deduce that
24 4u® — 2v/2u — V2u = V2Q1 + V2u)' .
Squaring both sides and simplifying, we arrive at

2 — 8v/2u + 24u? — 22V + 240 — 8v/2u® + 2u® =0,

) — 8V20u% +u7) + 24 + u7")
A a /far .2 AN L AL
—3x) — 84 2(x" — 2) + Z4x.
Simplifying, we find that
X —av2x? +9x - 3v2=0.

By inspection, we verify that V2 is a root. Now G, is a monotonically increasing
function of n, and it is not difficult to check numerically that the root that we seek
is greater than +/2. Thus,

x2—3~/ix+3=0,

./_. inc =u ]_ ____d_ ,ha_

and cn v - / 14

andscx V3)/+/2. Since x = u, w
1 /6+ /3 \[2+3f 633
u

since u < 1.
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We now apply Lemma 4.3. Noting that P = u*, we sec that we want to calculate
ul = =V +ud)? -4
=Jx*-3x)?2 -4

’

[/ . O\
_ 3+~/3 3443

= /374 +216V3.

Thus, by Lemma 4.3,

7\® /s \6

(3) +(5) —2v2u=-w)=2va /54421675

Solving for G/G’, we deduce that

1/6
= (‘/748 + 43243+ ‘/ 747 + 432«/3) . (6.34)

Thus, by (6.33) and (6.34),

G=\/-G£_ -1 o (\/748+432~/_+\/747+43z\/')m2
(e )

" o

To complete the proof, it suffices to show that

(Vv adie o) = (BB (2E04E).

which is a straightforward task.

Second Proof of Theorem 5.3. We need two of Ramanujan’s modular equations
of both degrees 7 and 11. If 8 has degree 7 over e, then (Part 11l [3, pp. 314, 315,
Entry 19(i), (viii)])

@B +{0 —a)1 - gt =1 (6.35)

and
;
m = — = 2(@)"”* ~ (1 - )1 - B)'/*)

x (24 @) +{(1 —a)(1 - B)}'/Y), (6.36)
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where m = ¢(q)/¢*(q"). If B has degree 11 over «, then (Part III [3, p. 363,
Entry 7(i), (ii)])

N2 AN /12 g L AT
@B + {1 —a)(i - BV + 2{16B(i —e)(1 — B)}/"* =1 (6.37)
and
m - L. 2(@B)* = {1 —a)(1 = B}'Y)
x (44 @B + {1 —a)(1 - B}/, (6.38)

where m' = ¢?(q)/9%(g"").
If ¢ = exp(~m/T1/7), by (6.21),

Gip={da(l—a)}™"™  and Gy ={4B(1 - B)) 1/
Thus, setting u = (G17G1)/7)~", we deduce from (6.35) that
2
(@B — {1 —)(1 — BYE) = (@B)* + (1 — )(1 — B))¥)
— 4{a(l — a)B(1 — p)}'/®
=1- 2«/5143
and .
@B+ (1 —a)(1 = B4 = ((@B)' B+ {1 — ) (1 — B)}'/%)
- 2{a(l —a)B(1 - B))'7®
1 - «/ius.

Thus, from (6.36),
2
m—L 2 (1 - 2J§u3)'/ (3 — V2, (6.39)

winere m = @ (e "V /) /e e - -1
Letg = :xl;(—m/’l/“), and note that u = (Gy7Gn/m)™" = (GnGrn™
Thus, by (6.37),

@)+ (1 —a)1 - B/ =1-2u?
and »
(@B {1 — )1 = ) = (@B + (1 — )1 - B}/
— Ha(l —a)p(1 - p))/*
= (1 —2u%? — 2u°.
Hence, from (6.38).

m = (=242 — 248 (5 - 2D, (6.40)
m/

where m’ = ¢*(e V") /o (e VT,
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From (6.25), we see that

Since

[7 nrr /7y 1)

7 , ,
i ST e i
we deduce from (6.39) and (6.40) that

172
2(1- 2V27) (3 - Vo) = VE2(0 - 2ty — 2u%)'2 (5 - 2u%).
Squaring both sides and simplifying, we find that

4u'® — 11v/2u° — 98u* 4+ 32746 _ 392,04 _ 66v2u’ + 2104° ~ 19 = 0,

Isolating the terms involving /2 on one side of the equation, squaring both sides,
simplifying, and factoring, we deduce that
' = 8u® + Tut — 84 4 1)
X (19642 — 14181 + 6044u® — 132625 4 13073,% — 5092u* + 361) = 0.
(6.41)
Now x := u?is an algebraic integer (see Lemma 7.2) and so must be a root ofa
monic irreducible polynomial. The latter polynomial in (6.41) is irreducible, and

S0 x must be a root of the former polynomial in (6.41). Alternatively, we used

Mathematica to check numerically that x is not a root of the latter polynomial on
the left side of (6.41 ). Thus,

JORN

=8+ T — 8 41 =x? (0 +1/x) — 8(x + 1/x)+5)=0.

Since x + 1/x > 1,

1 —
X+ —=4+4/11.
X
Thus,
1
Ut = =x+-+2=16+11
u x
Since u < 1, we find that
=
i 6+v11+‘/2+J11 6.42)
u‘\/ 4 4 ’

Lastly, we apply Lemma 4.5, Since P = 473, we deduce, by (6.42), that

Q+07' =223 +uy -7 = 2V2((u+uy ~ 30+ u’)) -7

=2~/§(3+«/ﬁ),/6+«/1_1—7=2(3+~/ﬁ)(1+«/ﬁ)—7
=21+ 8V11.
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Hence,

1 21+ 811 V1141 +3264/11
= +
2

o 2

2
=5 tavil+

:(R_;’hﬁ)/\/ﬁ—-'_ﬁ\_
\ 2 )

In conclusion, by (6.42) and (6.43),

Gy = Q—I/Su-—lﬂ

172

=(8+3ﬁ>”‘*(—MY”{\/“‘mh/“f/ﬁ‘
\ “ \ )

J \v 4 Y
and the proof is complete.

Second Proof of Theorem 5.4. We need two of Ramanujan’s modular equations,
one of degree 3 and one of degree 47. If 8 has degree 3 over e (Part Il [3, p. 231,

Entry 5(ix)]),
{a(l = B2 + (Bl — @))% = 2{eB(1 — a)(1 — A)}'/2. (6.44)
If B is of degree 47 over « (Part 111 [3, p. 444, Entry 23(i)]),

1/2
2(3(1 + @B + (1 —)(1 - §))'?))
— 1 4 (B 11— o (1 = ANV/4
T Aol iV AS oA Y ~7)

i\ T L

+ 4" aB( — &)1 = B/ (1 + @) B+ {0 — )1 — B)}/F).
(6.45)

Let g = exp(—m+/47/3). Then, by (6.21),
G :=Cgp=la(l -} and  G:=G = {4801 - )"

Applying (6.24) withr = 3 and p = 47, we find that 8 has degree 47 over (1 —a)
when £ has degree 3 over . Thus, by (6.45),

2101 4 161 — a2 o4 art — ant/21) 2
2\ T =&y TR S =5 F R § |
=1+ {1 - + (a1 - B}
Y. YPWE NV YT osa /24 (4 4 141 _-.\011/8 ' P4 a1 1/8)
+ 47 {atl —a@)ptl — pJ} U+ —aopp’ & —pJy -
(6.46)
If u := (GG, by (6.44),
(a1 =AY + (B — )} /? = V2u°. (6.47)
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Hence,
(fe1 = B4 + (B(1 — @)} /%)

= {a(1 = B2 + (B(1 — @)} + 2{a(l — )B(I — [3Y
= v24° +ub (6.48)

and
(ta@ = B2 + (B — a))'/3)’
= {a(1= A+ {B(1 —a)}/* + 2(a(1 — @)B(1 — B))'1
= («/5u3 + u(’)m + V2P, (6.49)

2(%(1 + ﬁua))n/z =14+ (V2u? +u%)2

+v2u (1 + ((\/iu3 +u®)'? 4 \/iu3)l/2) .
(6.50)

Using Grobner bases, A. Strzebonski denested (6.50) and obtained a polynomial
of degree 48 for 1. The value of u that we seek is a root of the factor u® — 3245 +
15u* — 32u? + 1 of this 48th degree polynomial. If x = «2, then

x=32x3 +15x2 = 32x + 1 = x? ((c+1/0) = 32(x + 1/x) + 13) = 0.
Since x + 1/x > 1, we find that

1
Hence,
1 / s
u+;=\/18+9\/3,

so that

u

1 18+9v3  [14+943
2t e (6.51)

Lastly, we apply Lemma 4.3 with P = u® and Q = (G'/ )% to deduce, from
(6.51), that

1
0+ 5= V2~ ) = 22 (! — ) + 3 — u))

= 2V2(14 + 9v/3)2(17 + 9/3).
Solving for 1/Q, we find that

1
7 = V2(14 + 9v3)2(17 + 9v/3) + /31419 + 18144473, (6.52)
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Thus, by (6.51) and (6.52),

-1/12, 172
G = Q7Y

1712
= (ﬁ(14+9~/§)‘/2(i7 +9v3) + /31419 4 18144J§)
/2
(‘/]8+9~/§ ‘/14+9J§)
x s T 4

It remains to show that

V2(14 4+ 9v3)'2(17 + 9/3) + {31419 + 1814443
(74 Va7
= (@3 + VAt | =),
(4v/3 + V47) ( 7 )

which is easily accomplished via Mathematica.

Second Proof of Theorem 5.5. We need two modular equations, one of degree
5 and the other of degree 29. The first is found in Ramanujan’s second notebook.
If B has degree S over «, then (Part I1I (3, p. 281, Entry 13(x)])

la(l — BNY* + (B(1 —a))/* = 22 {aB(l — a)(1 - B)}/%. (6.53)

The second is found in Ramanujan’s first notebook on page 304, but curiously not
in his second. R. Russell [2] established this modular equation in 1890, but his for-
mulation is imprecise; in particular, it has a sign ambiguity. We give Ramanujan’s

il atiae Ao cotad o Taga. Vo "NSPPeR

lUllll‘UldllUll ady dawca i Dlluy UJ UI \.«"dplbl JU L:Cl

P=1-ap- /0 -a)1-8),
0 =64{Va + /(T=a)(1 - B) - VaB(I —o)(1 - B,

and

R =32y/ap(l1 —a)(1 - B).

Then, if B has degree 29 over «,

w23 P .-.
are

VP(P*+17PRY® —9R??) = R'(9P? + 0 — 13PR'® + 15RY

Let g = exp(—m+/29/5), so that we may apply (6.21) and (6.24) with r =5
a!ld D= 29 ]fll = f(‘l,«(;'m/:\ ! then hV (6 53)

fe( — B2+ (B — ) = ({a(l — B+ {B(L —a))/4)’

—2{a(l —a)B(1 — BYYV*
= 2u? — uS. (6.55)
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Thus, by (6.55), with « replaced by (1 — @),
P=1-2?+ub,
Q0 = 128u? — 64u® — 16u'?,

and

R = 8u'?,

Substitute these values into (6.54), square bath sides, simplify, and factor, with
the help of Mathematica. We then find that

@ + 1) — u? = D@® = u? + 1)@ —20u6—43u4—20u2+1)
X (' —9u' + 181u® — 126u® — 1810 — 9u? — 1) =

-
-

i num ; erically checking the roots of each of these polynomials, we find that
is a root of

II =

-

x —20:(‘—43x2—2()x+l=xz((x+1/x)2—2()(x+l/.x:)— 45) = 0.
Thus,x+]/x=10+v145,andsou-1/u=\/8+~/145‘Hence,
1 8 + /145 12 + V145

- FEE 4

u

(6.56)

Lastly, we apply Lemma 4.4 with P = 42 and Q = (G29/5/G145)*. Then

oo or) 21 0) o)
12+

=2‘V‘ ‘/‘ /Q_Lv/ _'5
- 2,/241 +20/125.
Hence
1
5= V241 4 20V135 + 240 + 20133, (6.57)
From (6.56) and (6.57), '

1/6
Grs = Q V6u~172 = (\/241 +20V/145 + \/;m+2OVI45)

» ( l2+\/145+ 8+ +/145
4 4

To complete the proof, we must show that

2
(J3+2)(‘/2_92+5)= ( /12+4~/m+ /8+@,
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and
( /17+ ']45 . /9+ v ]4 \ faay . an /3 ac /’\Al\ s An [1 a4z
v 8 v VL‘H-f(.UVl‘GJ"‘V/.‘{U-Q-LUVl‘})

Both equalities are easily verified.

Second Proof of Theorem 5.7. In addition to the modular equation of degree 3
given by (6.44), we need Ramanujan’s modular equation of degree 71. If 8 has
degree 71 over «, then (Part III {3, p. 444, Entry 23(ii)])

14+ @B) 40 —e)(1 = YV = (L (1 + @B)' 2 + ((1 — )1 - B)}'12))'"

= @B)' +{(1 — )1 - B} — (aB(1 — a)(1 — )}/
+22ap(1 — )1 — B (1 — @) - {(1 — )1 - B))'/*).

(6.58)
Letr = 3 and p = 71 in equalities (6.21) and principle (6.24). Thus, § has
degree 71 over (1—a). Replacmgaby l—ain(6.58) and employing (6.4 (6 49),

but now with u = (G213G7,3)~", we deduce that

/2 1/2

T+ (V2 +u) 7 - (30 + v2u))
12 12
= ((«/ﬁtﬁ + u(’) + \/iu3)
1, 3 6\ '/ 3 2
ﬁu +\/§u (1 — ((«/iu +u ) +~/§u

12 12 1

then follows that « + 1/u = v/ 42 + 24+/3. Hence,
1 21+ 1243 19+ 124/3
- 2 2

(6.60)

u

Lastly, apply Lemma 4.3 with P = (G213Gnp3)™> = u® and @ =
(G713/G213)8. So, by Lemma 4.3 and (6.60),

o+ é = 2v2u? — ) = 4(19 + 12/3)/%(41 + 244/3).
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Solving for 1/Q, we find that

IS
-~
N
=3
=

1_ = 2(19 + 12/3)}/2(41 +24J‘\+‘/547 475 +

!.a)
[
LA)
N

<

Hence, by (6.60) and (6.61),

12 —1/2
Gz = Q'Y

1712
= (2(19 +12v3)'2(41 +24V3) + \/542, 475 + 313, 200J§)

172
(\/21 1243 ‘/19+ 12J§)
X 2 + 2 .

It thus remains to show that

~ o - S Vi - fony /, - - =
2(19 + 12+/3)7/°(41 + 24V3) + /542, 475 + 313, 200V 3

(V3T (59 + 747
= (22 =)

which can be verified via Mathematica.

7. Class Invariants Via Class Field Theory

in [6], Waison empioyed an “empiricai process™ to evaluate 14 of Ramanujan’s
class invariants. Motivated by Watson’s idea, we succeeded in formulating theo-

e maximal unramined abelian extension o
Let a = [y, 73] be an O -ideal. Define

&(u, n))

j@ = j(lr, ) = 1728

&, 1)) — 2783 ([t1, w2))’
where

1
(mt) + nr)*

8:([r), ©2]) = 60 E

(m,n)#(0.0)



258 Ramanujan’s Notebooks, Part V

and
£
g3([ty, 21) = 140 % m

(m.n)#(0.0)
It is clear from the definitions of g»([7), ©2]) and g3([7;, T>]) that
J((r, =) = j(, T = j (o),
where 1 = /1. We also let
(1) = Vi@

with the cube root being real-valued when j (a) is real.

Itis well known that K" = K (j (D)) (D. A. Cox [1, p. 220, Theorem 11.11).
If Dy is the discriminant of K and 3 { Dy, then K = K (y,(7)) (Cox [1, p.
249, Theorem 12.2]), where

{ /—m, Dy =0 (mod 4),
Ik = —
y i 3—+—2—— Y " px=1 (mod 4).

Lemma 7.1. Let a and b be two O -ideals. Define o4(j (b)) by
0q(j(b)) = j(ab), 7.1

where ad is a principal ideal. Then o, is a well-defined element of Gal(KV | K),
and a v+ 04 induces an isomorphism

Cx — Gal(K"™|K).

Proof. See Cox’s book [1, p. 240, Corollary 11.37].

Lemma7.2. Let K = Q(/—pq), where p andq are two distinct primes satisfying
pq =1 (mod 4), and let

_ { 4,  if 31 pq,
Y112, i3 pa.
Then G}, is a real unit generating the field K.

Proof. From a paper by B. J. Birch [1, p. 290], we find that G is a real unit of
KV, Since (Cox [1, p. 257, Theorem 12.17))

( 2
0K = (V=P =~ 72)

we conclude that
12
K'Y = K(G}). (7.3)

34, Class Invariants 259

Next, suppose that 3 { pq. Then 3 { Dy and y,(zx) generates KV, From the
equality (Cox (1, p. 257, Theorem 12.17])

16G% — 4
n(/-pg) = —L (7.4)
GX
rq

and (7.3), we find that G‘f,q € K", Hence, G;,

€ KU by (7.3).

In [L, p. 290], Birch quoted Deuring’s results [1, p. 43) and indicated that G rq
is a unit when pg = 1 (mod 4). A more elaborate proof of this statement was
given in a paper by Chan and Huang [1, Cor. 5.2] and is contained in Theorem 1.1
in this chapter. In fact, from the treatment given in their paper, one can show that
G/ is also a unit. This fact will be needed in our main theorem.

From class field theory, we know that if H isa subgroup of Cy, then there exists
an abelian and everywhere unramified extension L|X such that

Gal(K""|L) ~ H,
In particular, when H = C% := the subgroup of squares in C, the corresponding

field M|K is known as the genus field of X . One can show that M is the maximal
unramified extension of K which is abelian over Q (Cox [1, p. 122)).

Theorem 7.3. Let K and y be defined as in Lemma 7.2. If the order of C is 8,
then

g = (G peGprg) +(GpyGprg)™"
and
. (G \' (G, \77
Brai= (=21 + {22
P \Gp/q) k p/q)

are algebraic integers which belong to the real quadratic field R, where R ¢
QP QD). Q(/P9)}. and where R is a field such that none of the prime
ideals (2), (p), or (q) are inert.

Proof. From the hypothesis, we deduce that a, =[1, /=pq), a; = (g, /=Pq),
a; = [2,1 +/~pql. and a; = [24, g + /= pq] are O-ideals lying in distinct
equivalence classes (see Section 4). This implies that Cx contains the Klein four-
group generated by the ideal classes [a;] and [a;] for i > j > 1. Using the
isomorphism described in Lemma 7.1, we conclude that Gal(KV | k) contains
a Klein four~group V generated by a,, and 0,, fori > j > 1. To show that apq
and B, , belong to a ficld with degree 2 over K, it suffices to show that g, and o,
fixa,, and B, ,. More precisely, if F := Fix(V) is the field fixed by V, then by
Galois theory (J. Rotman [1, p. 49, Theorem 63)), |F : K| = |Gal(K" | K): v|
= 2 (since |Cx| = 8), which implies that F is of degree 2 over K. Since a,, and
Bp.q are real numbers in F, they belong to R := F N R, and R is clearly a real
quadratic field over Q. The fact that they are algebraic integers follows from the
fact that G}, and G}, , arc units (sec Lemma 7.2).
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At this stage, we will assume that 3 | pg. From Cox’s text 1, p. 257, Theorem
1217,

k3

,. '7 4)_,
j(a) = j(V/—plg) = —— (7.5
Gr-/q
By Lemma 7.1, we find th
0a,(j(11)) = j(az2a)) = j{az). (7.6)
From (7.2), (7.5), and (7.6), we find that
(1602(G}2) — 4’ _ _(16Gh, — 4’ am
"Ez(qu) Gf:}q

Simplifying (7.7), we deduce that
(a — b)a + b) {64(a2 +b)a’b? — 48a’b* +1} =0,
where a = 0,, ((x ) and b = p/q But
64(a® + b¥)ab? — 48a’b* + 1 # 0,

for otherwise it would contradict the fact that a and b are algebraic integers. Thus,
we deduce that

Uaz(Gn) = n/q (7.8)

Similarly, corresponding to (7.8),
C"li(Gl’/q) = iG}’?i or U“I(Gﬂla) = :FGM’
1h . . e - g 12y Smceuz =1
ie., aaz(G;,‘/q) may have the same or opposiie sign as 04,(G ). o s
the latter is inadmissible. Hence,

0. (G} ) =G 7.9)
From (7.8) and (7.9), it is now clear that

00, (0tpq) = apg

and
auz(ﬁp_q) = ﬂpq
Next, from Cox’s text {1, p. 263], we find that
3
. .(3+\/—Pq\’_624 (l___4) (7.10)
j@)=j\——F =0 \an
\ < / \Vrq Vi
and

3
3+ /=p/ 16
j(cu)zj(——‘——z k q) Gi‘}q(cu —4) : (7.11)
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Now, applying Lemma 7.1 again, we have

da, (J (@) = j(a3).
By (7.10) and (7.2), we find that

2 (12 . 3
(lé'a;(crlq) -4 =G /_10 4\
2 12 = Y pg 24 ,
94,(GY) (qu )
which implies that

oa,(G ) = :I:G“”.
Similarly, since asaj, is equivalent to ay,
Ga ”1;'2/4) = iGp/]; or ¥ (’;/q"
by (7.11) and (7.5), i.e. au,(G;,z/q) may have the same or opposite sign as aa,(G 2)-
We will show that the latter case is inadmissible. If

0a,(G},) = +G,> and 06,(G}}) = TG

then

“azUa,(qu)‘:tGp/q and amo‘,,z(Gm)— G;/';

This is clearly a contradiction since 04,00, = 0,4,0,,. Hence,

Oa; (@pq) = et

and

Uu;(ﬂp ¢) = B, g+

Collecting our results, we see that both Oa, and oy, fix &, and B, ,, and this
implies thata, , and 8, , are real quadratic algebraic integers

saal EICELTS.

The proof for the case when 3 { pqis 51m11ar In this case, G}, generates K (¥
and so o, (G“ ) is well defined fori > 1. Hence, we may deduce from (7.7) that

4 4
16 (0a,(G® ) - — 2 _ 160 _ 4
(7 Cop) = oGy = 1663, - G (.12)

Simplifying (7.12), we have
(a—b)(4a’b +4ab® + 1) =0

where a = 04,(G},) and b = G% . But

4a’b + dab® + 1 # 0,

for otherwise it would contradict the fact thata and b are algebraic integers. Hence,
we deduce that

Ca, (Gﬁq) = Gi/a :
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Now, since o, € Gal(K|K) and G}, generates K" (see Lemma 7.2),

4 4
00,(Gpg) = £G /-

The rest of the arguments are similar to those of the previous case, and we shall
on}‘:_\t/_etlix:\r’le. already seen thata, g and B, 4 lie in a real gquadratic field R. Qur next
task is to give a necessary condition for R. First, we observe that R = FNR,
where F = Fix(V)isan abelian, everywhere unramified extension of X (see the
paragraph before the statement of Theorem 7.3). Hence, R € (Q(/P), QL/D),
Q(/P7))- Next, we will show that none of the prime ideals (2), (p? or (g) are
inert in R. Suppose the contrary holds. Then without loss of generality, we may
assume that (p) is inert in R. This implies that p in X is inert in F, where p|(p)

. FiK
and the Frobenius automorphism r—p‘] has order 2 (see the books by Cox [1
107) or Janusz (1, pp. 126-127)).
pp. 106-107] [-Ku)”('l
On the other hand, we know that the Frobenius automorphism g, = L% |

=1, where
E

e[

Since (Janusz [1, p. 127, Property 2.3})
(5 -[5"]
p 1l L »

we find that [ﬂ_li] has order 1. Consequently,
p

“)IK
has order 2 and that [P—p—]

)

E

[fﬂ] - [Qﬁ] | 1.

p P F

This clearly contradicts the last statement of the previous paragraph. Thus, (p) is
not inert in R.

Our next step is to determine e, 5 and B, , using the numerical values of G5,
and G...... To achieve this, we need the following result.
i A

Theorem 7.4. Let R = Q(/m) be the field which contains ap 4 and By 4. If

2 1 + ax/m (7.13)

L(l,,‘q =da) +ayvini (7.13)
and

2Bp.q = b1 + b2/m, (7.14)

then a\, az, by, and by are positive integers.
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Proof. Let [a] € A := {[a;], (a1], [a4]}, and let H be the group generated by
[a]. From the paragraph before the statement of Theorem 7.3, we know that there
exists an abelian and everywhere unramified extension L1K such that

Gal(KM|L)~ H.

In fact, from the isomorphism of Lem

Gal(KV|K) = Z, @ Z,, the group
Gal(L\K) =72, ®Z, or Z,.

The first case can only happen for exactly one element in A, and the field L in
this case is the genus field A of K. As for the second case, Gal(L|Q) =~ Dy, the
dihedral group of eight elements, since L is generalized dihedral over Q (Cox (1,
p. 191]). Hence, Gal(L|Q) is nonabelian.

Now, rewrite (7.13) as

ma 7
nma /.

—

, we find that

20+ n7") = a1 + ax/m, (7.15)
where n = (G ,3Gp/q)Y. Note that a,, fixes n and 0,,(n) = n~". Therefore, the
field L := K(n) = Fix(< 0,, >) is of degree 4 over X.

Suppose L is the genus field of K. Since a,,|;, = 1, we conclude that the ideal

[a;] lies in an ideal class belonging to the principal genus. Hence, by Theorem
4.2, we may write
n=[] " (7.16)
x(G)=-1
where
( whihy/wy, if31{ pq,
1 3whiho/wn, if31pg.

€y =

Since w = 2 and
[20r4, if 3¢ pgq,
wy = R
2, 4016, if3|pg,

we conclude that e, must be of the form /2, where ¢] € N. Hence, we may

rewrite (7.16) as
n= ] " (7.17)
x(G)=-1

Now, it is known that a fundamental unit of a real quadratic field takes the form
u + v/d with u, v > 0 (Borevich and Shafarevich (1, p. 133)). Furthermore, if
Vu+vvd = ' Jd, + v'/da, thenu', v > 0. Collecting these observations, we
deduce that 7 is of the form u; +u, /P + u3./q +us./pq, where u; > 0 for each
i. Using (7.15) and (7.17), we conclude that a, and a; are positive integers.
Next, suppose L is not the genus field. Then from the beginning of our dis-
cussion, Gal(L|Q) = Ds is nonabelian. We claim that there exists an element
o in Gal(L|K) such that o(n) is complex. Suppose the contrary holds. Then
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L NR = Q(n) would be Galois over Q, and hence Gal(L|Q(n)) is a normal
subgroup of Gal(L|Q). On the other hand, Gal(Q(7)|Q) =~ Gal(L|K), a normal
subgroup of Gal(L|Q) (Cox [1, p. 191)). Hence, Gal(L1Q) is isomorphic to the
direct sum of Gal(L|Q(n)) and Gal(Q(m)|Q) and is therefore an abelian group,
and this contradicts our initial assumption.

Next, we will show that o (y/m) = —./m. Suppose that the contrary holds.
Then

o +om ' =nt+n",

and therefore

o =n or "
This shows that & () is real, which contradicts our choice of 0. Now, applying o
to (7.15), we deduce that

200 +om™) =ai —a/m. (7.18)
From (7.15), (7.18), and the fact that o () is compiex, we find that
(@ + a/m)’ > 16
and
(@) — ap/m)? < 16.

This implies that 4a,a24/m > 0. Since n > 0, we deduce that @, and a, are
positive. The integrality of a, and a; follows casily from Theorem 7.3. In a similar
way, we can show that by and &, are positive integers in (7.14).

The argument given here for the case when Gal(L|Q) is nonabelian is due to
H. Weber; see Cox’s book [1, p. 269].

Let Ry be the subset of {Q(/7). Q(/9), Q/PD) satisfying the last state-
ment in Theorem 7.3. Note that, since [Rx| is finite and 2, , and 28, 4 lie in
a discrete subset of the ring Z(y/m) for some Q(y/m) & Rg. we can therefore
determine their exact values, based on the numerical values of G g and G /g, in
a finite number of steps. This will in turn lead to exact values of Gpq-

Except for K = Q(+/—217) and Q(+/—553), in all of our calculations, [Rg| =
1.

We illustrate our computations with two examples. Before we proceed, we let
U= GpgGprer v :=Gpg/Gpsgs Ui := o +uH)? and V; = (v + v )2

Example 1. Let p = 5 and ¢ = 13. In this case, y = 4. By Theorem 7.3, as.13
and B are real quadratic algebraic integers. Since the primes 2, 5, and 13 are
not inert in Q(+/65), we deduce that they are in Q(/65).

Now, evaluating # and v using the product representation of G, (see (1.3)), we
find that as 3 = 81.311288.. .. and Bs3 = 57.186772.... We know that these
numbers are of the form a + b+/65, and, by Theorem 7.4, we conclude that

41 + 54/65 33 +34/65
s

5 and Bs.is=

as 3 =
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Therefore,
45 + 54/65
U, = T and Vz = wi
which implies that
U|=ﬁ/§+9 and Vl"'\/“g—i_?
3 = .
This further implies that
V65+9  [J/65+1
u=‘/ + and v= \/6—5—1+ V&S +7
8 8 8 I
Hence,
e 1/2 1/2
GW{JSH+w@H VB +7 | [VE5 -1
8 8 8 8
\ / \ V4

and
1/2 12
Gwﬁ=(/ﬁﬁ+9+/dé+1) Jw5+7 JJg_l)
8 8 8 - 3 .

Example 2. Let p = 3 and ¢ = 23. In this case, y = 12. Using the numerical
values of « and v and Theorems 7.3 and 7.4, we find that

Us = 281344 + 162432v/3  and Vs = 2992 + 17283,
The first equality implies that
ub + u~® = 8(47 + 273).
Since
2 - -
@ +u" 2 -3 +um?) = wubu® = 8(47427V3) = (4+3v3)*=3(4+3V3),
we conclude that
W+u?=443v3 and U, =6+33

Collecting our results and simplifying, we deduce that

.

Geo = (‘/748 +4324/3 + ‘/747 + 432J§)

1719
/12

[/ — [ — /2
(\/6+3~/3 \/2+3J3)
X +
4 4

(< f l 4 S i . lue 0O
Ih 0. l()w]" ‘al)le summarzes our Iu] lllel Calculdll()lls lhe va
s £ e G697




266 Ramanujan’s Notebooks, Part V

n=11 Uy =6+ /11 Vy =23 +8/11
172
- {/6+Jﬁ+ [24 VT
n = v 4 V 4 )
1/4
23 + 811 19 + 8/11
x +
4 4
n =141 Uy=18+9.3 Ve = 125680 + 725763
1/2
18 + 93 14493
G,,:(‘/ +41V/_""\/ +A\/_\
\’ ) ! c )
1/12
x (\/31420+ 18144J3+/31419+ 181W3)
17 + V145
n =145 U, = 12+ VI35 v,zlfz_ﬁ
1/2
(\/mm J9+m)
Gn: +
8 8
172
(\/mm ‘/swﬁ)
x +
4 4
\ /
2025 + 31 1
n = 205 UZ=L+2_5JH V,=25_+23£

G _ (\/2025+315JH+\/2017+
" 8

1/4
31541
8 )

AN

172
\/25+3J41 J17+3J41)
x +
8 O
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n=213

Uy =42+24/3

Vs = 2169904 + 1252800+/3

G =
G, =

(/21“2‘/5 19+ 124/3 "
Vo2 +V/ 2 3)

x (‘/542476 +313200v/3 + \/542475 + 3132005) "

n =217

Uy =22+8J7

Vi =16 + 57

([ = —\ 2
Gn = (\/Mﬂ/lfwsﬁ)
4 4

. = if2
4

n =265

=M

U
! Vi = 16 + /265

2
172
c,,=( B+5VIE | o1+ 536
8

n = 301

P ij2
x \/'6’“‘ V265 [12+ /265
4 4
V, = 1199 + 1844/43

Uy =46+7J43
12
74/43
1 v

4 4

3 V)

s
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I \

,_85+2@ l
=

-
A4

‘ﬁﬂ U, = 71325 + 7560+/89
[ [71325 + 7560+/89

T1Ja 72UV ,9
Gn= W Z +y }
1/2
854989  [77+9v89
X 8 -+ _-E-_’

1/4
[71321 + 7560489 \
4

U, = 292 + 137505

1134 54/505
Vi=——

=

\

y

1/2
288 + 134/505

( 113 + 5+/505
X 8

)
1/2
[105 + 5/505 )
+ 3

U, = 286 + 32479

\ V, = 19163 + 2156+/79

1/2
( 286 + 324/79 N 282 + 32V79
1 4 4

\ In \ /
1/4
/ 19163 + 2156+/79 / 19159 + 2156+/79 \ \
X TN 4 ———
\ vy
769 + 29+/697 661 + 254697
r= 697 U = _1—2———— W=—p
1/2
\ { / 769 + 29697 f’/m + 29+/697 )
G,= I ey
\ \ 8 ! 8
J
12

[ [os1+25v697 ,
T ‘v o

™

653 + 254697

v

-
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n =793 U, = 704 + 25793 Vi = 452 4+ 16./793
12
3 ( / 704 + 254793 N / 700 + 25J793\\
e \V 4 ¥ 4 }

172
§ (\/452+ 164793 +J448 + 16J793)
) 2

8. Miscellaneous Results

In this section we collect together some miscellaneous results of Ramanujan on
class invariants. We have been unable to provide meaningful interpretations for
two of these entries. ‘
Entry 8.1 (p. 311, NB 1). We have

3. 25/!2

Grs = 8.1)
1 5-1
‘\/5 + 1073 + L_4I/3 L5176 _ \/g —1
2 2
and
3. 25/12
Gapps = _ ®2)
5-1
ﬁ;—l“"“”" - ——‘[2 (1033 + /5 - 1
Proof. We apply Lemma 4.4 with ¢ = exp(—m./n), and so by (1.6),
P = G;2G;52n’ Q= Gi/G%Sn'
and
—Gi GgS 2 2 2 2
i - —
G-t o 2(Gi7Ga, - G,Gis,) =0. ®83)

25#

Let n = 3. From our table in Section 2, G3 = 2!/'2, Thus, by (8.3), with
x = Grs,
X 1/6 =2 1/6 2
-x—3+m+2(2_/x_ —2/).')=0. (8.4)
This sextic polynomial has two real roots, and, via @Mathematica, we easily
checked that the expression on the right side of (8.1) satisfies (8.4) and is the
correct real root.
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Alternatively, from Weber’s book (2, p. 724], G1s is 1 root of a certain cubic
polynomial. In fact, (8.4) factors over Q(f 5) into a prodict of two cubic polyno-
mials, one of which is Weber’s cubic poiynomial, and s» we have given another
derivation of Weber’s cubic polynomial for G7s.

To prove (8.2), we again use (8.3), but now we sctn = . Thus, Gas, = G =
21712 Hence, with y = G35,

3 i/4
2):/4 + 2—— +2(27 6y = 2V6yH=0, (8.5)

which is exactly the same as (8 4), but with x replaced byy. We used Mathematica
to verify that the right side of (8. 2) is a root of (8.5) and ndeed is the correct one,
Of course, G325 is the “other” real root of (8.4) that wementioncd above.

Entry 8.2 (p. 316,NB 1). We have

3218
Gis = — Ve
V51 +<5“/5) (V3=3vE+ 373+ VB~ 3V5—37a)
2 4
(8.6)
and
Gaspr
3. 21/4 .
= 173
Vil (5+J§) (\/’8+3J§+3J2—14 ’8+3f—3¢2_1)
2 4
(8.7
Proof. We empioy (8.3) with n = 7. From our tablesin Section 2, G7 = 2174
Thus, with G = G5, we find that
23/4 Cl'3 1/2~-2 120 = 0 (8.8)
¥ — + o +2(2712¢* -2"°0) .

Now, by straightforward algebra, it is easily checked tht (8.8) yields
2G' — 4.213G? + V3G — 3. 24 = £/52. 24 = V26 +27%). (89)

We shall show that the right side of (8.6) is a solution o}he cubic equ.ation in (8.9)
where the plus sign is chosen on the right side. Thus, \ith the plus sign chosen in
(8.9), we find that, after simplification,

G — 244 + 235G + (V2 + VIDG - 2B+ V5 =0, @B.10)

The form of Ramanujan’s formula (8.6) suggests that ¢ set G = 1/x and solved
for x. Thus, by (8.10),

G+ VE — (V24 VIO + 2744+ 27Dx =2=0. @1D
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We solve (8.11) by employing Cardan’s method (Hall and Knight [1, p. 480]).
Thus, set

V24410
32143+ J3)
in (8.1 1), and, afier dividing oui the common facior 47 + 21 /5, we find that
27- 2%y + 18- 245y + 1(~55 + 23V/5) = 0. (8.12)

The solution of the general cubic equation y* + gy +r = 0 requircs the calculation
of /r4/4 + q3/27. With

_BV5-ss V10

T T =73
we find, after much simplification, that

r? q3 J35(/S5-1

\/ 47217 3308

Thus, from Hall and Knight's text [1, p. 480], the real root of (8.12) that we seck
is

_[ss—23v5  vBWE-n| [s55-23v3  VBWS- 1)
- 27 . 211/4 + 3./3211/4 + 27 .21/ 3/3211/4

=5 2,,/,2 ({55 2345 + 15V21 — 3«/?]

{ —~ — —~— 13\
+ ‘55 —23v/5 - 15v21 +3‘\/105] )

-V (1.

Sk R PN { R PR W W1 R
T\l Pt L
Thus,
3
Lt f1ev5 (5-45 .
G T 3.214\34 .5 4
x({%—}5+3~/ﬁ}1/3+{8—3‘~5—3-\/ﬁl|/3)).

This is easily seen to be equivalent 1o (8.6).

To prove (8 '7\ we set » 1l i (@2

—_— Cirena '~
Prove (S. we sUv il =

in (8.3). Since G, = ul/,,, it follows that
Gip=G7= 2'/4 Thus, with G = Gs/7, we deduce (8 8) once again. Hence,
Gsy7 is the other real root of (8.8). Therefore, taking the minus sign on the right
side of (8.9), we find that G satisfics the equation

2Y4(4 — 2V/5)G? + (V2 — VI0)G — 2243 — V/5) =
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Now repeat the calculations from the proof of (8.6), but with NG replaced by -5
We then deduce (8.7) to complete the proof.

We also calculated G5 from (8.10) by using Cardan’s method and found that

21/4
G = a5
X (2+J§+ (5 +22‘/§)m (|17+3~/ﬁ]”3 + |17 - 3&]'/3)) ,

8.13)

which is a slightly more elegant representation than (8.6). By combining (8.6) and
(8.13), we deduce that

(‘/3_1+(5 ‘/_) (Is 3~/'+3~/_]

2

+ fs-3v5-avai]”))

1/3
x (2+J§+(5+22ﬁ)

x ([17+3~/ﬁ]u3+ [17—3«/2_1]'/3)) -

8.14)

We are unable to establish (8.14) directly. . . i
At scattered places in the second notebook, Ramanujan discusses a few addi-
tional class invariants.

Entry 8.3 (p. 263, NB 2). Lett = 1/G3, and let x denote the positive real root
of
x4 9% +5x  — 2 —5xP +9x —1=0. (8.15)

Then x = t*, where t > 0. Furthermore,

8+ 2 V29-5

=

4 (8.16)
1 -1 2

and
- T — rm—
P+iVV8-2 _ {VB-5 e

1+02/v29+2
128 =11+ 42, (8.18)

Lastly, if
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where it > 0, then

wt+u =2 (8.19)

Proof. It is not difficult to show that the first claim is equivalent to a result in
Weber’s book [2, p. 7221.

We now prove (8.16). By straightforward algebra, it is readily verified that (8.15)
is equivalent to the equation

1/1-x\? 1+x 2
= - =3. .2
x(l+x) x(]—x) 5 (8.20)

1—x\?

1/ \
y=;\]+x) '

Then, from (8.20),
y—5y—1=0,

which has the roots £ (5 + v/29). Since x = 0.119252...., the plus sign must
be taken. Hence,

. — > (8.21)

Taking the square root of each side and recalling that x = 14, we complete the
proof of (8.16).

We next prove (8.17). Employing (8.21) and (8.16) and remembering that x =
1%, we see that we are required to prove that

(ﬁ+m\z_l+x

1 (l+x)2 v29-5
-—=X = )

——— ] = : 8.22)
\1+vavv29+2) 1-=x
Again, from (8.21),

11— 1

(_ xif+x \/J_+5 Jﬁs

X1+ x l—x

=+29+2,
ie.,

1 1—-x ,_l+x__ A s
\/fl+x-LV l_x—vvci:tL. (3.23)

Hence, from (8.23),

/ — —y3 _ y2 _
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and

WX —x+2
]+«'/;“‘/2_9+2= 1— ) .

x2

Thus,

2 1 ~ 'R B
(mﬁ@:) IR R

1+ adIBr2) &+ ox

By (8.22), we want to show that the right side above is equal to (1 + x)/(1 = x).
Thus, it suffices to prove that

(1 —x)(=2x* —x* = 2x + ) =x(1 +0)+2 —x+ 2

equivalent to the equation
0=x3+9x7 +6x% +7x> +7x> —6x* +9x — 1
= (24 DEC+9x + 53— 2 = 5xF 4+ 9x — ).
Since x2 4+ 1 # 0, it suffices to prove that the second factor above equals 0. But

this is true by (8.15), and so the proof of (8.17) is complete.
Next, we prove (8.19). From (8.18),

/l x4k (8.24)
X

This equality and the symmetry in (8.15) suggest that we set p = x ~l —x. A brief
calculation shows that
oS 5t — 2t —sxi+x —1=—x*(p’ -9p® +8p - 16).

Since x # 0, by (8.15),

N
w
|
&
~
(]
+
X
~
t
—
(=2
I
(=]
—~
co
[
(%]
~——

From (8.24) and the definition of p,
/ 7“ .
n= P x-1=yJp-1

—_
wWp=ypfdp- L
Since clearly p2* + p > 0, it therefore suffices to prove that

VBP-1) =2,
and since p > 0, it is sufficient to prove that
4

.

Thus,

+ 1
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Squaring both sides and simplifying, we find that it suffices to prove that
PP —-9p>+8p—16=0.

But this is precisely (8.25), and so the proof is complete.

ric of the nronf of Entrv 2 were taken fram the notae af V R Thiruvenk
Tars of In¢ proet of 2nry 5.5 were laken irom the notes o V. K. 1ot th.¢

achar and K. Venkatachaliengar [1].

Entry 8.4 (pp. 263, 300, NB 2). Lett = 21/%/Gy. Then t is the real root of

Pty -2+u—-1=0. (8.26)
Furthermore, if
1
‘/; —t=u, (8.27)
then
w-2ut+pt+2u-3=0. (8.28)

Proof. The class equation for n = 79 was not computed by Weber [2] and is not
otherwise given by Ramanujan in his paper [3] or notebooks {9]). However, Russell
(2] and Watson [10] determined the class equation, which is easily shown to be
equivalent to that of Ramanujan.
Now (8.28) is valid if and only if
(e + 1 +2u)" = (3 + 2%, (8.29)

since the square root of each side is positive. Also, (8.29) holds if and only if, by
(8.27),

0=p""—2u® +5u° - 8u* +4u* -9

1 5 1 4 3 2

(——1) —2(——:) +5(l~r) —8(1-—!) +4(l—r)—9
! t t t t

=P w5 — 2w
=—("+20 -5+5° + 1ty 2 - 1)07°

=-C-ct+r-22+3 -1 +3* + 20+ 2 4+ )15,

Since t > 0,1° +3t* + 263 + 12+t + 1 > 0. Hence, (8.28) holds if and only if ¢

satisfies (8.26), and this is what we wanted to prove.

Entry 8.5 (p. 382, NB 3). Letz = x + 1/x, where x = G2,. Then

5441 7+ 41
22—z 2‘/—+ +2‘/_=o. (8.30)
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Proof. From Weber’s book (2, p. 722], as corrected by Brillhart and Morton [1],
if f2(v—41) = v2u, then

F 1\ 5+VaL [ 1Y T+Al
LA uv L)+ Y 831)
u 2 u 2
Since # = G2, {8.30) and (8.31) are equivalent

Ramanujan’s formulation of Entry 8.5 is, in fact, slightly enigmatic. In particu-
lar, in contrast to the notation used throughout the second notebook [9], Ramanujan
employed the conventional notation in the theory of elliptic functions and wrote
1/x = J2kK'.

We now make a few remarks about two entries possibly related to invariants.

On page 294 of the first notebook, Ramanujan claims that

“F(l -1 -xz“) ESIW 4
2

where
1_ OB+ + 0B (1_1)‘/“
i 7 2
‘/\/E+|/\/E+1 _\/ﬁ+l/ﬁ—l
2 2

3 1
x I«/1+A:I:«/A} where A=--—o
2 x+1/x+]_]

1 1/ b}
yX+1/x -2

As intimated in Section 2 prior to the tables, it is not difficult to show that the
indicated formula for G, is equivalent to the one given in the tables. Parts of the
last two lines of the entry above are difficult to decipher, especially the definition
of A. Moreover, we are uncertain that these two lines pertain to the first two lines,
that is to say, that the value of x in the first two lines is the same as in the second
two lines. Even more enigmatic is that an equality sign seems to be missing in the
last two lines. With the two values of x arising from the second line, we calculated
the expressions in the last two lines and could not account for a missing equality
sign. In conclusion, we are unable to supply any meaningful interpretation to the

incamnl afforad in tha lact rurn lin
incom;| ylvu' entry OiiSred in ine 1ast tWo ines.

On page 343 in the first notebook, Ramanujan wrote

( 1_1)/ wheres/S\y + y° ‘/l_;_] +y"ﬁ§2+l—l>

2 2
+ (y’+y2 (-@) +y (—Jr:;_—]) + l) =0
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We have no explanation for this mysterious fragment. The definition of y is not

given, but perhaps Ramanujan intended to write y = \7 (v/13 — 3)/2. However,
this valuc of y is not a solution of cither of the indicaied polynomial equations.
The top half of the page comprises results discussed in Chapter 37, and underneath
the fragment is Ramanujan’s (equivalent) representation for G16s; neither topic

armaTe e

apprais o W bUllllCLlUU Wllll llllb lldglllclll

9. Singular Moduli

Recall from the Introduction that the singular modulus %, is defined by %,
k(e"'f ), where n is a positive integer. It is clear from (1.6) that if the valuc
of G, (or g,) can be determined, then «,, := k2 can be computed by solving a
quadratic equation. For example, see (2.8) or (9. l) below. However, the expression
that one obtains generally is unattractive and does not evince the fact that o, can be
expressed in terms of units in certain algebraic number fields. (See Theorem 1.1.)
Thus, formulas for «, that facilitate their representations via units are desirable.
In his second letter to Hardy, Ramanujan [10, p. xxix] asserted that

koo = (V2 - 1)*2 = V32(VT - V/6)*(8 - 3V7)?
x (V10 = 3)*(4 — V15*(V/15 — V14)2(6 — V35)%.
This was first proved by Watson [4], who used the following remarkable formula

which he found in Ramanujan’s first notebook [9, vol. 1, p. 320] and which enables
one to calculate a, for even n.

Theorem 9.1. Setz
6

&, = uv,
u+ l/u2 =2U, v l/v2 =2V,
w=Vursvi-i,
and
2S=U+V+W+1.
Then
o, ={VS~VS—1VS=U-vS-U-1)
X{(VS-V-VS-V-THS/S-W-_V/S—W_1)2

Watson'’s proof of Theorem 9.1 is a verification; it does not shed any light on
how Ramanujan might have discovered the formula. K. G. Ramanathan [1], [5]
stated Ramanujan’s Theorem 9.1 but did not find another proof. Heng Huat Chan
has found a much more motivated proof of Theorem 9.1, and we present his proof
below. Later we show that the algorithm implicit in Theorem 9.1 can be adopted
to determine «,, for odd n as well.
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Proof. From (1.6) and the notation above, We write the last equality in two ways as follows:

i " > 1 [wsvyr-vi—vi_ow
L Ja =t = 1 _ 2_ .- .
=V Wil =2U + VU - 1)V +/V2-1) 2\ >
cwr ¥ 1 s Y2 fr12 v o« FIYZ 1 /___—
=2UVVe - *VVU“—ITUV’T‘V(Uz'l)('z_*)) . [(U+V)2_U2_V2+2W)2
2
a+ 1)b-1 b},
=2 (Ja¥ D6 b Vo) 02
where we set 1 [-W - VY + U4 V22w
2 2
Vab=UV + /(U - 1)(V2-1) )
!_(U_|/)2+y2+v24'_2w\
and +y 2 ) '
Ja+De-1)=UJV2-1+VJUI -1 Now
Squaring each of the last two equalities, we find that, respectively, S-WS-1D=SES-W-DH+W
U4+V+W+HU+V-W-=-1)
ab =22V U — V4 142UV U2 - 1)(VE-1) = 5 3 +W
U+ V) —(W+1)?
and =( + )4( + 1) W
ab+b—a—1=202v?-U*— VI 2UVJ (U2 - 1}(VI-1). =(U+V)2—U2—v2—2w+w
4
These two equalities imply that a = b. Thus, B U+V:-Ur-viy2w
= - .
R a=2( @+ a - 1)+a). Thus, from the first equality in (9.2),
v {/ \’
a={/SE-W-_D+/(S—WHS=-1)
Solving for /&, we find that vt VR b ‘)
=SE-W-D+ES-WES-D+2/SE-W-DES-W)S-1
Ve = a+1-a)(Ja-va-1. oD =SS -W+E-W-DE - =S+ 1)
It thus suffices to compute /a. +2/8(S-W DS -WXS- 1),

From the definition of a and the fact thata = b, ie.,

a+1=SE-W)+E-W-1E-1)+2/5E-WE-W-DE -1
2
= (VSG-W+/E-W-D-D) .

a=UV4+JWUL-1)(V2-1)

= (2w +2/UVI U - V2 + 1)
Z\ nence,
=%(2U‘,+2/——‘—mv2 wz) Varl—va=/SE-W)+/(§-W-1S-1)

2 —/SE-W-1)-/E-W)ES-1)
=%(JUV—W+~/UV+W). =(~/§-—~/S—l)(~/s—w-\/s_w_|).
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Next,
S-U-DHS-V-N1H=ES-U)S-V)-W
W+l+V—UW+l+U—V_

= W
2 2
(W+1) - (U -Vy
= -Ww
4
U+ VI-2W - (U - V)P
= 4 .

Thus, from the second equality of (9.2),

a= (\/(s—u—1)(S—V—1)+\/(T—U)(s—V))2

=(S-U—-1S-V-=D+S-U)S-V)
+2/S U =S -V -1)(S-UNS-V)
=@ -U-DE-V)+S-U)S-V-D+1
+2/E-U-DE-VXS-U)S-V -1),

2
a—1= (‘/(S—U—l)(S—V)+\/(S—U)(S— vV-1) .
Hence,

Va-Va—-1=JS-U-DS-V-1+/S-U)S-V)
-JE-U-DES-V)-/E-UNS-V -1

= (JS—V—JS—V—1)(¢S—U—JS—U—1).

Using our just calculated formulas for va + 1 — /a and \/a — +/a — 1in (9.1),
we complete the proof.

Furthermore, Watson [4] inexplicably claimed, “ ... this is the sole instance in
which Ramanujan has calculated the value of k for an even integer n.” In fact, 20
additional values of &, for even n are found in the first notebook. Theorem 9.2
gives 13 of these values.

On page 82 of his first notebook, Ramanujan offers three additional theorems for
calculating «r,, when n is even. The first (Theorem 9.3) expresses a4, as a product
of units involving G,. The second (Theorem 9.5) expresses &6, as a product of
units involving G,. The third (Theorem 9.6) enables one to determine as, as a
product of two fourth powers of units, provided that a;, can be expressed as a
product of units of a certain form. We calculate eight examples of Ramanujan as
illustrations.

The calculation of @, when n is odd is slightly more difficult. On page 80 in
his first notebook, Ramanujan recorded the values of a2;, @33, and ags in terms
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of units. This list is repeated, with the addition of «,s, at the bottom of page 262
in his second notebook. On pages 345 and 346 in his first notebook, Ramanujan
recorded units that appear in representations of o, whenn =3,5,7,9, 13, 15,17,
25, and 55. (Inexplicably, the units for a7 and ¢ s are recorded twice.) Ramanujan
also indicated that he had intended to calculate a3y, but no factors are given.
Of course, the result for n = 15 is superseded by the complete formula given
on page 262 in the second notebook. It is unclear to us why Ramanujan only
listed portions of &, and not complete formulas. Initially in our investigations we
employed computational “trial and error” to “‘guess” the complete formulas for
o,,n=35,9,13,17,25, and SS. We remark that the values for a3 and o7 are easily
determined from (2.8), i.e.,

@, = 3G, " (G,',2 - /G2 - 1). 9.3)

For further values of n, however, (9.3) becomes unwieldy, and so better algorithms
were sought.

We adopt the algorithm of Theorem 9.1 and reformulate it in Theorem 9.8 in
terms of G, 1o calculate some values of a, when n is odd. Theorem 9.9 provides
a list of all of Ramanujan’s values for odd n. Although Theorem 9.8 yields a
systematic procedure for calculating «, when n is odd, the calculations are often
cumbersome and the representations that we obtain, although expressed in terms
of units, are frequently more complicated than we would like. Thus, we establish
three simple lemmas, Lemmas 9.10-9.12, that provide an alterative procedure
for calculating all of Ramanujan’s singular moduli for odd n.

We conclude Section 9 with two further algorithms of Ramanujan for computing
a,. These were cryptically stated by Ramanujan in his first notebook and are rather
different from his other algorithms. The first provides a method for determining
a3, from a certain type of modular equation of degree n. The second also arises
from modular equations and gives a formula for a,,.

Ramanujan likely learned about singular moduli from a brief discussion in A. G.
Greenhill’s book [3, p. 331]. It would be extremely difficult to assess the priority
of each singular modulus that has been determined. Ramanathan [1] and J. M. and
P. B. Borwein [1] previously calculated some of Ramanujan's values for «,, and
we shall cite their specific determinations in the sequel.

We begin with a list of 13 values for &, found on scattered pages in the first
notebook.

Theorem 9.2 (pp. 214, 288, 289, 310, 312, 313, NB 1). We have

o =(v/2-1)?,
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J6-+2-1 _(Ja-ﬁ_.)’

=2 —VIH3I-V2)?=

Ve+V2+1 | V2-1
_ 22 2_3«/7—«/3-‘2
a0 = (V10 = 3)2(3 — 2v/2) SR FW T
V2 -2/6 5
= -2 — 2: - 4 2_162.——’
a3 = GV2Z-TT-4/3)2 =2 -VIH'W2-1) i Ta/eTs

an = (10 - 3V11)2 3V - 1V2),

a0 = (5 — 2v/6)2(4 — V15)2(v/6 — V/5)2 (2 — V3)?,

a = 8 — 3V — 43’3 - 2V2D2(VT — V6)?,

ass = (13v/58 — 99)2(99 — 704/2)?,

arp = (15 — 4v/14)2(8 — 3VT)2(3V/14 — 5v5)%(6 — V35)%,
as = (2 — V3 BV3 — V261 (V13 — 2v/3)*(5 - 2v6)%,

4
i = (*/ﬁﬁ" 7) (5 - 2/8)* (V51 - 5422 - V3)*,

a3 = (5v130 — 57)}(V10 — 3)*(v/26 — 5)*(3 — 2v2)*,

and

4
@00 = (il_f/i;'z) (37V19 — 51V/10)22v/5 — V19)* (/19 — 3v2)%.

Proof. The value of o, was, in fact, established in Example 1, Section 2 of Chapter
17 in the second notebook (Part I1I [3, p. 97]). Ramanathan (1] and the Borweins
[1, p. 139] also determined o.

All of the remaining values for a,, are easily determined from Theorem 9.1. The
required values for g, can be obtained from the tables of Weber [2] or the table
in Section 2. In each instance, we list the values for u, v, U, V, W, and § in the
table below. The reader can easily verify the calculations.
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n u v U 74 w S

6 1 1+ /2 1 3 3

10 1 2445 1 9 9 10
18 1 5+2v6 1 49 49 50
22 1 7+ 52 1 99 99 100
30 2+4/5 3+ /10 9 19 21 25
2 | 2V2+VT | 3V3+2V7 15 55 57 64
58 1 70 + 13/29 1 9801 9801 9802
70 | 9+4/5 7+5V2 161 99 189 225
78 | 18+ 5413 5+ /26 649 51 651 676
102 | 7+5V2 35 + 64/34 99 | 2449 | 2451 | 2500
130 | 38+ 17/5 | 18+513 | 2889 | 649 2961 3250
190 | 38+ 174/5 | 117 +374/10 | 2889 | 27,379 | 27,531 | 28.900

The second and third formulas for o and a3, and the second formula for o
can be easily verified by direct calculations.

The Borweins (1, p. 139) calculated e, for 1 < n < 9. Ramanathan (1] also
established o139 by using Theorem 9.1.
Recall the definition of F(x) given in (2.3).

Theorem 9.3 (p.82,NB1). Ifp > 0,n > 1, and

s f——

P F (I_M)
5 ,

then

N ((W - i)' (va- J,.Tl)‘) .

From (2.9),n = G?. Hence, in Theorem 9.3 Ramanujan provides an algorithm
for determining @ap from the value of @, or from G »» namely,

as, = (Jop +1-Jop) (Jop - Jor 1) 04

Before proving Theorem 9.3, we verify four examples recorded by Ramanu jan.
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Examples 9.4 (p. 82, NB 1). We have
oy = (\/5 - 1)4’
an = (3-V2 W2 -1
ay = (V2 - DPV2 - VD

and
e = (V10 — 3)* (/2 — DA (V6 - V5(V3 - V2)*

The value of «eq was also recorded in the second notebook (Part 11 (3, p. 97D).
Both a, and «»3 were also determined by Ramanathan (11, and the Borwein broth-
ers have determined a4 and o1y [1, pp. 139, 151]).

Proof. Let p = 1, so that trivially G, = 1. Then, from (9.4),
A avAs v — /—,1\4
gy = \Vv< 1) vy = & 1] .

£
vy
Let p = 3, so that, from the table in Section 2, G3 = 2"/ 2 and n = 2. Thus,
from (9.4),

ap = (V3-VRV2- 1

Let p = 7. so that, from the table in Section 2, G7 = 24 and n = 8. Thus,
from (9.4),

an = 3 — W2V - VT = (V2 - DPV2 - V)t
Let p = 15. From the table in Section 2, G5 = 271121 4 4/5)'/2. Thus,

/B4 1h . AT /2y Hanna from (O A
n= (l+\/3) [i= '-6\1-1-J~/J; neiice, IToMm (7.4,

am:(‘/29+12J§—2\/7+3J§) (2\/7+3f— 27 +12v/5 ’

To denest these radicals, we employ the following denesting theorem (Landau
[1]). If a — gb? = d?, a perfect square, then

—d
,/a+bf=‘/‘1—;-—+(sgnb)‘/-a—2—-, 9.5)

where we have corrected a misprint. To that end, from (9.5),

/ — r— | eumm—— — P 4
29 + 11 29 — 11 2\/7+2_2\/’/—z\
%0 = 7 VT2 VT2 2
I,—_,4
7 7=2 27+3 27— 3)
x 2

= (~/2'0+3—3\/§—~/ﬁ)4(3~/§+«/ﬁ—~/1_5—\/ﬁ)“
— (V10— D2 — DPIE — VO3 - VN
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Proof of Theorem 9.3. From Part 111 3, p. 215, eq. (24.21)], we find that
1 4
== (1-VT—<), 9.6)
- \ 7/

where B has degree 2 over «. To prove Theorem 9.3, we must show that
B = (Vn—1-— /’\ /./n /‘\4

9.7
s with n — (12 —
From our hypothesis, with n := G} and @ := a,,,
wo o n?—1
- 2n ’
which implies that
= (/ntn 4+ )+ /n(n - D)L 9.8)
Since 4a(1 — @) = n72, we deduce that
—1——(/n(n_l_|\— /n(n—l\\2 {0.9)
l _ \7+7)

Hence, from (9.6), (9.8), and (9.9),

1 4
- 1 -*1-
B=(/ntn+1)+n(n—1) ( Jn(n+1)~Jn(n—l))

=<Jm+m)4(ﬁ_ﬁ_+_1;@)

=/ +n+vVnt—n—n—yn? 1)

= (Wn=1-Jm)'/n+1-/n),
and so (9.7) has been shown.

Theorem 9.5 (p. 82, NB 1). Under the same hypotheses as Theorem 9.3,

4
e = F(W" +1 +f">“{¢‘7n+ ! —/2ﬁ(m+«/§)l

x I«/2_n—1—\/2ﬁ(«/m—~/§)}4)- (9.10)

Thus, together Theorems 9.3 and 9.5 yield the formula
—_— —  — e ——— 14
aiep = (JGR + 1+ [GI)f i‘/zc;,2 +1- /2GR G+ 1+ ﬁ)]

x i/w_y—l—\/ch_;}( /G}}+l—«/§)}4.
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For example, if p = 1,thenn = G, =1, anda simple calculation shows that
@ = (V2 + D@V -1
Proof. From Theorem 9.3,

e VP = F? Jn¥i—+n Jn—«/n—l ) 2/ 4x \
(b e )" s

Also, by Entry 2(v) of Chapter 17 in the second notebook (Part 111 [3, p. 93)), for
0<x <1,

4x
Fxb = F? ((1 - x)2)' 9.12)

Thaus, from (9.12), (9.10), and (9.11), it suffices to show that

2
x=(~/n+1+\/l_z)4{~/2_n+l—\/2\/'_t(«/n+l+«/§)}
U y

2
x {«/2—7;—1—\/2\/71(\/n+1—-~/§)} ) 9.13)

From (9.11), it follows that

2 1
- . ©9.14)
NEa EN I e v AR

Let u = /. Since u tends to 0 as n tends to 0o, the solution of (9.14) that we
seek is

s o

1 i
“= (\/2(«/n+ —ﬁ)’(f—vn—1)2+2

\ 2

1 ]
_\/2<~/n—+_— JAR(Jn—n— D 2)
L (AFTAR) (J(—Jz+¢r_'1)’+(¢,ﬂ—_¢;)2

—V/(*7!_4+V.n—1)2—(vn+l—~/;—)i)

= (Vn+l+ﬁ)2 (\/;+\/n(n—l —Jn(n+1)

2
=1+ /n(n+1 '1)

- (J,T;_l+ﬁ)2 (20 =1+2/n = D)
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—2\/(2n+ Dvnn+ 1)+ 2n-1) n(n—l)—4n). (9.15)

Comparing the proposed vaiue of 4 from (9.13) wiih thai of (5.15) above, we see
that it suffices to show that

/(7n+l) /nin+ 1D+ 2n-1y/nn-1)—4an

A AdaN 7

= (V21 4+ D2/ T = VD) + (V21— W a/am T T + VD).
(9.16)

If we square both sides of (9.16), it is a routine matter to show that (9.16) indeed
is a correct equality. This therefore completes the proof.

The next theorem enables one to determine g, from the value of a;,.

Theorem 9.6 (p. 82,NB1). Ifn>1,p > 0, and

P——

eV = F (wn +1 = /m)?(/n—/n—= 1)2) , 9.17)

then

2T _ ({% rtl  fmt VAT 1)]

{‘/'_’_”W J(ﬁ—l)(f+J_)])

(9.18)
Observe that
1+ 1
[frerevnd O VA +‘|)]
l Vi )
ntl+a/n+1
{f 7 WAL N+ VAT )}—1

2 (9.19)
Thus, if oy, can be expressed as a product of units of the form (vn + 1 — /n)?
(v/n — /n —1)?, then ag, can be expressed as a product of two fourth powers

of units. Before proving Theorem 9.6, we present three examples recorded by
Ramanujan.

Examples 9.7 (p. 82, NB 1). We have

o = (\/3+2«/§—\/2+2~/§)‘,
@ = (\/6+3~/§—\/5+3~/_;)‘<\/2+\/_—\/1+~/§)4,
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and
(—\4 —\ 4
‘7"40=(2‘ 2+V5—2y vln} {‘v” \/5_: V6+2‘v@} .

Proof. Let p = 1. Then from Theorem 9.2, a; = (V2 - 1)2. Thus, n = 1, and
from Theorem 9.6,
4
oy = (ﬁ +1-y20 + ﬁ)) . (9-20)
But from (9.5),

YN EELY EEL N,

Using this in (9.20), we achieve the desued representation of ag.
Let p = 3. From Theorem 9.2, os = (2 — v/3)%(+v/3 = +/2)2. Thus, n = 3, and
from Theorem 9.6,

343 ‘(1+v3 *
a24=(—-f/_2—— 5+3J§) ( 4:/5 —\/|+J3). 9.21)
But from (9.5),
firie 53, [ 20

\/2+f \/z+1 .4—1_«/’3-1-1.
V2

Using these calculations in (9.21), we complete the verification of Ramanujan’s
representation for ayq.

Let p = 5. From Theorem 9.2, a0 = (v/10 — 3)2(3 — 24/2)?. Thus, n = 9,
and from Theorem 9.6,

=(2ﬁ+f_/m)4(ﬁ+f— 23 + V10) 4.

which is what is claimed.

and

Proof of Theorem 9.6. From (9.17),

1

/—-— /——'—:z

2, U
= \ S — n—1)=F

Hence, as in (9.14),

34. Class Invanants 289

and, by (9.18) and (9.12), it suffices to prove that

et 2
x—[ﬁ+l+ ntl V/wn+l)(\/n+~/n+ I
v Ul
[ /7 —1++/n r \
x| ——F— —\/(s/n— DWn+vn+ l)i
V2 (9.23)
Let u = /x. In view of the form (9.22), it is natural to assume that
u = (ay — b)(a — by), 9.24)
where
a} - bl =1=a; - b} 9.25)

Then, by (9.22) and (9.24),
Ly »
W+ 1+ /mn+n-1)= 3 (u + 5) =aiaz+ bbb (9.26)

If s := /n++/n + 1, the values of ay, by, a, and b; that satisfy (9.25) and (9.26)
are

s+1 s—1
a|=—J_i—, ﬂ2=7, by=syvn+1, and by =+s5\/Vn-1
Then, as already observed in (9.19), (9.25) is satisfied. Furthermore,

ma;+bhiby=n+Vnn+ 1)+ (n++n+DHvn—1
=(Vn+1+/n)v/n+/n-1,

and so (9.26) is satisfied. Hence, (9.23) has been shown, and the proof of Theorem
9.6 is compiete.

Singular Moduli for Odd n
From (1.6), we find that, in the notation of Theorem 9.1,

1
281 = 2utv? = — . (9:27)
NeA

(2]
By elementary manipulation, we find from the other equality of (1.6) that
» i 20y, G,'l2

[
Q
3 -

Il
~~
=
(N4
o0
~

If we set

2aGI2
@2 :=iG,'  and  Joi:=
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then (9.28) takes the form

1
Ve
Comparing (9-27) and (9.29), we deduce the following theorem from Theorem
9.1

20" =

- Jar. (9.29)

Theorem 9.8, Set

(g)° = uv,
w? + 1/u* = 2U, v+ 1/02 =2V,
w=VUisViai,

2S=U+V+W+1

o = (VS-S PS-U-V§-U-1)
X (VS—V—/S—V-1(VS—W-VS—W-1}

The next theorem gives the twelve values of o, when n is odd, that are found
in Ramanujan’s notebooks. In those instances when two representations are given,
the former one is that which is in the notebooks, or that which contains the units
provided by Ramanujan in his notebooks. The Borweins [1, pp. 139, 151] calcu-
lated @, forn = 3,5, 7,9, and 15, and Ramanathan [1] determined «,, forn =

3,7,9,and i5.

Theorem 9.9 (pp. 80, 345, 346, NB 1; p. 262, NB 2). We have

RV J3+ﬁ S5-1
=3\ 2 s V4

a—,:_—!

16

(B[ [3+v3 V31 8
¥EI\NT A2 & V4
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1{A3-1)" 2
=§(—J§_) (‘/4+2J§—\/3+2J§),
a,3=l(«/ﬁ—3)3(\/7+«/ﬁ_\/a+~/ﬁ)4
2 2 4 4

=dfl2(~/T32-3)3(\/|9+25\/ﬁ_\/17+5m)z
> ,

1 (v/5-1
@5 = T2
16 2

o \/7+~/1_7 \/3+JT7 ’
n=3 2 - 2
: 8
N \/3+\/4+«/1—7 \/\/4+Jﬁ_1
4 - 4 ’

o = (32 Y(vi-v3\ \/5+«/7 \/1+J7 4
2\ 2 2 4 Y a4
X(\/3+ﬁ \/ﬁ—])4

4 4 ’
\ Ve

8
a25=%(161—72«/§)(\/5*-‘/3—\/14—‘/5\
: V= Ve )

2 4
@ = 32— V3) (\/ﬁ‘/i— 3) (J7 +3ﬂ - ‘/3 +:‘/§)

x(\/5+~/§ \/Hﬁ\f
4 4 ’
\’ ! C )

4
) 2 — V32 (4 — V15),

ms:%(\/‘_2)3(\/3“/3\4(/7+3‘/5_A/3+3‘/5Y

\va J\V e V)

X(/3+J§_ 14-\/314
2 ' ’

291
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and

ass = % («6 - 2)2 (10 - 3V11)(3/5 — 2v/11)

12, —— T\ 4

x(‘/7+8ﬁ_Jﬁ8—l) Ua_%ﬁ_‘/uzﬁ) |

Proof of Theorem 9.9 for n = 3, 5, 7, 9, and 13. These five values arc easily
computed by using Theorem 9.8. The required values for G, may be found in the
wable in Section 2. In each instance, we list the values foru, v, U, V, W, and S in
the table below. The reader should easily be able to verify the calculations.

n u v U 14 w S

3 | exp(wi/4) V2 0 3 3 3

5 | exp(mi/4) 2+ /5 0| V5 2 13 ++5)

7 | exp(ri/4) 2 ol 8 | % 3

9 | exp(mi/4) 243 0 7 4/3 4423

13 | exp(wi/4) 1815713 | 0 | sv13 | 18 | La9+5V13)

Except for n = 55, we have also used Theorem 9.8 to calculate the remaining
values in Theorem 9.9. However, the following lemmas lead to simpler calcula-

tions.

Lemma 9.10. Ifr is any positive real number andt = J/(r +1)/8, then

r—Jri-1= (m - E)A (9.30)

Proof. The equality (9.30) can be readily verified by elementary algebra.

Lemma 9.11. Ifr and 1 are as given in Lemma 9.10, then

8
t+3+1 Ji+i-1
Po1= J : -J > . O3

2

r —
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Proof. It is readily verified that
/|

‘/t+l+1 l‘/t+’ 12

2 2

H : _J ; ];/H%_‘/;-%. (9.32)
7

Using Lemma 9.10 in (9.32), we deduce (9.31).

We frequently set G = G,, below, when the value of n is understood.

Proof of Theorem 9.9 for n = §, 9, 13, 15, 17
. = , d 25, =
bte i Secim s y 9, , 17, and 25, Let n = 5. From the

2 [(V5+1 ’
Gl _( 5 )=J§+2. 9.33)
If r = G¥* in Lemma 9.10, then
_ 3+V5 V541
8 = 4

and

4

9.34)

G - VG 1= (‘/ﬁ4+3_\/ﬁ—1)
4

Thus, the given value for as follows immediately from (9.3), (9.33), and (9.34)
Letn = 9. From the table in Section 2, S o

G'2={@\4_
9 \ \/5 / =

Applying Lemma 9.11 with r = G2, we find that

e /8+4J§_~/§+1
s = 2

/ . 2+ 4/3 1+ ./3
(4 i = Fv2 _ 1 +3

8
12 _ 24 _ | — 3+43 J3-1
G- /G* 1= (\/ - -\/ 4 ) : (9.36)

Thus, by (9.3), (9.35), and (9.36), we deduce Ramanujan’s value for ay.

©
[9%]
Ch
&

1AL
T"'V3:

_~

and
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Let n = 13. From the table in Section 2,

3
{ /13 ¢ 3\ — o
Gli= ) =18 +5+/13. 9.37)
i T 1N ot = — £712 ¢4 Aaduce that
1Nen 1 LENMAa ¥.1V, 3C17 = U3 W GLuule unas

19+5/13 _ 5++/13

and

Q
|
<,
[«
L
4
|
|
—
-
&
|
-,
&
N—
-~
\O
[
N

Hence, the given value for a;a follows from (9.3), (9.37), and (9. 38).

t=]

Let n = 15. From the table in Section 2,
G'? = L(/5+ 1)* = 28 + 124/5. 9.39)
Apply Lemma 9.10 with r = G,3. Then

29 + 1245
L= ———,
V 8
and so

f R \
29+12f 2041245 1
G- VGeH-1= ( +5‘\1\F—?——5
\

29 4+ 1245 J27+12J5 i
=W 2~ 2

=28+ 12v/5 - ‘/(29 + 12/5)(27 + 12¥/5)
12/5 — 16/3 — 7/15

o

24
@ - V34— V15). (9.40)

0 A0 10 AN, shn daoinad
<G

Hence, by (9.3), (9.39), and (9.40), the desire
Let n = 17. From the table in Section 2,

17—(\/5“/— ‘f“/_? ’ _20+5f+/m

[\
=23
+

With r = G12 in Lemma
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after a lengthy calculation. We now apply Lemma 9.10 with r = 20+ 5+/17. Then

[21 4517 54 V17

8 T4

4
7
G.‘7"=(\/ +2/ﬁ—\/3+4‘/ﬁ). (9.41)

Next, setr = 20 + 517 + Vv (20 + 54172 — 1 in Lemma 9.11. Then

and so

{
2« 10V17 + 4v/206 + 504/17
16
3+ V174 2V/4+ V17
4
and
:+1_‘/5+~/1_7+2\14+\/1_7_1+ 44+ /17
VT2 4 =
Thus,

G- 024_|=(‘/3+‘/4+~/ﬁ_\/~/4+~/ﬁ—1]8
r 7 :
\ H

(9.42)
Using (9.41) and (9.42) in (9.3), we complete the proof.
Let n = 25. From the table in Section 2,
2
Vs+1\'
G2 =( S = 161 + 72v/5. 9.43)

\O

11,

‘- /162+72J§ 6 + 35
=V T =

Y 8 2

1 7+3v5 3+45

and
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Hence, )

/T - f ~\
5+ 4/5 1+4/5
G?-JG®-1= (\/ 2 —‘/ 7 ) . 9.44)

Putting (9.43) and (9.44) in (9.3), we complete the proof.

The next lemma will enable us to calculate a3, 33, a5, and ass.

Lemma 9.12. Letr = uv, where v > u and u is a unit. Set u = u, + uy, where
uy, Uy > Oandu, - u2 = 1. Furthermore, let

a? = 1+ 2vuy + v? and b2=1—2vu|+u2,
where a, b > 0. Then

/Iln_a-h.l.z 1 //a+b+ 1\4

r_\/ﬁzk‘/‘/"_'"_'_‘ __\N —)

\/{a—b+2 \/,a—b+2 _1_
" 2] (9.45)
Proof. The right side of (9.45) equals

2 2
(‘/a+b+2 \/a+b—2‘) (\/aib+2_ /a—b—2)
4V a )\ 4 4

v

_ 2
e =) (50 )

2
a+b [fa—b 2_|+a—b (“+b) -1l (9.46)

Set

=t () -

Then, by an elementary calculation,

T
a+b [fa—b\* a-b “+b> _
/,JZ_]:.T ( 2)"‘]""‘2 2
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Hence, we see that the right side of (9.46) equals r' — +/r? — 1, and it therefore
remains to show that r = /.

In fact, from the definitions of a2 and 52,

r’:vul+‘/vzuf+l—(l+u2)

=vuy +vyud — 1 =vuy +vuy = vu =r,

which completes the proof.

Proof of Theorem 9.9 for n = 21,33, 45, and 55. Let n = 21. From the table in
Section 2,

7 —\ 2 4 a3

3447 3

r=cp=(2% v TH3Y B +3vVT(2VT +3v3).  (9.47)
V2 2

Setu; = 2/7and v = 8 + 34/7 in Lemma 9.12. Then

@® = 1+28 43127+ (8 + 3VT) = 212 + 80v7 = (10 + 4v/7)?

and
b =1-28+3VDN2VT + B+ 3V = 44 4 16V7 = (4 + 2VT)".
Hence,a = 10+ 4/7 and b = 4 + 2/7. Moreover,

[a+b+2  [16+6V7 3
16 16

[a—b+2 [8+42/7 1+.7
16 _\/ 16 a4

and

Thus, by Lemma 9.12,

4 4 4 4 ’

(9.48)

On using (9.47) and (9.48) in (9.3), we complete the proof.
Let n = 33. From the table in Section 2,

Gt = 2+ /3)° (‘/13/53) = (26 + 15v3)(10 + 3V11). (9.49)

Apply Lemma 9.12 with u, = 10 and v = 26 + 15+/3. Then
a® = 14+2(26 + 15v3)10 + (26 + 15v/3)> = 1872 + 1080v/3 = (30 + 18+/3)2
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and
B = 1 — 2(26 + 15v/3)10 + (26 + 15v/3)* = 832 + 480+/3 = (20 + 12v3)2.
Thus, @ = 30 + 18v/3 and b = 20 + 124/3, so that

faxbr2 1524303 54343

a9+ 4

16 16 4

[a—b+2 [1246V3 _3++/3
16 16 4

Thus, by Lemma 9.12,

v = | [1+3V3 3+3«/§4 5+3 1+~/§4
G_Gz_l_(\/-zt *\/ 4 \](\/ s Y a .

\ J N\
(9.50)

and

Upon substituting (9.49) and (9.50) in (9.3), we complete the proof.
Let n = 45. From the table in Section 2,

3+v3\'
G2 = (542 (—:/LE——) — 38+ 17531 +8V15). (951

We apply Lemma 9.12 with u, = 31 and v = 38 + 17+/5. Thus,
a? = 1 + 208 + 17V3)31 + (38 + 17+/5)? = 5246 + 2346+/5 = (51 +23V5)’
and

b= 1 — 2038 + 17/3)31 + (38 + 17/5)? = 534 + 238v/5 = (17 + TV5)".
Hence, a = S1 + 23+/5 and b = 17 + 7+/5, so that

faxb+2 _ [10+30V5 5435
16 16 T4

V/a—b+2_ [36+16v3 _ 2+ /5
6 ¥ 16 '

2

and

So, by Lemma 9.12,
SN |

12 2 7435 3+345 ‘ 3445 71+«/§
i () ()

9.52)
The desired evaluation now follows immediately from (9.3), (9.51), and (9.52).
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Let n = 55. From the table in Section 2,

2 e /R 2//7+J§ /"/3—1\12
G2 = 8(v/5 +2) W Rt

{ _ [ 2 \
= 85 +2)? 99+:5~/5 +J (99+45~/§) b
4 (9.53)

Apply Lemma 9.12 with u; = (99 + 45+/5)/4 and v = 8(+/5 + 2)2. Thus,
a? = 1+2-8(v5 +2)21(99 + 45V5) + 64(+/5 + 2)*
= 17469 + 7812v/5 = (93 + 424/5)?

and

b =1-2-8(v/5S +2)21(99 + 45V5) + 64(v/5 + 2)°
= 3141 + 1404+/5 = (39 + 18V/5)2.
Thus, @ = 93 4 42+/5 and b = 39 + 184/5, so that

f[a+b+2  [67+304/5
16 8

and
[a=b+2 _ [1+3/5 3+45
16 2 2
Thus, by Lemima 9.12,
q
G _ . Jgr 1 V/67+30~/§,1 /67+30J§ 1\
8 T2 T

=
W

Now, by Lemma 9.10,

u\/m 1 J [67 + 3043 1\|‘
L. S W Y
8 2 8 2

\
/
= 66 + 30v/5 — /(66 + 30v5) — 1

= 66 + 30v/5 — 94/55 — 2011
= (10 — 3¥11)(3+/5 — 24/11). 9.55)
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Using (9.55) in (9.54) and then (9.53) and (9.54) in (9.3), we complete the proof.

We close this subsection by showing how different modes of caiculating @, can
lead to interesting identities between radicals.

Entry 9.13 (p. 311, NB 1). We have

" M5-145+1
_ _ )8 —
(a) \/Ti 1-5-2) 5 7
and
g . 2BEED
) yity1-@-vdi= 75

Proof. From the table in Section 2, G35 = (+/5 + 1)/2, and using this value in
(9.3), we easily find that

Qargs)'/* = \'ﬂ— V1= (/5-2)7

On the other hand, from Theorem 9.9,

N 5 145
Qas)' 8 = 161 — 724/5 (‘} 5*4‘/_ - ,/ 3 )
\' ‘ J

=_/Ej(/5+«/§_./1+~/3\|

VEEOOY 4 Vo4 )
G-\ \ng \/1+«/§

:( 2 ) s 4
S5

Combining these two calculations, we deduce (a) with the minus signs chosen on

aach cide
€aca s1ee.

i/3 i . R
From the table in Section 2, Gy = ((l +/3)/ ﬁ) , and with this value in
(9.3), we readily find that

Qe = {1 -1 - @ - VI*
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On the other hand, from Theorem 9.9,

2aa) /8 — v3i-1 3+43 V31
2a9) 5 W . \/ -

=;2,:(\/TJ§—(J5—1)).

Combining the last two calculations, we obtain (b) with the minus signs chosen
on both sides.

We verified via Mathematica that both (a) and (b) also hold with the plus signs
chosen on each side.

Calculating a,, and a3, with the Help of Modular Equations

Ramanuian abscurely described two further methods for calculating o, in hig first
notebook [9].

In the first, Ramanujan indicated that «r,,, may be calculated by solving a certain
type of modular equation of degree n. For several prime values of n, the desired
form of modular equation exists; many of these modular equations can be found
in Ramanujan’s notebooks and are proved in Part 11l [3]). This very novel method
is the only known method that does not require a priori the value of g,,. Thus, the
method is a new, valuable tool in the computation of 3,

In the second, Ramanujan disclosed a method for determining o3, arising from
the definition of a modular equation of degree n. We give a rigorous formulation
of this formula and prove it by using a device introduced in Section 6 to calculate
certain class invariants.

The results in this subsection are due to the author and Chan [3]. In this paper
we also devise a method for calculating oss, that is similar to Ramanujan’s method
for determining «3,.

In the middle of page 292 in his first notebook, Ramanujan claims that, “Chang-
ing Bto4B/(1 4 B)? and @ to 1 — B? we get an equation in 4B(1 — B)/(1 + B)
and the value of B2 is for e~ V2" * We now state and prove a rigorous formulation
of this assertion.

Theorem 9.14. Let B have degree n over a, and suppose « and B are related by
a modular equation of the form
F ((eB), (0 —e)(1 - B))) =0, (9.56)

Jor some polynomial F and for some positive rational number r. If we replace
by 1 - x% and B by 4x /(1 + x)?, then (2.1) becomes an equation of the form

G(x):=g({4x(1 = x)/(1 + x)})) =0,

for some polynomial g. Furthermore, x =  /ay,. is a root of this equation.



y a fundamen .
:nnn bonos n ananial naca ~f Dfaff’c trancfarmation With o~ mn]aﬂ’d hv 1 — X

2

- 2./10 L &./3 2 0. A /R
.

we find from (1.4), (2.5), and (9.57) that

2Fi(x?) 12F|(1—X
2F1(1—12) 2 F(x?)

Therefore,
KA —-x)
1Fi(x?)
Hing the definition of a singular modulus and (1.2), we deduce that

x% = ay,, and the proof is complete.

2n.

Example 9.15(a). Let n = 3. Then
@)+ 11 -1 = B}V =1, (9.58)

which is originally due to Legendre and was rediscovered by Ramanujan (Part I
(3, pp. 230, 232]). With Ramanujan’s substitutions, (9.58) takes the form

u+; =1, 9.59)

where

N
(4xl+x) ’ (2.60)

Solving (9.59), we find that u = +/3 — 1. Then solving (9.60), we find that
x = 23 — 3 — 242 + /6. Using two different modes of calculation, we find

The former representation is given in Theorem 9.2.

We next derive Ramanujan’s formula for a3,,.
Let g be given by (1.5), and suppose that 8 has degree n over «. Thus, (1.4)
holds. Now suppose also that 8 has degree 3 over | — @ =: o. Then, by (1.4),

3 2File) PO -8) R -a

= (9.64)
R-ao) - G RG " R@ oy
Hence,
2F;(a)
.65
zFl(l—a) ‘/3 6.63)
and, from (9.64) and (9.65),
F(1-p) f
=3 V3n. 9.66
zFl (3] (9.66)
Next, from Part III [3, p. 237], since B8 has degree 3 over «’, we have the
parametrizations
. (2+p )’ s ( 24 p
0'—1)(1+2p’ and B=p T+25) 9.67)

where 0 < p < 1. It follows from (9.67) that

ng_ (1=pPQ+p) s (2+p 1-p\ (1 +p)Q2+ p)
(A-a)p= 3 =
(1 +2p) 1+2p 1+2p 14+2p
9.68)
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a faint line has been drawn through the entry to indicate that the entry is incorrect,

or that Ramanujan could not prove his claim. We record in Entry 78 the entry as

Ramanujan gives it. We are unable to discern a general formula for the ath term in

the series on the right side. Then we sketch an attempt at proving (or disproving)
the formula. As we shall see, serious technical difficulties prevent us from utilizing

the idcas that we used in proving Entries 76 and 77 and Entry 6 of Chapter 18 in

Part I11.

Entry 76 (p. 281). With the notation (76.1), ( 76.2),

i =1y _Vx i (X"
— (2n + 1) cosh{(2n + 1y/2} 2 ’

Proof. Now,
d 1 eC_V —_ e—('}'
—_ = —C 2}
dy \ecy + e»—c_\’} (e(:y + e—(')')x.

for any constant ¢, and

s f°° d(_ 1\,
2cosh(cy) e +e ), di\e" +e @

Let ¢ = (2n + 1)/2, mukiply both sides above by (—1)"/c, and sum on n, 0<
n < occ. Using also (76.3), we find that

(76.3)

_ 00 ( ])Il
5= ‘L;O @n + Dcosh{(Zn + 1y/2)

. (—1) o 4 1
-2 D - dt
= 2,; +1/J, dt \ e@nt/2 4 g-Qnt/2
e(w‘?‘l}llt e —(2n+1y1/2

=/y Z( b (e@nrOi/2 +e—(2n+l)1/2)2 (76.4)

We now evaluate the integral on the right side of (76.4) in another way. Replace
the variable ¢ by y,. For brevity, set 4 = exp(—Yo/2). Now,

o0 -Q2n+l) _ u2n+l
n
Z( l) (u—(2n+|) +u2n+])2
n=0
o] 2n+l 3(2n+l)

Z( 1) (1+u2(2n+|))2

Z(_l)n (u2n+| _ u3(2n+l)) Z(_l)m(m + 1)u2(2n+l)m

Il

n=0 me0
2.m+| u2m_‘_~5
m pa—
mg)(—l) m+1) (l Fulemeh ) uZ(Zm+3))
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2m+1

=) (=D"@m+1)
m=0

1 4 w2@m+))

~ 2cosh{(2m + 1)yy/2}

=120Vl - 1), (76.5)

by Entry l§(i) of Chapter 17 (Part III (3, p. 134]), with x there replaced by ¢ here.
We substitute (76.5) into the right side of (76.4) and make the change of variable
yo = mz(1 — t)/z(t). By Entry 9(i) of Chapter 17 (Part I1I (3, p. 120]),

dyo 1

T TS o2 (76.6)

When yo = y, thens = x, say. We therefore find from (76.4) that

] o0
§=- f 220Vt = 1) dyo = f
47 4 J w(l—t)
_ (3)n 1 (uxt2
- Z t/2 nd - -
/ Z—:o ! Sl (n+1/2) 6.7)

It is easily seen that (76.7) is equivalent to the claim made in Entry 76.

Entry 77 (p. 280). In the notation (76.1), (76.2),

0 n n 2
5 D VS YU NI
(2n+l)2smh((2n+l)y/2} 2z < 2 . an*
n= 2 n k=
Proof. For any complex number c,
i 1 et’)‘ + e <Y
dy \ ey —e<¥ =—-C (e — 8—")‘)2 77.1)
and
Lilyaun €+ e 16
dy2 ey — e—¢y =< (e = e—(‘)‘)3 (772)
Hence,

L < g 1
ZSinh(cy) ey — e~y - _/; d_u (et‘ll — e u ) du
o0 dz
f / FT3] ( - _a) dt du

oc 211 ~2ct
+e " +6
=c¢ f f (eu — —cl)'! oo a4t du. (773)
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Now let ¢ = (2n + 1)/2, multiply both sides of (77.3) by (—1)" /¢, and sum on
n,0 < n < 00. Accordingly, we find that

5 =
5= nz (2n + 1)?sinh{(2n + 1)y/2}
P00 A00 r7n+!u : e—-{Zn+l)r L6

T T
)" dt du.
j ; HZO( ) e(2n+l)l/2_e—(2n+l)t/2)3 (774

For brevity, set s = exp(—t/2). The integrand in (77.4) then becomes

—(4a+2) +s4u+2 +6

Z(_ ) —(2n+l) — sZn+I)

4+l o S(2n+1) o £.3Q2n+1)
_ Z( l) 3 + 9 T 0
o (] _ s4n+2)3
- x(_l)n (s2n+l + s>(2n+|) + 6sjun+1)) L %(m + 2)(m + l)sm\‘«l-r(.)
n=0 m=0
o o 2m+5)(2n+1
— Z %(m + 2)(m + l) Z(_l)n (“(2m+l)(2n+l) + S( m+5)(2n+1)
m=0 n=0

+ 6s(2m+3)(2n+1))

2m+1

m+2)(m + s 1 Sm(m — 1)s
zz + —Z

22m+1) 202m+1)
1+ 2464 1+

(m + 1)ms?m+!
T — o

La j 4 sEmii

Y
L

m=0
2 2m+1
_ i @m + 1)*s ' (115)
—~ 1 +52(2m+l)

From (77.4) and (77.5), so far, we have shown that

2m + 1)?
dyo du, 17.6)
f / . cosh{@m + Dyor2) 70" (

where, for the sequel, it is more suggestive to set# = Yo.
We now apply Entry 16(x) of Chapter 17 (Part I1I [3, p. 134])in (77.6) 1o deduce

that

] [+ ] o0
s=5/ [ 12V dyo du.

We make the change of variable yo = mz(1 —1)/z(t). If yo = u, then t = xo, say.

Thus, by (76.6),
f / 2O 4w arn
T8 N ) r)
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Replacing u by y; above, we find, from (76.6), that
dy() 1

dxo  xo(l — x0)z2(xo)

When yo = y, then xo = x, say. Hence, appealing to (77.7) and then replacing xo
A

1 [* o (t) 1
S=<
8 Jo ( RvAe! —t)dt) xp(1 —xo)zz(xo)dxo

k-1/2
f / WO W (l—u)zZ(u)

k+1/2 r1 1

i1
+ 1, K

<+ 1, 1 7
—szmm‘“lk gk IRL

..... ST TIY 1ANnI. WY

by Entry 9(iii) of Chapter 17 (Part I1I [3, p. 120)). Using the definition of 3 F, in
(77.8), setting k + j = n, and inverting the order of summation, we find that

1 &, xktir (k+l)2

S=—
2z L= 2k + l)2 =k + 2)2

|

x/

i xk¥i/2 ( )2 00 (l)k+1
dm @y D) D7,

N

32

(5 ()2,
IN2 2 0\D PR Y
D2k = ()2

n=

s

n 352

(5)

P e %
L Gk +1)?

which completes the proof.

By using Entry 29(b) of Chapter 10 (Part I1 [2

Z":(%)E_ M(n + 3) l-%'%'n+l]
Z &2 m+DMRe+ 077 a2 |

Y

we easily find that the right side of Entry 77 may be rewritten in the form

xm 1 11
LZ an[z’ 2‘"“]1".

8z "on+l 1, n+2
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Entry 78 (p. 280). With x, y, and z as in (76.1) and (76.2),

— 1
nL;n (2n + D*cosh{(2n + 1)y/2}

vV Y L ()
==\ G) [1G) TG

We are unable to discern a general formula for the nth term of the series on the
right side above.

Sketch of Attempted Proof. Differentiating (76.3), or from the proof of Entry 6
hapter 18 (Part 111 (3, p. 153)), for any complex number ¢, we find that

da* 1 \ ,€¥Y +e7 2 —6

d_)’2 \ec_v + e—cy} -t (e + e—cy)f!

which is an analogue of (77.2). After two further differentiations,

a ! L% —T6eY + 230 — 7672 &% (78.1)

(ecv + e—(_\')S
Letting ¢ = (2n + 1)/2, dividing both sides of (78.1) by (2n + 1), summing both
sides on n, 0 < n < 00, and integrating, we find that
: [ 17 r

T L 2n+ DPcosh{2n + Dy/2) 8!» Joo S dn

8

g\ 2+ 0¥o _ 76e@n+1¥0 4 230 — 76e=2n+ e 4. g=2@n+1)¥a

o __ dyo dy) dy, dys-

X g (e(2n+|)yn/2 +e—(2n+l),\'o/1)5 J J (78_2)

As before, set u = exp(—yo/2). The integrand in (78.2) may then be written in
the form

oC 41 _ 76u3(2n+l) + 230u5(211+l) _ 76u7(2n+|) + u9(2n+l)

u
pard a+ u4n+2)5
) m m+3
S AN (W
= Z(_l) 4t T — g2m+D 1 — weam+d
m=0 ‘
2m+5 w2m+? wm+o
+230 —pzam+s) 761 — 2@mtD + 1 — u2(2m+9))
i 1)’” @m+ Dtu (783)
W22m+D
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Employing (78.3) in (78.2), we find that

| ©& (=hmem+ 1)
f [ [ [ )" 2m + 1) dyy dy, dy, dy:
8 J‘ Jh J\z J‘I ‘_.4 e(’1.m+l)\9/2 —e —(@m+Dyof2 7 d

N f f Y(—l)”(zm+1) (——

o elem¥iywm/2
6 _\' Jn \z \1 m—O !

1
- m) dyo dy, dy; dys. (78.4)

‘The value of the “second” sum in the integrand on the far right side of (78.4) can
be obtained from Entry 17(viii) of Chapter 17 (Part IlI (3, p. 138]). Thus,

& (=" @2m + 1)

_ 1y,
LJ e(2m+|),\'o — 1 A
m=0

5

PAY <\ Ig
i) —29y. L

IPAY LS AYE |
o - -~
The value of the “first” sum in the integrand on the far right side of (78.4) can be
obtained from that of the “second”” sum by the process of dimidiation (Part I1I {3,
p. 126]). Thus,

x —1 m 2 1 4
3 % =1 (£ 00 -0 - VDG +6v7+50 - 5). (78.6)

m=0

Using (78.5) and (78.6) in (78.4), we find that

l [so] [s o] oC o0
=§[ / / f SO = D01 = 50T dyo dy, dy, dys

o
f [ 221 - S~ 2 dy dy, dy, dy
J1 L d

32] -,\n .!)z jO ¢

by (76.6). We can make similar changes of variables for y;, y», and y3, and we

canemploy (’7‘ &) (with v ranl ) as we did above. However
SIUPUY \ OO \Wiii Y u,yla»vu u] Yi, ¥ and ¥3,) a8 W& GiG ao0Ve. raidWever,

these steps do not enable us to completely evaluate the quadruple integral in (78.7).
Thus, at this point, we terminate our discussion of this apparently deleted entry.

(78.7)
\ bl 7

10. Miscellaneous Results

l‘ntrv 79 (D. 172). ForO<x <1, suppose that

1+sinf 1 +sina (l -+-)csino:)2
1—-sing | —sina
where 0 < a, B < /2. Then

1 — xsina, {79.1)

(1+2x)[“ do _/ﬂ do 792
0 /1_13%““29 i \/ x(2+x) 24 '

sin“ @
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Proof. By Entry 6(iii) of Chapter 19 (Part I1I 3, p. 238)), if
tan 3(« + B) = (1 + p)tane, (79.3)

then (79.2) holds, with x replaced by p. Thus, it only remains to show that (79.1)
and (79.3) are equivalent. In Part I1I (3, pp. 239-240, eq. (6.2)], we solved (79.3)

for p in terms of sin« and sin 8 and found that

1 — sinasin B — cosacos B
sina(sin 8 — sina) '

Put i/ = (1 + x sine)/(1 — x sina). Thus, from (79.1),
(1 +sin 8)(1 — sina) _
Ju—1 . (1 —sinB)(1 +sina)
Vi+1 [ 5 sinp)(1 —sina) "
(1 —sinB)(1 + sina)

After straightforward elementary algebra and trigonometry, we find that

(79.4)

p=

xsina =

1 —sina sin B — cosa cos
sina(sin B — sina) )

This agrees with (79.4), and so the proof is complete.

X =

Entry 80 (p. 172). For 0 < x < 1, suppose that
1+sing
1—sinf

where 0 < a, p < /2. Then

1+ x)? f ——L— ’ a6 .
Jo J1—x*sin’e Jo \/l Il _ :;';)dlsinzfi

(80.1)

1 + sina (1 +xsinaz)2 1+xisina

1 —sina \1—xsine/ 1 —x2sina’

(80.2)

Proof. Set

4 2
_ (l—_x) _8&( ) by (80.3)
1+x a4+ x)* (1 +y)?
Solving for y in terms of x, we find that

14+6x%+x 44 (1—x%)?

y= ;
4x(1 + x2)

We want y to approach 0 as x tends to 0, and so we need to choose the minus sign
above. Hence,

2x . (80.4)

IR Y+ |
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We now apply Entry 7(xii) of Chapter 17 (Part Il [3, p. 112)). If

(1+ysin’y)sinf = (1 + y)siny, (80.5)
and we use (80.3) and (80.4), then

[’ d9 [ o
b

\/1—l1 l"‘)Ism()

WS]D (7]

4 de
=(1+y)f S
0 J1-y¥sin’g

dé
=11
( +l+r2)[ /. Ay N
V!~ ean sin’d
¢ deé
- /s a4 -3
i V1 —x7sSIN°Y

where we have applied Entry 17(xii) of Chapter 17 once again and thus need the
condition

=+x)?

(1 +x%sinfa)siny = (1 + x%)sina. (80.6)
Combining (80.5) and (80.6), we find that

sinf _ (1 + x)2(1 + x%sin’ @)
sing (1 4 a2sin®a@)? + 2x(1 + x2) sin e
It remains to show that (80.7) is equivalent to Ramanujan’s hypothesis (80.1). If

we substitute in (80.1) the formuia for sin B obtained from (80.7), we find that
(80.1) and (80.7) are compatible, and so the proof of (80.2) is complete.

80.7)

Entry 81 is one of many entries where Ramanujan writes “nearly” to indicate
an approximation.
Entry 81 (p. 244). Let, F(x),0 < x < 1, be defined by (76.1). Put
F(x*) =1t.
Then

F( 2x )_ Vi
T+x) 140 -0 -1+

(81.1)

“
nearly
1y,

»

Proof. From Entry 2(vi) of Chapter 17 (Part 11 [3, p. 95]),

2x 1 5 369 4097 15
Fl=1_)= L2 3 309 ? 94895
(l+x) XTI e X X+ (812)
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On the other hand, using Mathematica to expand the right side of (81.1), we find
that

i
1+ (-0 =1t +32)
! 5 5 369 4097 , 398697
:-2—3x+7x +§T;I +—-2W'I + 2% X

(81.3)
The first four coefficients in (81.2) and (81.3) agree, while
1594895

Y =0.0118829...
and

398697

75 =0.0118821....

Thus, the fifth coefficients in (81.2) and (81.3) are remarkably close. Therefore,

DELS

Ramanujan's claim has been justified.

Entry 82 (p. 244). Let F(x) be defined by ( 76.1). Then

S
X 1 X
Fl-e )y~ ———— 7755 - 82.1)
) 10 + 436 + x2 2160 (8 + 5’—0x2) ¢

Proof. From Entry 2(vii) of Chapter 17 (Part 111 (3, p. 96)),
N 1 1 3 31 s 661
)= =X — X

27F T3t Y5 et 3158
On the other hand, expanding the right side of (82.1) by means of Mathematica,
ive at

F(i—e™* ,

T4 (822)

x 1 x ?
10+m_m(8+%12)
1 P, 31 g 3187
=@yt Tt TFEe T (g3

Thus, the first three coefficients in (82.2) and (82.3) agree, while

661
=6.25376-- x 107°
315 .25 537 X
and
3187 _8

Thus, the fourth coefficients in (82.2) and (82.3) are amazingly close, and Ra- !

manujan’s approximation is indeed justified.
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Entry 83 (p. 271). Let

@*(—u)
o)’

x=1~

where

7

: [ 2(1—x))
u::e’::exp(_” ))’

2(x)
where z is defined by (76.2). Then, for any real number n,

2n+4 .
[‘P u(u)du:f 2" (%) dr.
x(1 —x)

[
&
X
N
IS
=

Thus, by a change of variable,

2n n
f‘/’ +4(u)du =/’z *2(x) u dx _/‘ '),
" « x(-nz2m T sa=n

407
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Infinite Series

In the last two chapters devoted to the second and third notebooks, we gather
together most of Ramanujan’s results on series in the 133 pages of unorganized
material found in these two notebooks. In this chapter, we primarily focus on ex-
act formulas, while in Chapter 38 our attention is given to approximations and
asymptotic formulas. In Pan IV [4], we had dlscngaged Ramanujan’s results on
special functions, partial fraction decompositions, and elementary and miscella-
neous analysis from the material on infinite series, and devoted individual chap-
ters to these three topics. Although those three chapters contain a couple of gems,
Chapters 37 and 38 have many morc jewels.

We now briefly describe some of the interesting theorems proved in this chapter.

Entries 2—10 are new summation formulas, or applications thereof, akin to the
Abcl-Plana summation formula. Our proofs by contour integration employ the
same idea that is used in the most well-known classical proof of the Abel-Plana
formula.

Entries 15-19 arise from Eisenstein series and provide analogucs of more well-
known series identities, some of which Ramanujan had derived elsewhere and
some of which the author (6], [7] had previously proved from different consider-
ations of Eisenstein series.

Entry 21 is particularly fascinating. Ramanujan offers two transformations for
doubly exponential series that are analogous to the famous theta transformation
formula. That such transformations exist is surprising.

Entry 35 and Entries 36 and 37, which follow from Entry 35, are incorrect. Entry
35 gives a series transformation, reminiscent of the Poisson summation formula.
However, Entry 35 involves the Mobius function, and, indeed, it is extremely

n[\_!!lrnl\l that such a gpnprnl transformation would exist. Numerical calculations

demonstrate that Entries 36 and 37 are “close to being true.”” We conjecture that
Ramanujan employed approximate formulas from prime number theory that he

considered to be more accurate than warranted (gee Chantar 24 of Part IV ld]\ It

ORSICOTCC 10 DL MOTrC accurate 1 WwarTanieG (8€€ LNapikr s4 oy xramn iy

would be interesting to reconstruct Ramanujan’s thinking.

On pages 335, 340, and 341 Ramanujan makes successively more general claims
about the behavior of partial sums of certain oscillating series. Ramanujan’s claims
are very remarkable in their explicit descriptions of the oscillations. We are not
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aware of any theorems in the literature similar to Entry 42, which is a rigorous
formulation of Ramanujan’s most general claim.
Beginning with Euler, many authors have written about the convergence of

........ 2uict, many auinor

infinite exponentials

t'la2
a’ .
W. J. Thron [1] in 1957 proved a theorem which, it would seem, gives the best
possible general upper bound for |a, | that suffices for the convergence of iterated
exponentials. However, in his third notebook, Ramanujan offers a slightly better
upper bound for |a, | and also claims, at least in one sense, that his bound is the best
possible. These claims were recently proved by G. Bachman (1], and we present
his elegant, difficult proofs in Section 50.

We conciude our introduction by siating some definitions, notaiion, and weii-
known results that are needed in the sequel.

Recall that the Bernoulli numbers B,, n > 0, can be defined by the generating
function

t B 2 0.1
ez—l—ZOEZ' lz| < 2n. 0.1

As usual, let {(z) denote the Riemann zeta~function. For each positive integer n,

(_])n-—l (2”)211 an
— 7 T .2
t@2n) = 22n)! , 02

which is a famous formula of Euler. Also, for each positive integer n (Titchmarsh
(3,p- 19D,

¢(1—2n) = B 0.3)
2n

For any complex number z, the functional equation of £ (z) is given by (Titchmarsh
(3, p-22D)

n 2 (/Dg () = PR - 2)/)8(1 - D),
which can be written in the equivalent form (Titchmarsh (3, p. 25))
{(2) = 2sin(An2)Qn) 7' TA — )8 - 2). 0.4

We shall need the Euler-Maclaurin summation formula (Olver {1, p. 285]). If f
has 2n + 1 continuous derivatives on [a, ], where a and b are intcgers, then

b b
3 F) = f f@ydi+ 3 1f@+ f®)
k=a a

+3 o (B - FE @) 4 R OF)
k=1 :
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where, forn > 0,

1 b
Ro=—— [ Byt = 1y £y
2n+ 1)1 J, o e

o~
(=
%)
N’

where B,(x),0 < n < 00, denotes the nth Bernoull polynomial.
For cach nonnegative integer n, the rising factorial (a), is defined by

is defined by

(@)n :=a(a+1)(a+2)--~(a+n-1)=w
a

If C is a simple closed contour, / (C) denotes its interior. The residue of a function
f(2)at a pole « is denoted by R,. (Usually, the function f(z) is understood, and
so there is no ambiguity by not specifying f in the notation for a residue.)

P el NP
1 UL

Plana summation formula and some variations (Part II [2, pp. 220-222]). At the
top of page 335, Ramanujan offers another version of the Abel-Plana formula A

rrarane menaf o o O

Tigorous proot of diis formulaiion can be found in Henrici’s book {1, p. 274].
Entry 1 (p. 335). Let ¢(z) be analytic for Re z > 0 and suppose that either

Z @(n) or f p(x)dx
n=0 0

is convergent. Assume furthermore that
lim iy)le ™ =
Jm le(x iy)le 0,

uniformlyv in x an ovoe Baists St ad o d sl
mijormiy in x on every finite interval, and ihai

oC
[ lp(x £ iy)le~2"¥dy
Jo

exists for every x > 0 and tends to 0 as x tends 10 00. Then

D o) = %¢(0)+f0 ¢(x)dx+if°° Mdy. (1.1)
n=0 0

ey — ]

Entry 2 (p. 335). Let n be any complex number such that Ren > 1. Let 2" have
s principal value. Then, ifRe x > 0,

"1 cos(3mn — xy)

ko 00
DK™ = (x4 2 [72 dy.
k=1 Jo ermy — | 7

Proof, Let f(r) = 1"~'e™'*. Although f(¢) is not necessarily analytic at 1 = 0,
the proof of the Abel-Plana summation formula may be easily extended to include
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this function. We therefore find from Entry 1 that

et o] 00 ¢ n-—le—i_vx_ —i n—ler)-x
Tk"_le_k'( — [ l"_le_udt-iv-i [ (iy) ( : )') dy

Jo Jo e — |
— i(n— —iy —xi{n—=1)/2+4iyx
_ . yr 1 (em( D/2—ivx _ e wi(n—1) b )
=T)x™" +i .;/(; e2ny _ 1 dy
sin(§w(n — 1) — )’-")
_ —-n _ n—1 2
=T(n)x 2/(; Y o — dy

oo cos (37n — yx)
—-n n—1\ 2
=T()x™" + 2/0‘ Y gy dy,

which completes the proof.

Entry 3 (p. 334). Assume that ¢(2) is analytic for Re 7 > 0. Let a be real with
0 < || < 1. Suppose that

iim jp(x £iy)le™™ =0,
¥—>00
uniformly on any finite interval in x > 0. Suppose also that

["" 90({ +iy) dy

—oo COS (T (x + iy)) + cos(ma)

exists for each nonnegative number x and tends to 0 as x tends 1o 0. Assume also
that the integral below converges. Then

9(ix) + o(~ix)
cosh(x) + cos(ra)

- Z[qp(2n+1—a)—<p(2n+1+a)}=[
sin(ra) = 0

Proof. Consider, for positive integers m and N,

p(z) dz

r
I(m,N):= j(.,,,,.

~ COS(TZ) + cos(ra)’

where Cy », is apositively oriented rectangle with horizontal sides passing through
+i N and vertical sides passing through 0 and m. We apply the residue theorem.
Since

the integrand has simple poles at z = 2i + | + & for ¢ach nonnegative integer »
Straightforward calculations give

2n+ 1t a

RZIH'-I::G = -—tu

nsin(mor)

Hence, by the residue theorem,
2
Ion, N) = —— Y p@nt+1+a)—eQn+1-a).

sm(7ra) 0<2n+lxa<m
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Letting N tend to oo, then letting m tend to oo, and using our hypotheses, we find

that
( / f “”“) ¢(2) dz
cos(rz) + cos(mrar)

- sin(ra) ,go lpCn+1+a)-o@2n+1-a).

Upon parametrizing the two integrals above, we complete the proof.

The next result is a limiting case of a lemma in Section 18 of Chapter 13 (Part
112, pp. 221-222)), and so it is unnecessary to give a proof here.

Entry 4 (p. 335). Let p(z) be analytic for Re z > 0. Assume that
lim |o(x +£iy)le ™% =0,
¥=>00

uniformly for x in any compact interval in [0, 00). Suppose also that

oc
f lo(x £iy)le ™2 dy
0

exists for all x > 0 and tends to 0 as x tends to co. Assume that the integral below
exists. Then

= o _ 7 elix) + ¢(—ix)
4§( D'e@n+D = /o cosh(rx/2) dx

Entry 5 (p. 335). Let ¢(z) be analytic Jor Re z > 0. Assume that

lim jp(x +iy)le™™ =0,
y—oc
uniformly for x in any compact interval on [0, 00). Assume that

(e o]
/ lo(x £iy)le " ¥dy
0

exisis for every x > O and tends to 0 as x tends to 0. Then, provided that the
integral below exists,

2¢(0)+Z( 1)'o(n) = / de

a=l Jo sinh(mr x)

Proof. For positive integers N and m, let Cy ., denote a positively oriented,
indented rectangle with honzomal sides passing through +i N and vertical sides
passing through 0 and 2 + }. The indentation is a semicircle C, of radius € > 0
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centered at the origin and lying in the left half-plane. Applying the residue theorem
to

@)= 22
z) = — ,
sin(mz)

we find that
1 i n
o /C S@dz= n§=0:(—1) @ln).

Letting N tend to oo, then letting m tend to 0o, and invoking our hypotheses, we
deduce that

1 i€ —io0 X n
i (/:m +j; +/:“ )f(z) dz = Z(—l) o(n). (5.1)

"
=0

Setting z = €€'?, m/2 < 0 < 37 /2, we find that
.1 1 P p(eei®)ee'i dB

lim— f f(x)dz= hm——,j -

C. €« 72

02i sin(weeit)

1 3n/2 l
- f 00 d = Lo(0). 52)
v /2 2

Hence, using (5.2) in (5.1), we deduce that

ad 1 £ ¢(y)d 1
S =1ygm = — f A2 LSO
n=0

2 J_ sinimy) 2

oc : o ¢ 1
1 pUy)dy 1 [®p(-iy)dy + Lo,

2 I sinh{mry) 2 L cinh(mrv) 2
ol Jgo SINTY) 2t Jo sinh(ry) <

This completes the proof.

Entry 6 (p. 335). Let ¢(z) be analytic for Re 7 > 0. Suppose that
lim |p(x £iy)le™™ =0,
y—00

uniformly for x in any compact interval on [0, 00). Assume that

oc .
fo lp(x & iy)le™™ dy

s T PR

-
-
S
&
-

exisis for every x > 0 and tends io O as x
integrals below exist,

3 (2n + i) = ! [~ (x)dx — 11’ [~ ¢_______(ix) — ‘p(_ix)a’x
L‘p( _2_,0 ¢ 2]0 e’”+l )

n=0

Proof. For positive integers N and m, let C ,,, denote the positively oriented
indented rectangles with horizontal sides passing through 0 and i N, respectively,
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and with vertical sides passing through 0 and 2m. The indentations are semicircles
C;{‘ and C; , of radius€,0 < € < I, centeredat 2j — 1,1 < j < m, and lying
in the upper and lower half planes, respectively. Thus, observe that

Clam UCh o = liN, —iNYU[=iN, —iN + 2m)]
U[—iN +2m,iN +2m]U[iN + 2m,iN] U’,'»‘z, Cje,
where C; . = C;{( V] C;e is a negatively oriented circle of radius € and center

2j-L,1<j<m.
Applying Cauchy’s theorem, we find that

d
f p@dz o 6.1y
Chy, €7+ 1
Now,
. ol dz _ ¢ @(2j — 1+ €e®)ee®i d6
el_% c e~z 41 - GI_IR) /” e~ 7il2j=D+eexpi®) 4 |
1 0
= —/ 9(2j—1)d6 = —p2j—-1)
b n
and
. o(ydz T 92f — 1 +ee%ee’i do
lim - = lim —— -
e—0 C,, emit 41 e=0 for em|(21—l)+sexp(10)) +1
1 0
= ——j 0(2j —1)d6 = p(2j - V).
n b g
Thus, from (6.1)

m
C N () dz _f p(z) dz
23 -002) ”‘3%([6&“—"“41 [ £25)

J .2

Now let N tend to oo, then let m tend to 0o, and use the given hypotheses. Hence,

23 i = [ 2@dz [T e@)dz
< L ~J L —_—

Yy

1 Jloo e7mi 41 J() erit 41

.

00
+ [ .] + ,l \sp(z) dz. (6.2)
JO \e—mz +1 emts 4 1/
Since
2 . . 2
—1+m=ltm(§7{x)=l~m,
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we find that

fw(_; -+ \w(z)dz
Jo \e7™+1 "‘z+1/

l oc
=3/ o® {itan(3mx) + 1+ 1 —itan(3nx)}dx

:[ o(x) dx. (6.3)
o

Also,
0 d —ico d 0 iv)d oc —iy)d

f ¢(2) dz _[ 9(2) dz =_i[ ¢(Q) y+i/ ( fy) Y (64)
i@+ 1 Jy o emii 41 b e+ 1 o € +1

Putting (6.3) and (6.4) in (6.2), we complete the proof.

The first two formulas on page 269 arc remindful of the Abel-Plana summation
formula, but, in fact, a stronger version of this formula is needed, because the
functions to which we would like to apply the formula have poles on the imaginary
axis or in the right half-plane.

Entry 7 (Formula (1), p. 269). Let o, B > 0 withaf = 4x2, and let Ren > 2.
Then

I'(n){(n) k!
J(x_( Y + os(znn)zeak ])

P\ r(n) © - pn-l
L) Iy

/ &k
B kcos(fm) an)y + ; g TR

o0 -1

. R f b . R \
—sin{smn) PV ———cot(5Bx)dx},
(37n) ./o o — (38x) )
where PV denotes the principal value of the integral.

Proof. In proving the Abel-Plana summation formula of Entry 1, one proceeds
as in the proof of Entry 6, except that now

(2)
e:;:z:riz -1

is integrated over Cx +1/2+ Where now the right vertical sides pass through m +

, where m is a posmve integer. Furthermore, the semicircular indentations of
radms 6,0 <€ < 2. are centered at each positive integer j,1 < j < m. On
the left vertical side, we need a semicircular indentation at the origin, with the
upper quartercircle being part of cy ¥.m+1,2 and the lower quartercircle belonging

0 Cy iz
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We now set

zn—l

p(z) = (7.1

ez —1’ t
where the principal branch of z” is taken. Observe that ¢(z) has a simple pole
at z = 2mik/B, for each nonzero integer k, and also has a singularity at 7 = 0.
Except for the singularities on the imaginary axis, ¢(z) satisfies all the remaining
hypotheses of the Abel-Plana summation theorem, Entry 1. However, because
of the singularities, principal values need to be taken for the integrals appearing
in the Abel-Plana formula. We thus will proceed with the necessary calculations
in applying Entry 1 and make the necessary modifications to accommodate our
function (z), defined by (7.1).
First,

p(ix) — @(—ix) = x"! (e""""’/2 e"”("—')/l)

efx — | emifx — ]
xii—i . .
=~ @ e D) (2i sin (37(n — D) + 2i sin (Bx — 3n(n — 1))

n—1

X

= e ) (2 cos(3mn) — 2i cos(Bx — Lxn))
ol ) - ) .
= T cosBn (cos(3mn)(1 — cos(Bx)) — sin(37n) sin(Bx))
=x"""i (cos(3mn) — sin(37n) cot(}Bx)) .
Thus,
iPV/Ooo %dx = —cos(; nn)f

+ sm(qym)PVj = cot( Bx) dx.
(7.2)

Recall that (Gradshteyn and Ryzhik (1, p. 370, formula 3.411, no. 1]

o Xa—l 1
/ - dx = —T'(a)¢(a), Rea>1, Reb>0. (1.3)
0 ebr — 1 ba

Hence, from (7.2) and (7.3),
fwtp(x)dx +in/ oix) — (i) | _ F)E(n)
0 0

ewmx | ﬁn

I'(n)¢(n)

— cos(3n) Gy

. 00 X"—I

+ sm(%ym)PVfO e cot(%ﬂx) dx.

7.4
We now calculate the contributions from the poles. First considera pole 2 ik/8,

where k £ 0.0n Cj . .| s2» We make a semicircular indentation of radius € > 0
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in the right half-plane. For k > 0, we thus nced to calculate

o ik f+ie z,‘_ldz
nm i
er.,zn;k/g-;e € — 1)(e~2"iz — 1)
im [ Qrik/B + ee'')y'~eie’dp
= lim

0 Jo (ezmk+ﬁeexp(i0) - 1)(e—2;ri(2nik/ﬁ+e exp(iG)) _ 1)
nQrik/B)y"'i
- ﬂ(eanzk/ﬁ -1
an/lkn—lin

= _Zﬂ"/z(e"" ~y 1.5

since af = 4m?. Second, we examine the contribution about —2nik/g fork > 0.
We thus need to calculate

~2nik/B+ie Zn~ldZ

lim -
0 _onikp-ie \€
) -n —2mik/B + ey leiedo
= Ell_l’l‘(l) o (e—Zm‘k-Hie expi8) _ ])(eZni(—Znik/ﬂ»Hexp(ib‘)) _ ])

n(—2mik/ By~ i
- ﬁ(e4n?k/a —1)

nf2pn—1g¢_ :\n
_ ack ( l) ' (7.6)

Zﬂn/Z(euk —_ l)

Recall that, in the proof of Entry 6, we needed to take the difference of the integrals
over C¥, and C;, . In modifying the proof of Entry 1, we need to calculate
the difference of (7.6) and (7.5). To that end,

@2k (i) @MUt &Mk cos(3)
1 . — —
2ﬁn/2(euk N A Zﬂ"/z(e"" -1 Br12(e?* — 1)
Lastly, we examine the singularity at z = 0. Since Re n > 2, it is casy to see
that the contributions of the two quartercircular indentations tend to 0 as their radit

tend 10 0.
Hence, on the right side of (1.1), we must add, by (7.7), the additional expression

(1.7

R

Ay oS K (7.8)

In conclusion, by the modified form of (1.1), (7.4), and (7.8),

& k! T Fn)¢(n)

1
prranr i B cos(37n) 2y

k=1
n—1

o<
. 1 1
+Slﬂ(§ﬂn)PV>/(z mco!(zﬂx) dx
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n kn—l

1 o _
+ cos(57n) B ; prramy 7.9

Multiplying both sides of (7.9) by /8" and rearranging, we complete the proof.

Dot O/ ~ £\ . ALHN T s oo n 1 1 ~ ™
LOWY o (Xormuna (2), p. <0%). Letx > Oand —1 <n < 2. Then

. ®© "+dy
— 2cos(57rn)/(; @ =D + 4%
. %”(Iv,i)n_gcos(inn +2mx) — e cos(3n)
cosh(2mx) — cos(2mx)

.(8.1)

Proof. We apply the Abcl-Plana summation formula of Entry 1, but modifications

are necessary because of poles. Let
zn+l
)= =0
v@) 4+ 4x4

Observe that ¢(z) has simple poles at z = x\/icxp((m' +2rik)/#,0 < k < 3.
When k = 0, 3, the poles lie in the right half-plane.
First, a straightforward calculation shows that

21" cos(3mn)

o(it) — p(—it) = (.2)
’ v 14+ 4x4 N
Second, setting 1 = xu+/2, we find that
o0 o t"+|dl‘
1) dt = _—
j(; p() /(; Prawr
00 n+ld
= (x«/i)"'zf u4 :‘ = (x\/f)”‘zin' sec(§7n),
0 u+ (83)

by, for example, the calculus of residues or tables (Gradshteyn and Ryzhik [1, p.
340, formula 3.241, no. 2)). Therefore, by (8.2) and (8.3),

) o SEY — (s
f ‘P(!) dt +i/ Md'
0 0

elrt 1

e
(€™ — (% + 4x

o0

= %n(x«/i)"—z sec(3mn) — 2cos(%yrn)f =
0 )(8.4)

Retuming to the proof of the Abel-Plana summation formula, or to the proof of
Entry 6, we see that we must modify the proof by accounting for the contributions
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of the poles of
9(2)
e—Z:nz -1
at z = x+/2 exp(ri/4) and of
(z)
e271iz —1

at z = x+/2 exp(—mi/4). Denoting these residues by R’ and R”, respectively, we
find that

, (Xﬁen1/4)n+l 3 iem‘n/d(xﬁ)n—z
= 4(Xﬁeni/4)3(e—2ni1ﬁexp(ni/4) -1 T 4(etnxti-h — 1)

and, by a similar caiculation,

ie—n:rl/d(xﬁ)n—l

"
R" = A(p2rx(+) _ 1)
4(e 1)

Thus, by the residue theorem, we obtain on the right side of (1.1) an additional
contribution of

eJu'n/4 e—m'n/4
etrnx-i) _ | + etx(+i) _ ]

2ri(R — R") = %(xfz)"-? (

— E n—-2
2 =V 1 + e**x — 2¢¥75 cos(2m x)

(Zez’” cos2mx + yn) — 2 cos(';nn))
(\

cos(2mx + fmn) — e™¥* cos(inn))
cosh(2mrx) — cos(2m x) p

= 1()(«/5)"~2
2 7 (8.5)
Hence, using (8.4) and (8.5) in a modified form of (1.1), we conclude (8.1) to
complete the proof.

Entry 9 (Formula (5), p. 283). Let x be a positive, nonintegral number, and let
0<n< 1. Then

n—1

o0 n

3 kzk = thz (tan(A7n) — cot(nx))
-x

k=1

9.1

| ) /‘00 z"dZ
+ 2sin(37n) Jo @ — N2 +x0)

where principal values are taken.

Proof. We shall apply a modified form of the Abel—Plana.surpmation f(_)rmflla
from Entry 1. This modification is necessary because the function in our applncathlr;
has a singularity at the origin and a simple pole on the real axis. We thus wi
indicate the modifications in the proof of the Abel-Plana formula that need to be
made.
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-1 -
Z" n—1

o(2) = + }
Z+x Z—x

By straightforward, elementary calculations,

226" - (—i)")

0i2) = p(-id) = —=——

9.2)

and

2k"
k) = e a2 9.3)

for each positive integer k.

We now indicate the alterations that we mentioned above. For positive integers N
and m, let C f,m denote the positively oriented indented rectangles with horizontal
sides passing through 0 and +i N, respectively, and with vertical sides passing
through 0 and m + % The indentations are quartercircles of radius € about the
origin in the upper and lower half-planes, respectively, and semicircles C} and
C,, of radius € about x in the upper and lower half-planes, respectively. Because
n > 0, the limits, as € tends to 0, of the integrals around these quartercircles equal
0. The union of C} and C_” is a negatively oriented circle of radius € centered at x.
We therefore obtain contributions on the “right side” of the Abel-Plana summation
formula equal to

Jim " 'dz N l’m/ 2" 'dz
- T amie  1vr. . I —
€0 cr (e—2mz — 1)(2 —-Xx) €0 c- (e2ml — ])(Z — X)

i 0 (x + €y eie®do 7 (x +ee®)leie?do
— lim - - — =TT — —
=0 J, (e—zﬂi(z-'rsexr;(:s)) _ i)ee'” é_,ojh (eZritx+eexplion) _ l)ee'"

inx"! imx" !
e—2m'x -1 - e2m‘x —1

It

37ix"™! (G cot(mx) — 1) + (i cot(rx) + 1))

= —mx""' cot(rx). 9.9

Hence, using (9.2)~(9.4) in our modified Abel-Plana summation formula, we
find that

00 k” o n—] oc

2Z 5 = [ z‘ dz+PV/

k=1 - X Jo TTX Jo T—x

"dz
edmiz _ !)(.7.2 ".'.!2)’

Zn—l

dz — mx"" cot(nx)

-
[¥)

>

+ 4sin(§n) [ : 9.5)

where PV designates the principal value of the integral. However, by (8.3) and a
resuit in Sansone and Gerretsen's book [1, p. 133},

oo} Zn—] oo Zn-l
f dz + PV[ dz = 7 csc(rn)x""! — 7 cot(m)x"~!
o Z+x 0 I—X
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=ax""! tan(%nn). 9.6)

Putting (9.6) in (9.5), we readily deduce (9.1) to complete the proof.

Entry 10 (Formula (6), p. 283). Let x be positive, and let 0 < n < 1. Then

X kn . | mx" 1 cos(
T %nx"' sec(37n) +

prri €

"dz

2sin(4 l:’V‘/‘oc —_.
+ sm(zﬂn) b (€2 — 1)(z% — x2) ao.1y

Proof. As in the previous proof, we apply the Abel-Plana summation formula
under appropriate modifications.
Let

() = + )
¢l2) z+ix z-—ix

Then, by elementary calculations,

) . 277" — (—i)™) 4i sin(Amn)z"
@(iz) — p(—iz) = — P Rl sz (10.2)
and
2k"
ok) = Al (10.3)

for each positive integer k. Also (Gradshteyn and Ryzhik [1, p. 340, formula 3.241,
no.2)), for0 <n < 1,

x) [¢.*] n d
[ e@)dz=2 / ,zz—‘lf—z =nx""sec(n). (10.4)
Jo Jo +x

In modifying the proof of the Abel-Plana summation formula for the present
application, we take quartercircular indentations around the origin in the two rect-
angular contours. By the same argument as in the proof of Entry 9, we get contri-
butions of 0 when we let the radii tend to 0. We also take semicircular indentations
of radius €, C;* and C_, in the right half-plane about the poles z = tix, respec-
tively. On the “right side” of the Abel-Plana summation formula, we then obtain

cantrihutione of
gonuiounons of

5 Z"_IdZ + " f Zn—ldZ
- m —_—
(T}) ‘/(«‘ (e—Zm'z —D(z—ix) >0 c- (eZmz, — 1)z +ix)

7 (ix +ee®)'eie’do

= — (ll_lR) o (e 2milixteexp@@) — [)¢eil
. -7 (—ix +€e'®) " leie®dl
+ !!_'R) A (elni(—-ix-t-s exp(if)) _ l)ee”’
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ean -1 e?,,'rx -1
2rx"" cos(%nn)
prrTm— (10.5)
Teino (10212410 5) in nnrmadifiad Ahal_Dlana atrmammatiam farmla 2 d 22003
SATRIIS \ A VA T\ AV ) A VUL ARUVUINIVUG AUV 1alia SBINNTanion 1ormuia anda aivia-
ing both sides by 2, we arrive at (10.1) to complete the proof

Entry 11 (Formula (2), p. 268). Let ¢(z) be an entire function. Let Cy denote a
positively oriented rectangle with its horizontal sides passing through +iN and
its vertical sides passing through 2N + 1 and —2N, where N is a positive integer.
Assume that, for B > 0,

i 7T(z + DL (@)e()(2V/B) !
l dr = )
im fCN M4z + Dsin(n2) =0, at.n

N-ooo

where {(z) denotes the Riemann zeta—function. Then, ifa, B > 0 and ap = n?,

oC Bn n 00 _ n
oV («p(O) 4y Zuene ) =g (m) TP Ak §
n=1| - .
(11.2)

n=]

where B;, j > 0, denotes the jth Bernoulli number.

Proof. We integrate

tin .o Tl + 13 @e@)2VE)
f@): 2P (5z + 1)sin(37z)

around the contour Cy. Observe that f(z) has simple poles at z = 1, because
¢{(2) has a simpie poie at z = i, at z = 2Zn, for each nonnegative integer n, and at
z = —2j -1, for each nonnegative integer j. Note that f(z) is analytic at z = 2n,
when n is a negative integer, because ¢ (z) has a simple zero at z = 2 (Titchmarsh
(3, p. 19]). We next calculate the residues.

First,
el
R, = Yroh), (11.3)
2VB
since '(3/2) = /7 /2. Second,
R. — _Lormn 11 AN
no 2¥\WJ, t1r.4)

since ¢ (0) = ~% (Titchmarsh {3, p. 19]). Third, for each positive integer n,

(1" @n)! EQ@mg2n) _ 7w BygQn)
R;, = = —
2 n! (4ﬂ)" 2"' ﬁ" » (115)
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by (0.2). Fourth, using (0.3), we find that
(=1 re(=2j — Do(=2j - VBV
22 T(=j+ 1)
(=1 /R By a20(=2j = D(=j + P + 3 = HRVAV*!
221 2j +2)
JAByj2p(=2j — DB/
- 2+ D! '
Thus, applying the residue theorem, using our calculations (1 1.3)~(11.6), letting
N tend to 0o, and employing (11.1), we find that
™ B, (20 Brjsap(=2) — D
R RV e TSI
=1 j=0

K_2j-1 =

(11.6)

=0.

Letting n = j + 1 in the latter sum, multiplying both sides by —2a~'/%, using the

Y Y R 3

hypothesis ¢ = x2, and rearranging, we compiete the proof of (11.2).

Entry 12 (Formula (5), p. 269). If n is any positive integer, then
[ kdn an B [ k4n—l
Z PR AT et Z ok _1]°
= sinh*(wk) 7 8n Lottt —

Entry 12 was communicated in Ramanujan’s {10, p. xxvil first letter to Hardy
and was later proved by C. T. Preece [1] in 1928. The first proof in print, however,
appears to be by M. B. Rao and M. V. Aiyar [1] about four or five years earlier. E.
Grosswald {2] and the author [6] nave aiso found proofs.

Entry 13 (p. 273). Ifn is an odd positive integer, then

oo 1/3 n 2= Uns2
kz—li?%};-%z = 3 (;((2" +2) + 3{(2")) + mﬂz + 270"
where
3 1 1
u4—_—.—§, vg =0, v = 2—73“0, 16 m:
191 907
iizo=53—l—o, ?f‘za=m~~--

293]), where only the ﬁrst wo cases are presented. All six evaluations above can
be deduced from the general formula (Part I1 (2, p. 293, eq. (25.3)])

Proof. This entry is a sequel to Entries 25(i), (ii) of Chapter 14 (Part II [2, P-

n+1

coth(wk) tn 20+ K+l Bon+2-2« 13.1)
ZI e Z( D (2k)'(2n+2 2 (
k=
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where n is a positive odd integer, and B;, j > 0, denotes the jth Bemoulli number.
It is now routine to check that for n = 1 3,5,7,9, and 11 Ramanujan’s claims
agree with (13.1).

For references to proofs of (13.1) and special cases thereof, see Part I {2, p.
293].

Ramanujan writes the next entry in terms of a function ¢ “defined” by

00 n
o=y ELEh lln(x)". (14.1)
n=0
This series does not converge for any finite value of z, and so ¢ is not well defined.
We will therefore find a function ¢ which has an asymptotic expansion, as z tends
to 0o, given by (14.1). Several functions may have the same asymptotic expansion,
but the function ¢ defined below will be shown to satisfy Ramanujan’s claim.
Define, for z > 0,

e e '*dt
¢’(Z) = (P(Z,X) = ZjO A + 1)~ ’

(14.2)

where x is any complex number. Now,

e =Zw 1] < 1.

n=0
Applying Watson’s Lemma (Olver [1, p. 71)), we find that, as z tends to 0o,

Q0 _l n n
p(2) ~ Z()A

n=0 z
which agrees with (14.1).

Entry 14 (Formula (1), p. 276). Let ¢(z, x) = ¢(2) be defined by (14.2). Then
Jor0 < Rea < 1, and any complex number x,

o

na’{(x) _  nma 1 (—=1)""'a?¢(2n) e~ "9 (2n na)
2sin(drx)  2x-1) 2 * Z +2 2n '

(14.3)

n=1 2n—~x n=1

Proof. Using (14.2) and inverting the order of summation and integration by
absolute convergence, we find that

—2nna

o0 —
Z e (p(27ma) —an 2nnat

n=| 0 (l +t)x

— 7[0/ (l + ‘)—x Z e—27rna(1+l)dt
0 n=1

_ na[ dit
o (+ t)x(eZJm(l+l) -1 :
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Thus, (14.3) is equivalent to the formula

ratt) _ma 1§ eT0n
2sin(zmx)  2x—-1) 2x = 2n —x
s dt
+ma [ AT @y (14.4)

We now temporarily add the restriction, Re x < 0. Then

* dt ]"" dt
j(; a +t).\:(e27|a(l+|) -1 - . t.r(eltral -1

oc dt /‘ dt
=f0 ¥ (e2at — 1) - o (e — 1)

) ! dt
= @ra)” T~ 02 -0 = | o

(14.5)

by a well-known representation for { (s) (Titchmarsh (3, p. 18])-. Employing the
functional equation (0.4) of ¢ (z) in (14.5), and then using (14.5) in (14.4), we see
that we are required to prove that

n—1_,2n 1
ra _1_ +i -1)""'a*>*¢r(2n) —xaf 2d‘, ~0, (1456)
2(x—-1) 2x o 2n —x o 15(e¥4 —1)

where Re x < 0. . . )
Using the generating function (0.1) for the Bernoulli numbers and inverting the

order of integration and summation by absolute convergence, we find that, for
Rex <0and0 < Rea < 1,
o0

l n
ra ot L[ R B,
o (e —1) 2 Jp = n!

1 XX B,(2ma)" 1
2 & n! n—x
1 1 & Bu(2ra)”
oLy ra L3 BuCra®
2x  2x-1) 244 2n)!(2n — x)

1 na X (—1)"" "¢ (2n)a®
=5 twa-pn’t Z T oam—x
2x  2x-—1) - 2n —x

n=1

by Euler’s formula (0.2). Hence, we have proved (14.6) for 0 < Rea < 1 and
Re x < 0. Using analytic continuation, we find that (14.3) holds for all complex

X.

On pages 277278, Ramanujan records five enigmatic formulas, all of the same
type and each apparently arising from Eisenstein series. These formulas are num-
bered (9), (10), (11), (12), and (14) in a long list of results, but the remaining

W arata e
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formulas in this series have no relation to these five formulas. All five formulas
involve the Bernoulli numbers B,. For each of the next five entries, we precisely

onota Damanniam avam thowal Lio oo at

quote Ramanujan, even though his convention for Bernoulii numbers is different
from ours in (0.1). We then determine those values of n for which the proposed
claim might have validity. For each formula, there is a sequence of values of n for
which the result is classical; in mosi cases, ihe iheorem can be found eisewhere in
Ramanujan’s notebooks. After discussing the classical case, we reformulate Ra-
manujan’s claim for those values of n for which Ramanujan’s claim is completely
new. We lastly, in each case, prove the new theorem.

Proofs of Entries 15-19 were first proved in a paper with P. Bialek {1].

Entry 15 (Formula (9), p. 277).

— k! Bl |B,] TN 1 2cos(ntan”' §)
Y=ot s (T gt e
e -1 2n n 4712 5

2cos(ntan™' 1)  2cos(ntan™' 1) l
/2 72 N
10"/ 13~ 5.1
“where 2, 5, 10, 13, ... are sum of squares of numbers that are prime 10 each

other”

In Ramanujan’s convention all the even indexed Bernoulli numbers are positive,
in contrast to the usual definition in (0.1), and so we have inserted absolute value
signs around his B,’s.

Itappears to be difficult to discern the pattern in the numerators on the right side
of (15.1), but a natural pattern will emerge in the proof below. If n is a positive
odd integer exceeding 1, B, = 0, and so (15.1) cannot be valid, as the left side of
(15.1) is positive. Numerical calculations indicate that (15.1) is apparently false
if n =1, even if we assume that B, = j, instead of —3 from (0.1). We thus
conclude that Ramanujan apparently intends » to be an even positive integer.

Letn = 4m + 2, where m is a positive integer. Then (15.1) reduces to the claim
el k4m+l _ B4m+2

Sk 1 . 15.2
e e2nk -1 8m + 4 ( )

Indecd, (15.2) is correct. To the best of our knowledge, (15.2) was first proved by
J. W. L. Glaisher (1] in 1889, although an equivalent formulation was established
in 1881 by A. Hurwitz [1], [2] in his thesis. Moreover, (15.2) is found in Section
13 of Chapter 14 in Ramanujan's second notebook [9, p. 171]. For proofs of other
generalizations of (15.2) and for references to the many proofs of (15.2) that can
be found in the literature, see our paper [6) and book [2, PP- 261-262].

In concluding our discussion of (15.1), we remark that the instances when
n = 0(mod4) appear to be the only ones remaining for which (15.1) may be

correct and new. Indeed, (15.1) is then of great interest, for in these cases a curious
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infinite series appears on the right side of (15.1), and there are no comparable
results in the literature.

Before we state Theorem 15.1 it is necessary to provide a discussion about

solutions to
e=c*+d, ged(c, d) = 1, (15.3)

where ged(c, d) denotes the greatest commen divisor of ¢ and 4. We partition the
solutions of (15.3) into three classes. First, suppose that ¢ # d and cd # 0. Then
each solution (c, d) of (15.3) generates eight solutions, namely,

+(c, d), £(c, —d), +(d, ), *(d, —o). @)
The case ¢ = d = 1 generates four solutions, namely,

+(1,1), +(1, -1). (i)

rates the four selutions

+(1,0), +(,1). (iii)

We shall say that the solutions (¢, d)) and (c2, d2) of (15.3) are distinct if they
do not simultaneously belong to the same sct of eight solutions in (i), or the same
set of four solutions in (ii), or the same set of four solutions in (iii).

Recall that solutions (c, d) of (15.3) exist if and only if the prime factors of £
are all of the form 4k + 1, except for the prime 2, which may occur to at most
the first power (L. Niven, H. S. Zuckerman, and H. L. Montgomery (1, p. 164]).
Although not needed in the sequel, we also recall (G. H. Hardy and E. M. Wright
{1, pp. 24i-242]; Niven, Zuckerman, and Monigomery {1, p. 167]) that if r(&)
denotes the number of representations of £ as a sum of two squares, then

r(f) = A‘Y‘(_l)(d—l)/l=

@=4) (
dit

Of course, in (15.3), we have imposed the restriction gcd(c,d) = 1.

Theorem 15.1. Let m be a positive integer. Then

N Bun  (—1)"Bum 1+Y\2cos(4mlan"§—;%)\'
3y ,

ek — 1 8m 4m  \2m en

/
(15.4)
where the sum on the right side of (15.4) is over all integers £ > 2 representable
by (15.3), and where for each &, the sum is also over all distinct solutions (¢, d)
of (15.3).

Observe that the four terms in curly brackets on the right side of (15.1) arise
from (15.4) whene¢,d = 1,1:2,1;3, 53,2, respectively.
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Proof. First,
Q kdm—l {09_\?00; 0
_ 4 — IA—2k < f =2 1o oy
Lot = 2.2k =) oamoi(n)e” ", (i5.5)
=1 k=1 r=1 n=1

where oy (n) = 34, d*. Now if n is an integer with n > 2, and if Im(z) > 0
(Rankin [1, p. 194, eq. (6.1.4)]),

= B By & 1
Oy (K)e2min = 222 _ 22 (L 15.6
; 4n  8n Q(;_w (ct +d)* (15.6)
{c.d)=I

wherg the prime / on the summation sign indicates that the term withc = d = 0
1s omitted from the summation. Thus, by (15.5) and (15.6),

> K7 _ Ban  Bun i .
P etk _ g 8m 16m = (ci +d)¥n . (15.7)
(c.d)=1

Let tan~' z denote the principal branch of the inverse tangent relation, i.c.,
|arg w| < 7/2. Then

(ci +d)™* = €2 exp(—dmi tan~' (c/d)), (15.8)

where £ is defined by (15.3). Since the sum on the right side of (15.7) converges
absolutely, we can rearrange the terms in any order. So, we group terms according
to increasing values of £.

We now sum the terms in each of the cases (i)-(iii), described prior to the
statement of Theorem 15.1. For fixed ¢, d, with ¢, d > 0, the eight terms in (15.7)
for case (i) equal, by (15.8),

2 N 2 N 2 R 2
(ci +d)* * (—ci+d)™  (di+c)* ' (—di+ )™

= Re [ c +ld)4'~ T airon l
= 4¢7*"Re {exp (—4mi tan~' (c/d)) + exp (—4mi tan~'(d/c)))
= 467" [cos (4m tan™" (c/d)) + cos (4m tan~" (d/c)))
=8¢ cos (4m tan"' (c/d)) , (15.9)
since
tan~'(c/d) +tan"' (d/c) = /2. (15.10)

We now show that

cos (4m tan™! (3)) = (—=1)" cos (4m tan~! (Z;—Z)) . (15.11)
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Observe that
c+c—d
/ /d\ e —d\\ ) 4
—1i d tan_l <~ w - (%] C T U =I
e ) v () = T )
1-=
d\c+d
Hence,
d c—d b4
= HH—)== , 15.12
w () v (S) =T omn s

for some integer k. Thus, (15.11) follows easily. Hence, by (15.9), the sum of the
eight terms in case (i) equals

8(=1)"e=2" cos [ amuan=' (<=9 )Y (15.13)
S \ \c+d/)
In case (ii), the sum of the four terms cquals
2 2 4 4(—1
e tase - elam )“'") - 119
In case (iii), the sum of the four terms equals
4. (15.15)

Using (15.13)—-(15.15) in (15.7), we deduce (15.4).

Entry 16 (Formula (11), p. 278).

o0 k—1pn—1t
DR " | Byl n 1
— kn _ gk @' -0 n cos (_) 2772

2cos (n tan~' 1) . 2cos (ntan™! 2) 4 )
107/2 262

PRY

7 {(i6.1)

As before, it appears that Ramanujan intends n to be an cven positive integer.
If n = 4m + 2, where m is a positive integer, (16.1) reduces to the evaluation
00 (_ l)k—lk4m+l
& sinh(km)
This result is due to A. Cauchy (1, p. 362] and is also found in Glaisher’s paper
[1]. Many proofs of (16.2) can be found in the literature; see the author’s paper [7,
p. 337] for a list of several authors. If n = 2, (16.1) and (16.2) are false. In fact,
e (_l)k—lk _ L
£ sinh(kmr) ~ 4r’

=0. (16.2)

a result also due to Cauchy {1, p. 361]. See the author’s paper (7, p. 337] for
another proof and references to further proofs.
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For other generalizations of (16.2), see our paper [7} and book [2, ppP. 294-295].
If n = 0 (mod 4), (16.1) is new, and we state a precise version of this in the

next theorem,
Theorem 16.1. Let m be a positive integer. Then

o0 (_])k—-lkdm—l _ mondm B4m
Y =" o

pt ek.'r — e—kn
1 2cos (4mtan~' (£4))
x (2_2m +2 )
(16.3)

¢ even

where the sum is over all even positive integers £ > 2 that can be represented by
(15.3), and, for each fixed €, the sum is also over all distinct odd solutions (¢, d)
of (15.3).

Note that the sccond and third summands on the right side of (16.1) arise from
the terms withc = 3,d = 1 and ¢ = 5,d = 1, respectively, in (16.3).

Proof. First,
oo(l)klkqml b k=1 4m-1 _—k(2r+1) S
=)k e Kert i am—1(n)e™ "7,
D PN 2 fiot
= =1 r= n=|
(16.4)
where
Sy = Y (=nldh {16.5)
dln
n/d odd
Second, we repeat the argument made in the proof of Theorem 15.1 wiih the
added stipulation that the indices in the Eisenstein series be odd. We thus find that
o 1 1 2cos (4m tan™! (L+d
Y w2 o » (166)
cd=-0c (ci + ) € even 4
(c.d)=1
c.d odd

where the summation on the right side of (16.6) is over all even ¢ > 2 that are
representable by (15.3), and where, for each fixed ¢, the sum is also over all distinct
solutions (c, d) satisfying (15.3).

Third, we need an analogue of (15.6), where in the Eisenstein series on the right
side of (15.6) we sum only over odd ¢ and d. To that end,

o0

Z (Ct+d)2" Z Z (cre {-dr)2"

c.d=—- r=1 cd-——oo
c.d odd rodd (c.dy=
cd odd
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ad 1
— _ 9~ In -
= c@n)(1 -2 )‘._;:_m et
(c.dy=1
¢.d odd

(16.7)

Put

Then

o | . . o) , i
PO il VI VD P D fr
qit_d_od:]n \’ ceven d even

= G (1) = G2, (27) = 272G 2x(1/2) + 277G 2 (7).

(16.8)
Writing (15.6) in the form
0 .
G2u(1) = 20Q2n) + Dy Y 0201 (K)™™,
k=1
where
22 i)
on = —(2n O (16.9)
we deduce from (16.8) that
5 1 2 ( o 2mik )
= —h D n - k 1.4
Y ogam =T (RE0 + D, Z”’ 1(k)e
c.d=—00 " 4 \ k=1 7
c.d odd

- (24(2") + Dy Zaz,,_l(k)e“”"“)

k=1

k=1

- 2—2n (2((2") + DZn Z a2n—l(k)e”““)

ad i { - ikt
— D?_n EUZII—I(I() [(l +2—2n)e2mkr _ e4mkt -2 ?_ne:r k }
k=1

= D Y {x2(k)ozm_1(k/2)(1 +277)
k=1

— xa(k)ozn-1 (k/4) — 020 ()27 ) €T,
(16.10)
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where
yalk) = l 1, if k is even,
[ 0, if k is odd,
and
1, if 4k,
xak) = )
0, otherwise.
Since, from (0.2) and (16.9),
{(2n) _ By,
Dz,, 8n ’
wa ranclhids fram (14 7)Y and (146 10 that
we conclude from (16.7) and (16.10) that
> B, ad 1
han_1(k)e™ T = (2 — 1) = — 16.11
2_: m-1(k)e ( )5 Zj T (16.11)
K=1 €.a=-=00
(c.d)=1
c.dodd

where
hau_i(k) = =22 { x2(k)o2a_1 (k/2)(1 + 272")
— Xa(k)o2—1 (k/8) — 02—y (k)27"}
021 (), ifk =1,3 (mod 4),

_(22" + I)UZn—l(k/2) + UZn—l(k)v ifk=2 (mOd 4)’
~A2n

’

l =27 + Doa-1{k/2) (i6.12)

+ 2% 031 (k/8) + 0201 k),  ifk =0 (mod 4).

We now reiurn to the definition of f>,_; (k) given in (16.5) and relate it io the
definition of h,,_((k) above.

First suppose that k is odd. Then k/d is odd for all divisors d of k. Hence,

Sy =Y (=1 =) a7 = 0,y (k) = hoai (K),
dik dlk

by (16.12).

Second, suppose that k = 2 (mod 4). If k/d is odd, then d is even. Thus,

f2n—l(k) = - Z d2"_l‘

dlk
d even
Write d = 2d,. Then
Sy == @d)" = =27 Y d =~ gy, (k)2).
2, |k dy|k/2

(16.13)
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Since k = 2 (mod 4), it follows from the standard product formula for a,(k)
(Hardy and Wright [1, p. 239]) that

o1 (k) = 2" + Dow_1(k/2).
Thus, by (16.12),
Ran 1 (k) = (=22 =142 + 1o, 1(k/2) = —2"""'020_1(k/2) = fon1(k),

by (16.13).
Third, supposc that k = 0 (mod 4). Then,

on—l(k) = - Z d2n71 = —Zdz"‘l + Z d2n—-l

dlk dk dik
k/d odd kjd cven
= - Zd2n—l + Zdh"l = —a2n—l(k) + aZ/l—l(k/z)-
dlk dl3k

Define the integer a > 2 by 2“||k. Then by the aforementioned product formula
for oy, (k),

2(n+l)(2n~l) —
San-1 (k) = ‘W(’n—l(k/z) + 02,1 (k/2)
2a(2n—l)(] - 22n—|)
= —Waz,,q(k/%. (16.14)

On the other hand, from (16.12), when k = 0 (mod 4),

7 /z(a HQn- I)_l\

hap1 (k) = — (2% + V)o2a_ (k/2) + \ a1y — }Gzn 1(k/2)
(a+1)(2n-1) _
4_——2 lgm, .(k/?\
F e = o2
2(1(2:1—!)([ - 22n—l)
= —Z“W-azn_l(k/z)
= fu1(k),

by (16.14). . .

In conclusion, for all ¥ we have shown that hz,_ (k) = fa,— (l{). Using this
factin (16.11), setting T = i and n = 2m, and combining (16.11) with (16.4), we
find that

SN DRV (B L (16.15)
D el Call Vv “l;m (i +d)™
k=1 (c.dy=1

o.d odd

Combining (16.6) and (16.15), we complete the proof.
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Entry 17 (Formula (14), p. 278).

lklknl B
Z() _ Il (ml)

Perll e GV 3
] 2cos{ntan~t L. l

a71.n

As before, Ramanujan cvidently intends n to be even. Thus, set n = 2m. If
m % 0 (mod 3) and m > 1, then

i (=Dt __|Bzmlcos(@) B

= = - . 17.2
= k3 _ () 2m 3 4m (17.2)

This result was apparently first established in print by M. B. Rao and M. V. Aiyar
in papers published in 1923-1924 [1], [2]. Thus, even the special case (17.2) was

a o alen Do et
first proved by Ramanujan, although he never published a proof. See also Bemdt’s

paper [6, p. 157, Prop. 2.8), which also contains some generalizations of (17.2).
If m =1, (17.1) and (17.2) reduce to the claim
S (=) B 1
_CW B L 173
Pt V3 _ (=1 4 24

Now (17.3) is false. In fact (Berndt (6, p. 159, Prop. 2.13)),

i D% L,
e A— (-1 24 any3

which was also first established by Rao and Aivar {11

as QS0 215 CORVASACC Oy a0 alk aMyas gaje

Thus, it remains to prove (17.1) for n = 0 (mod 6).

Before stating Theorem 17.1, we need to offer some remarks about the solutions
of

6= —cd +d?, ged(c,d) = 1. (17.4)

We consider three cases.
First, suppose that ¢ # d, cd # 0, and that (2,1) does not appear in the list
immediately below. Then each solution (c, d) generates 12 solutions, namely,
)
t(c,d), *(d,c), *(c—d,c), *(c,c—d), *d,d—c¢), *(d—-c, d).
Second, for £ = 3, there are only six solutions, because, for example, if ¢ =
2,d =1,thenc —d = d, and so (c,d) and (c, ¢ — d) are not distinct. The six
solutions are

(i1) @2, 1), +(1.2), (1, -1).
Third, for £ = 1, there are again only six solutions, namely,
(ii) +(1,0), +(0, 1), +(1, 1).
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We shall say that two solutions (cy, d)), (¢c2, ;) of (17.4) are distinct if they
are not both simultaneously in any of the three solution sets given in cases (i)—(iii)
above.

Those integers € that can be represented by (17.4) have the representation

14

. AaTT G,
£=3"|1p
j=

i

where a = O or 1, the primes p; are distinct and have the form 3; + 1, and a; is
a positive integer, 1 < j < r (Niven, Zuckerman, and Montgomery (1, p. 176]).
Although not needed in the sequel, we note in passing that if r(€) denotes the
number of integral solutions to £ = ¢ — cd + d?, then by a theorem of Dirichlet
(1,
r(€) = 6(d13(6) — d23(8)),

where d;1(€), j = 1,2, denotes the number of divisors of £ of the form 3k + j.

Theorem 17.1. Let m be a positive integer. Then

00 (_l)l(—]k6m—| B Bém
— ek”ﬁ—(—l)k ~ 6m

Bém
— m_
+ (-1 a

3—;;; . 2; cos (6m tane'};(ﬁ;))

X »
(17.5)

where the sum is over all integers € > 7 that are representable by (17.4), and
where, for each fixed €, the sum is also over all distinct solutions (c, d) of (17.4).

Proof. First, if o = exp(2wi/3),

i (_l)k—lk()m—l i k()m—l€27{imk iikm_l ks
—_— = _— = e
poe ekn /3 _ (=) P 1 — e2miwk Lt e
& ; Bsn  Bem 1
— rion . _ ,
B ;a(,m_.(n)e 12m + 24m c.‘;w (cw + d)tm
(c.d)=1
(17.6)
by (15.6).
Next,
/ / 3 A\
(cw+ d)*™ = £ exp (6mi tan™"' (u . C)) , 171.7

where £ is given by (17.4). We shall group terms in (17.6) according to increasing
values of €. This rearrangement is justified by the absolute convergence of the
double series in (17.6).
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We consider first the 12 terms on the right side of (17.6) that arise from a typical
value in case (i). This sum of 12 terms equals

2 2 2

(cw + d)om + (dw + ¢)om + ((c —d)w + ¢c)bn
2 2 o]

+ (cw + (¢ — d))om + dw + (d — ¢))tm + (d = c)w + d)bn

(17.8)
Observe that

+
. -1 V3 -1 dv/3 __2d—c¢c 2c-d _
tdn(tan (—Zd—c) + tan (2c—d = ) 3o = /3.

Thus,

_i/ c«/g\ _i/d\_/r\ ™ .
wr\aa =)t sema) =T

for some integer j. Hence,

arg(cw + d)®" + arg(dw + ¢)®" = 2kn,

for some integer k. Therefore, (cw+d)~%" and (dw+¢) %" are conjugates. Using
(17.4) and (17.7), we find that the sum (17.8) equals

1 1 1
4Re{ —— ) +4Re[—— _
e((cw+d)6’")+ e(((c—d)w+c)6”')+4Re(((d—c)w d)ﬁm)
tedolar AN (e-a
= mRe lexp k— mi tan kZd —c)) + exp k—-émz tan kf—

+exp< 6 'tan‘i( c""))}

—6mi vTewve
c+d

= I% Icos (6m tan~! (22{50 ) + cos (Gm tan~" (E%/E))

-1 (d—c)\/i
+cos(6mtan (—_c+d ))] (17.9)

By a calculation similar to one above, we find that

. —1/ C‘/i\ .-*—1/(‘-“‘1%/3\\_

an \2d_(_}—bau \ crd }—%'i‘jﬂ,

for some integer j. Hence, the sum in (17.9) equals

12¢7%" cos (Gm tan™! (2;\/_55)) . (17.10)
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Another elementary calculation shows that

/ A\ A4
———+
2d—c) tan” kf(d—c)) m

rom {17.10), the sum of our 12 terms equals

for some integer j. Thus, i

12(—1)"€"*" cos (6mtan" (\g(;f C))). A7.11)

For case (ii), a similar argument shows that the six terms total

6(—1)"37". 17.12)

For case (iii), an easy argument shows that the six terms total

6. (17.13)
Using (17.11)-(17.13) in( .6), we find that
x (DS Bom | Bem l6 6(—1)"

+ ]2('1)"] z [jm
£

(,17.14)

where the sum is over all £ = 7 that can be represented by (17.4), and where,
for fixed £, the sum is also over all distinct solutions of (17.4). The desired result
(17.5) now foiiows upon simplifying (17.14).

Formulas (10) and (12) arise from a different Eisenstein series. We thus begin
by deriving an analogue of (15.6). An alternate proof may be abtained by using
Fourier series of Eisenstein series of level 4 (Schoencberg [1, pp. 154-1 5.

Lemma 18.1. Letlmt > 0, andletn be a positive integer exceeding 1. Then

Z( D aaa-1(2k + D D2

k=0
BZn X ("l)“’l‘
= '22"—7- 22'1 —1 L A
(2J'+'I'7J¢+1)=|

Proof. Recall the partial fraction decomposition

oc k=1 Tit/2 0

(-1 \ \ e K rit(Qk+1)/2
T —lpsec(Grty)=T—7 =7 -1)'e .
2 -1+t 2 (2 ) 1+ e™iT g( )
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Differentiate both sides with respect to 7 a total of 2n — 1 times to obtain, after
some rearrangement, ,

Z(—l)"(2k 4 )2l it @2
k=0
/2 \ 2n k=1

=12 - 1)1( ) &___
(k=140
Replace 7 by (2 +1)7, multiply both sides by (— 1)/ and ; .
We then deduce that y (=1)’ andsumon j,0 < j < co.

oo 00
ZZ(_I)i+k(2k + 1)2n—lem(lj-H)(Zk+l)r/2

j=0 k=0

= %'(—l)" ‘2n - |)|( )ni i : (—1)i k-t

2 —1)2n
7=0 k=—o00 (2j+ Dt +2k—1) (18.1)

Note that the summands (— 1)/t~ /((2j + 1)T + 2k — 1)*" in (18.1) are invariant
upon the replacement Of:_} by —j — 1 and k by —k + 1. We also observe that the
double sum on the left side of (18.1) can be rewritten in terms of a2,—,. Thus, we
may rewrite (18.1) in the form ’

x
3 (1Y G20y (2r + DM@
r=0

2n oo .
= li(=1y""'@n - 1! (3) (=7
) )z > @+ Dr+ 26+

j=—00k=—00

=Li=)"'@n—1) (;[2-) (1 =272y (2n)

80

(=™

X

g;,o (2j + DT + 2k + 1)
(21+l 2k+1)=1

Upon using Euler’s formula (0.2), we complete the proof.

Entry 18 (Formula (10), p. 278).
S, (=1 (2 + D! 22— | 1Bl . s;ny
£+ cosh {2k + D7/2} &= h=msini7)

(1 2cos(ntan'}) 2cos(ntan'?) |
12'1/2 10772 -+ 26772 2L -

(18.2)

As wiFh the previous formulas, most likely, Ramanujan intended » to be an even
positive integer. If we setn = 4m, where m is a positive integer, in (18.2), we find
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that
o~ (CDF@Ek + D!

=0. (18.3)
&= cosh {2k + D)7/2) o

This result was first proved by Cauchy (1, pp. 313, 362}. Ramanujan [2], [10,
p. 326} offered (18.3) as a problem to the Journal of the Indian Mathematical
Society. In Section 14 of Chapter 14 in his second notebook [9], Ramanujan
recorded (18.3) as a corollary of a beautiful, more general theorem (Part II {2, p.
262]). For references to the many proofs of (18.3) and statements and proofs of
more general theorems, see the author’s paper [6, pp. 176-178} and book [2, pp.
261-262].
The next theorem gives a precise version of (18.2) when n = 2 (mod 4).

Theorem 18.1. If m is a positive integer, then

< (—l)k(2k+ ])4m+l M

— (_l)m24m+2(24m+2 - l)

£ cosh {(2k + 1)m/2} dm+2
) (= 1)+ cog ((4m + 2) tan™" (% )
X 22m41 - - £2m+) ' (18.4)

where the summation on the right side of (18.4) is over all even positive integers
£ > 2 that are representable by (15.3), and where, for fixed £, the sum is also over
all distinct pairs (c, d) satisfying (15.3).

It is easily checked that the second and third displayed terms in Ramanujan’s
formulation (18.2) arise from the terms when ¢ = 3,d = land¢ = 5,d = 1,
respectively, in (18.4).

Proof. We first transform the left side of (18.4). To that end,
i(_l)k(zk_'_ 1)4m+| _, 00 (—l)k(2k+ |)4m+le—(2k+l)x/2

£ cosh {(2k + 1)m/2) —~ 1 + e~@+Dr

© 0C
=2 Z Z(_])k+n(2k + ])4m+le—(2n+l)(2k+l)ﬂ/2
k=0 n=0

o0
=2 (= 1) G 27 + D™D

r=0
B = (=
_ indm20ndm42 am+2
=27 Diam +2) ,Z_:m (@) + )i + 2k + 1P+
(2j41.2k+ D=1
oc _1\(c+d)/2
oy (giesr _ gy Dami2 3N ehe (18.5)
4(4m +2) £ (ci +d)+?
fc,d):l
c.dodd

y
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by I.,emma 18.1.with T=i and n = 2m + 1. The sum on the right side of (18.5) is
similar to the Eisenstein series in (16.6). The only differences are that the power

of (i LAY is 4 1 2 ingtead of & ancd ihai it . N . N .
\Le T Gy as S 2 inSiCaa 01 am, anda tnat ine serics above contains the ¢xtra

factor of (—1)“+9/2 jp its summands.
We now consider cases (i)—(ii), as we did in the proof of Theorem 15.1.
The sum of the cight terms in case (i) equais
2(~ 1)(c+d)/2 2(_1)(-(-&(1}/2 2(_])(r+d)/2 2(— |)(—c+d)/2
(ci +d)*+2 " (—ci +d)"m+2 " (di + )+2 | (_di 4 c)am+?
4 tm ( ('_l)(c+d)/2 (_])(r+d)/2
(m + d)4m+2 (di + C)4m+2

= Qi (— 1) D/ 2= Lewn (—i(dm + Dtan— (¢ /d))
[ Rk 2R ¥ X IR e LN At

+ exp(=i(4m + 2)tan~'(d/c))}

{c+d)f2,=2m—-1 § . 1.4 ~~ 1. sy
4 {sm{(4m + 2)tan” "(c/d))

— ATl 1y
= T

+ sin ((4m + 2)tan~"(d/c)) |
= —8i(—1)+D2=2m~1 sin ((4m + 2) an~'(c/d)},
by (15.10). Using (15.12), we find that

sin ((4m +2) tan"(c/d)) = (=1)"cos ((4,,, +2)tan~" (ﬂ)) .
c+d

Thus, the eight terms in case (i) have the sum

—Bi(—1)mHeHd2p=2n=1 (o ((4m +2)tan~! (C — d)) . (18.6)
c+d

the same type of reasoning, we find that the four terms in case (i1) sum

Novs L
INCAL U

o

4272 sin ((4m + ) /4) = 4i(—1)"2~ 2", (18.7)
Putting (18.6) and (18.7) in (18.5), we conclude that

i (_l)k(zk + ])4»14—1

“cosh {(2k + D /2
2+ D/

= _"2401+2(24In+2 _ 1) B4m+2
k=Q T t

/2) 4(4m + 2)
4i(—1)" _1)(c+d)2 N fo—-d
x,———l( ) —8i(—|)’"2( D cos ((4m +2) tan l('—)l

22m+1 Yo PS Y +d
( C‘lll T ]

Z‘fherc the summation on the right side is over all even positive integers ¢ > 2 that
an be represented by (15.3), and where, for each fixed €, the sum is also over all

dist%nct solutions (c, ) of (15.3). The theorem now follows after a small amount
of simplification.
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Entry 19 (Formula (12), p. 278).

=, —1) n=1 i B,| [ 2cos(wn/6)
3 ) @k+ 1) =(2"—l)-!;sin(ﬂ)il————-——'
n 6 3n/2
= cosh {(21: ¥ 1)z¢§/2]
2 cos (n tan™" (\/'5/'2))
+ —
7 19.1)

As before, we assume that Ramanujan intended » to be an even positive integer.
If n = 6m, where m is a positive integer, then we deduce from (19.1) that

o (—l)k(2k+ l)6m4i
=5 cosh |2k + D 372)

=0. (19.2)

The evaluation (19.2) was first achieved by Cauchy [1, p. 317). Ramanujan re-
corded (19.2) as part of Entry 18(iii) of Chapter 17 of his second notebook. For
two proofs of (19.2), see the author’s paper [7, Corollary 7.6] and book (3, pp.
140-141). For references to other proofs, generalizations of (19.2), and further
results of this sort, see the last two cited references.

Before stating Theorem 19.1, we need to say a few words about solutions 10

=3 +d?, ged(c,d) = 1. (19.3)
Each solution (c, d) of (19.3) generates four solutions, namely,
*(c, d), +(—c, d). (19.4)

We shall say that (¢, d;) and (cz. dz) are distinct solutions to (19.3) if they
belong to different scis of four solutions given Uy {19.4). We remark that the
number of positive odd solutions (¢, d) to 4n = 3¢? + d?, where n is odd, equals

d) 3(n) — dy3(n) (L. K. Hua [1, p. 309]).

Theorem 19.1. Let m be a positive integer such tharm % 0 (mod 3). Then

i (- 1)"(2k + 1)t
=0 cosh i(ik + l)Tl'\/j/ }
c : -1
. (=D sin (2m tan (cﬁ/d))
/4 (19.5)

—(2* it}
2m £ even
where the sum on the right side of (19.5) is over all even positive integers € which
can be represented by (19.3), and where, for each fixed £, the sum is also over all
distinct solutions (¢, d) of (19.3).
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Proof. By acalculation like that in (18.5) and by Lemma 18.1 with 7 = i+/3, we
deduce that

o~ (=D 2k + 1>
Z osh{(2k+ l)m/'/z}

Z( 1) 0m-1 (2r + ])e_(27+l)nf/2

B kad 1)tk
— i22m(22m -1 2m Z : ( D
8m L (2 + Div/3 42k + D
(2j+1.2k+1)=1
B bl —1)le+d)/2
= -i2"@"-n= Y e (196)
8m = i3+ )
(c.d)=1
.d odd
Now,
€ivV3+d)™™ = ¢ "exp (—2mi t,an"(c\_/i/d)) , (19.7)

where £ is given by (19.3). We group terms according to increasing values of €.
The sum of the four terms arising from (19.4) equals, by (19.7),

2(_1)(¢‘+d)/2 2(_1)(—c+d)/2
i3+ d)m  (—ci/3 +d)"

4l (_])(r+d)/2
- m((cif+d)2m)

= —4i(— )(‘+'1/21"'"31n(2mlan (c\/i/d));

Thus, from (19.6) and (19.8), we complete the proof of Theorem 19.1.

Comparing (19.5) with (19.1), we see that the trigonometric sums on the right
sides have quite different shapes. The first three terms in (19.1) evidently arise
from the values ¢, d = 1, 1; 1, 3; 1, 5, respectively. However, we note that 28 has
two representations, 3 - 12 + 5% and 3 - 32 + 12. Easy calculations show that the
first two terms on the right side of (19.1) agree with the first two terms on the
right side of (19.5). However, there is a discrepancy between the third terms. This
discrepancy exists if we take either term arising from the two representations of
28, or if we take the sum of the two terms, from our sum (19.5).

We shall now establish an altemative representation for the sum on the right
side of (19.5). This wiil give a resuit which is “close” to that of Ramanujan and
perhaps indicate where Ramanujan erred. An elementary calculation shows that

an-1 [ Y3 (V3 -0\ _
tan(t (d )+tan (W))-ﬁ
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and so

—'(cﬁ\-a-r "{—-——Jg(d—c)\—z—kkn
BN )T \Terad )T 3T

for some integer k. Thus,

sin (2m tan~’ (E?)) = sin (Zm {% — tan"! (x/gid+—dc)) I)
in [ 277 L (V3d-9
sin (T) cos <2m tan (_307‘1—))

— cos (ﬂ\ sin (Zm tan~! (ﬂ—-—{:)\\
V3 )\ \ 3¢

il

Ta J)
3d-c
= (—D""'sin{'f:’i\COS (2"' tan”' (———{( X f)“
\ 3/ \ \ X r+a //
d_ .
+ 3 sin (2m tan™"' (%—}-TL))) . (19.9)

Thus, we obtain “half” of what Ramanujan probably found, because for ¢, d =
1,1;1,3; 1,5, the first term on the far right side of (19.9) yields precisely the
trigonometric functions given by Ramanujan in (19.1), except for an additional
factor of 2 in the second and third terms in (19.1). Forc = d = 1, the second
term on the far right side of (19.9) vanishes. Forc,d = 1,3, 2 simple calculation
shows that the first and second terms on the far right side of (19.9) are equal, while
forc,d = 1, 5, the second term does not equal the first term.

Entry 20 (Formula (15), p. 278). Ifn is a positive integer, then
oc (_])k—lk(m B 2,“/5 Ben +i (__l)k—lkén—l )
Z4 coshknv/3) — (k7 \12n ek 3 — (1)

where B, j > 0, denotes the jth Bernoulli number.

k=1

Proof. We shall easily show that Entry 20 is equivalent to a result of the author
(6, p. 163, Cor. 2.22], namely,

- 6n
o k6n 1 +7r\/-3-§: k =§(£’ (20‘1)
L (ChyketnV3 — 1 120 L sin*(kmp) 120
where # is a positive integer and p = exp(2ri /3). By a straightforward calcula-
tion,

sint(knp) = L(1 — cos@rkp)) = 41 — (~1)* cosh(k v/3)).

Using this and elementary manipulation in (20.1), we complete the proof.
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Ramanujan’s statement of Entry 20 does not contain an equality sign.

Ramanujan next offers two puzzling transformations for doubly exponential
series. We shall state them me‘tly as Ramanuian wrote them and then reformulate

exactly as Ramanujan wrote them and then reformulate
them.

If af = 2m, then

00 i 1 & (=1 "n* | X
O DR ] LR P mARLI SRV Y IR
= 2 = k! (e 1) k=1

where

= [T cos B_g_"_ B _
eB) = ﬁsinh(nﬁ)cos(ﬁhgn B 2 1'2/3+ ) (21.2)

Second, if ¢8 = /2, then

ad _ 1k —nett e _ l ad (—l)kn" } X,
oz;( 1)e —a[2+;—k! (eka+e_ku),+§w((2k+1)ﬁ).
(21.3)
where
_ T B_g_2__B B _
Wﬂ)_\/ﬁsinh(zrﬂ)sm(ﬁlogn P T2 545 )
(1.9

In (21.1), y denotes Euler’s constant, and, in (21.2) and (21.4), B;, j > 0,
denotes the jth Bernoulli number. We emphasize that in Ramanujan’s notation,
all even indexed Bemoulli numbers are positive.

The definitions of ¢(B) and ¥ (B) given in (21.2) and (21.4), respectively, are

are apparently asymptotic series as g tends to 0o. Thus, the definitions of ¢(8)
and y(B) are imprecise, and so Ramanujan’s claims are unclear. Nonetheless,
we shall show that (21.1) and (21.3) are correct, if (21.2) and (21.4) are properly
interpreted.
The work on Entry 21 which follows was done jointly with J. L. Hafner [2].
We begin by defining functions G(8) and B(8) by

TGP + 1) = (iB)P*+'2e~P2n G (B) = (iBY**' 2 #2me BB (21.5)
Then (Whittaker and Watson [1, pp. 252-253], as 8 tends to 0o,
B(B) ~ i —1)*'By
£ 2k — 1)2h)p*!

and

R S & - )
12if 28882  51840(if)’ 2488320ﬁ4+“" (21.6)

Ramanujan less explicitly gives the asymptotic expansion for B(8) in the argu-
ments of the trigonometric functions in (21.2) and (21.4).

GPB)~1+
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We now state rigorous formulations of (21.1) and (21.3), and then immediately
show that Ramanujan’s aforementioned claims are consequences.

Entry 21 (Formulas (4), (5), p. 279). Letn, a, and B be positive withaff = 2.
Then (21.1) holds, where

1 .
#(p) = 51m {n7Pr g + 1}

= J?‘; —nh12 Ism (ﬂ logé -B+ )Re {G(B))

+cos (ﬂ logg -+ 7:;—) Im {G(ﬁ)i}

27 e [ LBNPIEAY P }
\/;e {sm(ﬁlogn ﬂ+4){1 288ﬁ2+

—cos(ﬂlogé—ﬁ+ )[12ﬂ “ 1.7

as B tends to o.
Let n, a, and B be positive with af = 1t /2. Then (21.3) holds, where

1
V(B = - ERe{n"”l‘(iﬁ + 1}

= —\/;F;e‘”‘m {cos (ﬁlogE -8+ = )R {G(8))

L}

—sin (ﬂlogg -B+ %) lm[G(ﬂ)}l

7 8 4 1
~—\/;e /zlcos(ﬂlog;—ﬂ"'z){l 288ﬁ2+ }

+sm(ﬂlogg—ﬁ+ ){l;ﬁ_'- }l, (21.8)

as B tends to oo.

We first show that Ramanujan’s definitions (21.2) and (21.4) are compatible
with the far right sides of (21.7) and (21.8), respectively. As 8 tends to 0o,

T
/m cos (ﬁlog -B-—- B(ﬂ))
_ l%’e-nﬂ/z(l _ ey~ 2 (ﬁ |0g§ —-B+ % - B(,B))
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~\/§e‘"”/z Isin (ﬁ 1085 - B+ %) cos B(A)

—cos (ﬁlogg —ﬁ+%) sin B(ﬁ)}.

Thus, (21.2) and (21.7) are in agreement. The argument showing that (21.4) and
(21.8) agree is similar. We now proceed to prove Entry 21.

Proofs of (21.1) and (21.7). First,

_l)k 1 k

( ])k 1 k 0 0O —kja
;k!(e’“‘— E k1 eke ;e
o (—l)k : c- e e
=YY = (e ).

j=1 k=1 j=

nke—hia

Thus, the proposed identity may be written in the equivalent form

k=1

0 00
o ; (e""m +e e l) —la+ae™" =~y —logn +2Z ekB). (21.9)

Second, we apply the Poisson summation formula (Titchmarsh [2, p. 60]) to the
function

X

fx)yi=e" e 1. (21.10)
Observing that f(0) = 2¢™" — 1, we find that, for o, § > 0 with af = 2n,

/ oo .
a (%(28_" -1+ Z (e—ne“‘ + e_,,e—kq B l))
k=1

00 o0 poo
= fx)dx+2 (x) cos(kPx) dx. 21.11)
Jo h
Comparing (21.9) and (21.11), we see that it remains to prove that

—y —logn+2)_@KkB) =/ f(x)dx +2Z/ f(x)cos(kBx) dx.
k=1 0 k=190

(21.12)
(x) is even. Setiing u = €*, we find that

t f(
oof(x)dx = ! [ f(x)dx

o0
d

f (e ™ e 1 u
0 U

1/n 1 —e 00 g—nu
(—f du + du
0

u \/n U
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\/n ,—nfu 0 | _ g~/
+ f L du- f -—e—du)
0 u I/n u

Since (Part I [1, p. 103])

1 1—e* o0 ,—x
y = f i dx —f ¢ dx,
0 X [

we find that
[ et ['1-e
.Io Joydx =3 \—y jl —ax—jo
=1(-y -y —logn?)
= —y —logn. (21.13)

(" dx

b x)

JA

Using (21.13) in (21.12), we find that it suffices to prove that
(e o0 o
Y k) = Z/ f(x) cos(kpx) dx. (21.14)
k=1 k=10
Set
I:=1(8):= J[o f(x)cos(Bx) dx.

By (21.14), it now suffices to prove that (8) = @(8), where @(B) is defined by
(21.7). Letting ¥ = ¢*, we find that

1 [ 1 [ du
= —[ f(x) cos(Bx) dx = —f (e™™ + e — 1) cos(B log u) —.
2J) 2 Jo u

Integrating by parts, we find that

[ ( - ——e'"/“) sin(B log u) du
n —nu 1 du — /m e sin(8 log u) du)
=% (/ e " sin(Blogu) du 2 g
= —(11 - D),

28

37. Infinite Series 449

say. Setting t = 1/u in I;, we deduce that I, = —I,. Hence,
n n [
I=-1=— e " sin(B log u) du
B B Jo £
nof®, e ity g
_n e yiB _ gy
25 jo e u)du

1 . .
— —ip : _ B _
60 (rn"PTGB+ 1) = nT(=ip + 1))

= %Im {n7T B + 1)}.

7 o i

\
! 2
o(f) = ﬂlm((m' (ne) mG(ﬂ))

2n . .
= [ == Im (! "/4+A 08B/ (neD) G
ygm( B)
— 2_"e—nﬁ/2]m(ei(n/MBlogtb/n»—ﬁ)G(ﬂ))
‘} B .

Hence, the second equality in (21.7) follows, and the asymptotic formula follows

rnimea 1 £)
uy USIng (£1.0).

Proofs of (21.3) and (21.8). First,
o ko k o k,k 00
(—1)kn (=1)tn .
Z k! (eka + e—ka) = Z k! ek Z(_l)le ZkJ
k=1 =t © 7=0

274 e
= Z( )
hus, the proposed identity (21.3) can be recast in the form

o Z(_]) ( e ke
k=0
(21.15)

Next, we apply the Poisson summation formula for Fourier sine transforms
(Titchmarsh [2, p. 66]) to the function

o0
1) = da + Y -1y 2k + D).
k=0

fO)i=e™ _ e 4,
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Thus, fore, 8 > O and aff = 7 /2,

6.2‘/ ok f —pe®hida _pe~@he L\
a) (-1 {e™ —e +1)
k=0
00 o0
=N (1 {7 iy cineer + 1N8xY dx (21.16)
L‘\ 1y j JWARJOI(\&R T 1 jpA) GA. \&1:20)
k=0 0
We recall that
o b4 1 & (-
_=_=_22(k )1' 21.17)
2 4 B+

Using (21.16) and (21.17) in (21.15), we find that it suffices to prove that

Y =Dry@k+1B)

k=0
IR S Y b " _ i
- g( 1 (jo S)sin(@k + DPx) dx — o 1),9)‘
Set
> 1
1:=1(8):= f fx)sin(Bx)dx — —.
o B
By (21.18), we now sce that it suffices to prove that I (8) = ¥ (8), where ¥ (B) is
defined by (21.8).
Setting x = ¢* and integrating by parts, we find that
I = [~ (e — e " 4 1) sin(fx) dx — L
=)\ ) p

had d 1
= [ (e™™ — e + 1) sin(B logu)—u - =
Jo u s

n [* 1
= —B,/ (e_"“ + u—z-e"‘/“) cos(Blogu) du
1

= nfl e""+le’"/' cos(g logt) dt
B B 0 12 ¢ '

where we set u = 1/1. Hence,

R > e + le"’/’ cos(Blogt) dt = —i(l, + 1),
28 Jo 1t 28
say. Letting 1 = i/u in Iy, we easily find that i, = f;. Consequently,
n n [
I=—== -~ e ™ cos(Blogr) dt
g B Jo

n had —nit i —nt ,—ip
=—55L (e™ ' + e ™t~} d1
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1,
= -3 (nPTGB + 1) + n®T (=i + 1))

- %Re {n 7T+ ).

Thus, we have shown that 7(f) = ¥ (8), by (21.8). This completes the proof of
(21.3).
The remaining two claims in (21.8) follow as in the proof of (21.7).

Entry 22 (Formula (2), p. 280). Let, as usual, Yy (x) = [V(x)/T(x). Then, if
0<x,

b4 1 1 mcoi(mx) mlog|Zsin{mx)i
x+1)=—logx+ — — +
4 ) 3 & 2x  4mx?  elrx — ) 2sinh?’(7rx)
7 S loglnt — xY
+ —
L eZﬂn — ])("2 — xl) 2 ot sinh)(nn)
[+'¢] (=]
~ sm(anx) cos(2mkx)
) 2mnx 3 .
”’Z.:e ( Z K+ n? ;k(kz-;-rﬂ)

(22.1)

Using Entry 8 of Chapter 30 (Part IV [4, p. 374]), we obtain a formula for
Euler’s constant y, which is equivalent to (22.1), namely,

n 1 log [2sin(rx)| & x?
V= ‘5 logx + 47{;‘2 + aiel2s N\ - Z L{L2 1 +2\
2 sinh” (7 x) = *(k° +x%)

i 7 N log |n? — x4

— (n? + xz)(ezm, -1 24 sinh*(zn)

n
. kx) cos(2mkx)
9 dwnx sin(2m o
/g ; e ( Z k2 + n2 Z k(k2 + nZ) (2272)

In collaboration with J. M. Borwein and W. Galway, the author originally proved
(22.2) by showing that the derivatives of both sides of (22.2) equal 0 and then letting

x tend to 0o 10 show that both sides of (22.2) are equal to —y. Shortly thereafter

DO ICES O R£2. 27 arc eqlual ' W0y Wercanky,

D. Bradley (1) found a more natural proof by working directly with the double
series on the right side of (22.1), and thercfore we shall give Bradley’s elegant
proof. Bradley has shown that Entry 22 has several interesting consequences. In
particular, Ramanujan’s famous formula for {(2n + 1) (Part I [2, pp. 275-276,
Entry 21(i)]) follows as a corollary.
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Proof of Entry 22. We begin with the partial fraction expansion from Entry 3 of
Chapter 30 (Part IV [4, p. 359]),

e
= dkx o 2mx3
* k2=—,' @ —D(x2 - k)7 kz=1 sinh* (k) (x4 — k%)’
(22.3)
By the product rule for differentiation,
d 7 cot(mx) nlcesc?(rx)  m2cot(mrx)
E ey — 1 == etnx — | - 25inh2(7rx)

d mlog|2sin(rx)| micot(nx) m . d ,
‘7; ZSinhz(er) = 23inh2(7rx) + 3 log |2§m(7rx)|$csch (x).
Hence, we can rewrite (22.3) in the form
V) = L L " 1 + incot(nx) 11rlog|2sin(7rx)|
3x  2x?  2wx?  dx er—1 dx  2sinh®(rx)

= 4kx ad 2mx?
M g (et —1)(x2 —k2)? ; sinh?(k)(x? — k)

-z log |2 sin(ztx)licschz(nx). (22.4)
2 dx
But,

rd d 2mes d\* 1
~Z ~ ¢sch =— —_) —
2 dx csch®(rrx) dx (62'“ _ 1) (dx) emx _ |

s o1 N2

- (dix) i —2rkx Z( 2nk)le 2k

k=1
Using this in (22<4) and integrating both sides with respect to x, we deduce that
1 meot(mx)  mlog|2sin(wx)|

1
Yx+1)= logx + —

2x 4nx? | e -1 2 sinh?(rx)
3 . log [k* = x*
+Z 77k 2k2 2 _zzo—gl—z—xl—S(x)+C,
k=1 (e Tk l)(k —X ) 2 = sinh (ﬂ'k) (22‘5)

where C is a constant of integration to be determined and

0o 00
S(x) := f log |2sin(7rv)|Z(_an)%-znkudv

k=1

o0 0
= f log [2sin((x + u))| Y_(—2wk)?e 2" ) du,
0 k=1 (22.6)
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Using the Laplace transforms

o0
r P L AP n . f°° _L; .
€ and j e " cos(nt)dt =
0

k% +n?’

ol cos(27rky)
Z ———— = —log|2sin(rry)|, y real,

=
in (22.6), we find that

st e
S(x) = (2n)? Zkze‘z’”‘" / g imku log |2 sin(rr (x + u))|du,
=1 Jo

=—<2n)22k2 canke [ g iM

— o Zkz _2,,,“[ — Z Cos(27mx + nt)

n=|

. Z (2g-2rke /oce_k’ i sin(2znx) sin(nt) — cos(2rnx) cos(nt) di
0 =

n

00

=21 Zk%‘”"" (Z sin(2xnx) f k sin(nr) dt
k=1

n=1

& cos(2mnx) [ \
—ij e~ cos(nt) dt
n=1 n 0
— =2xnx f 12 smwtnx) Jx cos(Znnx)
= 2n Ze (k X_; B Zn(k2+n2)) (22.7)

where the inversions in the order of summation and integration are justified by
absolute convergence. Substituting (22.7) in (22.5), we find that

Y+l =C+ n logx + i B 1 root(mrx) mlog|2sin(mx)|
3 2x  Arx? | e ) 2sinh?(x)
Xad 2k log [k* — x?|
+ —— —
?—j (™ — (k2 -x2) 2 Z sinh®(k)

=1
~2nns 2”nx) cos(2nnx)
— 2 e 2 kZ SIn( 3
Z ( "Z k2 4+ n2 "Zn(k2+n2) 2'2 %)

By letting x — 00 in (22.8), we can evaluate the integration constant, C. In fact,
C must equal zero, as a comparison of (22. 8) and (22.1) revcals. Since scveral
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terms in (22.8) vanish as x — 400, it suffices to show that

" N 1 +n‘ﬁloaIx — kY -0 @
X - 0g X Tar-a—— .
oo \'J’ 8t 3 L ik ) T

!\)
O
~

where N is a positive integer, and write
i log |x* — k4 TS log |x* — k|
= sinh? (k) ksUE Jiekex kox smhz(nk)

4logx log(1 — k*/x*)
= Z sinh?(wk) + Z sinh?(k)
k<y/x ksJx

+ (4x logx) O (ﬁ”ﬁ) + 0 (e 1)

[ 1 W\
.1 gy
(4log x) k% pemre +0 )

+0x)+0 (e-"ﬁ)

-2
(4logx)z h2(ﬂk)+0(x ). (22.10)

Now, by Stirling’s formula, as x — oo,
w(x+1) =logx + O(1/x). (22.11)
Employing (22.10) and (22.11) in (22.8), we see that
Y"'% log |x* — k4|
sinh?(rk)

=
—
=
+

b4 T
N——logx+ —
3 2 &

- = 1 o(/x),
(‘ +2 Zsmh2( k)) ogx + 001/

pn (22.12)
as x tends to +o0. However (Bemdt {2, Prop. 2.26)),
[
AR 1 AT 6 B S O (22.13)
1—— + < —_— —— Lit - = x_ - \ i sy
3T k) 3 \6 2

Using (22.13) in (22.12), we find that

loglx
Yx+1)— = logx+ 22 = 0(1/x),

=1 sinh? (nk)

as x tends to +o0o. Thus, the limit (22.9) holds, and the proof of Entry 22 is
complete.
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Entry 23 (Formula (4), p. 281). For each positive integer n, let

. 2xit
S5, g =¢e

’

where Im t > 0. Then, if m is a positive integer,

(4m + 5)(4m — 2) R < 4m . )
240m + D(am l)Sam+4(l) = ; (4k _ z)sak(l)sm—uu(ll

Proof. In [7], [10, p. 140, ¢q. (22)], Ramanujan proved that, for Im r > 0 and
any integer » greater than 1,

@n+5@n-2) ¢ ,r\igﬂ" o« e A
24(2n+2)(2n n 1) m+4(T) = }L:]' kzk}02+2k(U02n—2k+2\U~ (<o.4)

(We remark that the notation S, has a meaning in Ramanujan’s paper (7] different
from that in the notebooks.) By a theorem of A. O. L. Atkin [1], E4p42() = 0,
where E,, (1) is the Eisenstein series defined by (Rankin (1, p. 194])

4n
Ey (1) i = —— S0 (7).
2 Bs 2n
Thus, when t = i, the desired result follows.

Itis interesting that Ramanujan undoubtedly discovered the theorem, Sap +2 (i) =
0, more than 50 years before a proof was published.

The next three entries are found in Ramanujan’s paper [6], (10, pp. 47-49].
Since the details of the proofs were not completely given by Ramanujan, we do so
below. The constants ¢, ¢z, and c; below were not explicitly given by Ramanujan
in the notebooks.

Entry 24 (Formula (5), p. 281). For each positive integer n,

n 1 oo -3
Y V= =3/ + 0 4 4 DM LT T ll
k=1 k=0

Proof. Let

o0
1(n) —L~/k—cl—§ SESTEEE DY

k=1 k=0

——

~/n+k+~/n+k+1] )
where ¢ is a constant such that ¢, (1) = 0. Thus,
) —pr+ D) =—-(n+ D=2 —In'2 4 2+ DY 4 J(n + 1)1
-3
-t {va+ vn 1)

1+ D2 =202 = In'? 4 Z(n + 1)
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ri|va-vara)

Y WV S P VL B V2 SR PRSI 2
Y+ 1n? = 1p¥2 4 Lin 4 1)
_ 1

inr+ D24+ 0+ 1)

=

Since ¢ (1) = 0, by induction, ¢, (n) = 0 for every positive integer n. From Part
1[1,p. 156), c; = —¢(3/2)/(4m), and so the proof is complete.

Entry 25 (Formula (6), p. 281). For euch positive integer n,

n
ZkS/Z 16 2((5/2)+2 5/2_'_%”3/2_'_ nl/2

+Li{~/n+k+~/n+k+|’—s
401(:0

Proof. Let
n
32 1/2
¢r(n) = EkJ/Z —cy— %nm - -;-n 2 — %n !

| & -5
_Z—ozl“/"+k+’/"+k+l ,
k=0

where ¢, is a constant such that ¢,(1) = 0. By the same sort of calculation as in
the previous proof, ¢,(n) — ¢2(n + 1) = 0. Thus, by induction, g,(n) = 0 for
every positive integer n. From Part I [1, p. 156], ¢; = —3¢(5/2)/(167%), and so
the proof is complete.

Entry 26 (Formula (7), p- 281). For each positive integer n,

Zkiﬂ 3;(7/2) __{(3/2)_'_ 2n7/2 I 5/2 + %n3/2
=1

+ ' 6Zf+224Z[Jn+k+Jn+k+l}

7
g
bl
[V}
[}
-

@i(n) = ka - ( T+ 3 in? + > n)

-3
+9—6k22(;ls/n+k+x/n+k+ll

 J—— =7
_52_4;{\/n+k+~/n+k+l] ,
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where c3 is a constant chosen so that ¢3 (1) = 0. A somewhat laborious calculation

shows that g3(n) — @3(n + 1) = 0 for each positive integer n. Thus, by induction,
@1(n) = 0 for every positive integer n. Hence,

n
Y K =y i (3 + e 4 Son)
k=1

- I«/n+k+¢n+k+l] +2242{Jn+k+Jn+k+1|

which is the formulation given by Ramanujan in [6]. Using Entry 24 above, we
deduce that

n

Tksﬂ—c —6TZ(3/2)+‘/—(Zn‘+ Il + n+ l\
24

327
k= ]

——Ts/"+::Y‘f«/n+k+\/n+k+1]

lO_‘

By Entry 1 of Chapter 7 (Part I [1, p. 150]), c3 = {(—5/2). By the functional
equation (0.4) of {(2), c3 = ¢(=5/2) = 15¢(7/2)/(647>). Using this in the
equality above, we complete the proof.

Entry 27 (Formula (3), p. 282). Let

x -1 00 n2n+1
tan~' ¢ (—-D"x
@(x) =f dt = E — 27.1)
0 t ~ @2n+ 1)
where, in the latter representation, |x| < 1. Then, for every real number x,

% o) = o™} - 2xtan~' (e77*/%)

o0 12
= (—l)"(2n+l)log(l +———).
2 Cn+ 1) (579

n=0

An equivalent formulation of Entry 27 is given by Ramanujan in his paper
[5, eq. (12)], [10, p. 41], where he writes that (27.2) is “very casily proved by
differentiating both sides with respect to x.” It seems unlikely that Ramanujan
discovered (27.2) by this means, but we do not have a better proof and proceed
accordingly.

Proof. Let f(x) and g(x) denote, respectively, the left and right sides of (27.2).
Then, by straightforward differentiation,

xe T2 X

4 = —
SO = e = Zeowm(Tnn)
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and

&) = ZxZ -'@n+1)

2n 4 1\2 + x2°
n=0 \

The differentiation under the summation sign is justified because the differentiated
series converges uniformly for all real x. But (Whittaker and Watson [1, p. 136])

i -D"2n+1)
Qn +1)2 4+ x2°

27.3)

4 cosh(znx) =

Hence, f'(x) = g’(x). Since f(0) = 0 = g(0), the proof of Entry 27 is complete.

Entry 28 (Formula (4), p 282). We have

Z(—l) @n + 1)Iog(] + ((2

N2\
—log 2+f ):—c (28.1)

n=0
where
(-
= ,;0 @n+1)?’

which is Catalan’s constant.

Proof. Set x = (2/7)log(2 4+ +/3) in Entry 27. Then if S denotes the left side of
(28.1), we find that

4 1 4 1
S=—lo1) - - Zlog2 ++3 -'(—-—). 28.2
x{w() ¢(2+J§)| - 0g(2 + v3)tan r s (28.2)

Setting u = /12 in the double angle formula cos(Zu) = 2cos?u — 1, we find

that cos(r/12) = $v2 + /3. Thus, sin(7/12) = $v2 — v/3 and tan(7/12) =
2 — /3. Hence, (28 2) becomes

§== [¢(1)—¢(2— ~/§)} — Log(2 + V3. (28.3)

b4
Now in {5, eq. (7)], [10, p. 40], Ramanujan briefly sketched a proof of the equality
20(1) = 3p(2 — V/3) + Lr log(2 + V3). (28.4)

Using (28.4) in (28.3), we deduce that

4
= —g(1).
S 3”«J()

Since ¢(1) = C, the proof of (28.1) is complete.
Lastly, we provide details for the proof of (28.4). Ramanujan claims that (28.4)
follows from the equality

Z sin(4n + 2)x = @(tan x) — x log(tan x), 0<x <m/2, (28.5)

= 2n + 1)?2

37. Infinite Series 459

by setting x = 7/12. Accordingly, we find that

4
92— V3 + —log(2+3)
12
1 +l+ 1 1 1
= — - - = - +
22T ¥ 2 27 @2

= 3e(1) + Loy = 2p(1).

Thus, (28.4) has been proved, and it remains to prove (28.5).

To prove (28.5), let f(x) and g(x) denote the left and right sides, respectively,
of (28.5). Then

-7 Y\ cos(4n + 2)x

=  2n+1

fl(x)=

since the differentiated series converges uniformly on any compact subinterval of
(0, w/2). Also,

cos(4n + 2)x

g'(x) = —log(tanx) =2 T

n=0

, 0<x<n/2

by a familiar Fourier series development {Gradshteyn and Ryzhik [1, p. 46, formula
1.442,no. 2]). Thus, f'(x) = g’(x), when0 < x < 7/2, andso f(x) = g(x)+c,
where c is some constant. Letting x = /4, we find that

YAy
@y 1y '

By (27.1), ¢ = 0. Hence, (28.5) has been proved.

Entry 29 (Formula (10), p. 286). If —1 < x < 1, then

o° xZ
z:_lnz __r
=D n+1)log(] (2n+])2)

n=0

4 (= n T —mx
”2(2”_'_1)2 cos{i(2n+l)7tx})+xlog(tan( 2 ))

(29.1)

_400 =" 4t [T AX T —nx
ey <2n+1)2( - (T))“"g(m( 4 ))

(29.2)
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Proof. By analytic continuation, Entry 27 is valid for all complex x with |x| < 1.
Replacing x by ix in Entry 27, we find that

a4
P

- n / X )
nZ;(—l) (2n+1)log (1 - (2n—+1)2)

4 v_ |
= ; () — p(e™™ 9} - 2ix tan™" (e /%),

Taking the real part of each side, we deduce that

o R x2

n=0
4 (- ) , 1 {.—mexf2
==Y " (1—cos{}(2n+ Dxx}) — 2Re (ixtan™! (e~ ).
m = Qn+1) (393)
Now
L m i +eminn
~2Re (ixtan™' (e7"*/2)) = x Re log(m)
—icos(irm
= x Re log l—(ﬁi)—
I +sin(37x)

cos(37x)
1 + sin(3mx)

— xlog (tan (” '4" x )) . (29.9)

Using (29.4) in (29.3), we complete the proof of (29.1).
To prove (29.2), which is eq. (12) in Ramanujan’s paper (5], [10, p. 41], we first

note that the right side of (29.2) equals

s ot = (s (2572 ) s (on ()

With f(x) denoting the left side of (29.2), we see that £(0) = 0 = g(0). Thus, it
suffices to prove that f'(x) = g’(x). Now, by a straightforward calculation with
the use of (27.1) and (27.3),

/n—mx\

;rrxseczk x
g’(x) = - = -5 1
- 3 ]—x)}
413,,(” er\ 2sin {{n(
"\Ta )
X N (—1)'Q2n+ 1) ,
-_—,—— T - —— ( )7

2cos(37x) xng;(znﬂ)?—xz ro

and the proof of (29.2) is complete.
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Entry 30 (Formula (11), p. 286). Leta > 0and0 < 8 < 1, with
log (tan (37 (1 + B))) = ime.
Then

vy %)

+(2n+l)2}

rap & g2
T, (—l)"(2n+l)log(l——).
2 "X:(; 2n + 1)2 (30.1)

Proof. Observe that both sides of (29.1) are even functions of x, so that we can
replace x by —x. Thus, by Entries 27 and 29,

= n az
S: Z(—l) 2n+1)log (1 + m)

n=0
o n 52
_ nZ:;(—l) (2n + 1) log (l v 1)2)

il

4 1 4
— _ _ —-raf2y _ -1 —-na/2
”q)(tan(4ﬂ(l+ﬁ))) ”;p(e ) — 2atan™' (e7"/2)

—log (tan (%n(l + ﬁ)))

; {ee™?) = p(e™™/")}) — 2 tan™! (cot (%n(l + ﬂ))) — log(e"*/?).

Now from Ramanujan’s paper (5, eq. (4)}, [10, p. 40],

@(x) — p(~1/x) = inlogx. (30.2)
Hence,
—ne—2a (% - (T _Ta _rmap
S=rna 2(1(2 (4(1+ﬁ))) 2 =5

This completes the proof of (30.1).

Entry 30 is equivalent to eq. (17) of [5), (10, p. 41), which Ramanujan stated
without proof. He also [4], [10, p. 329] submitted this formula as a problem to
the Journal of the Indian Mathematical Society. The proof of (30.2) was only
briefly sketched by Ramanujan in [5]. The editors of his Collected Papers (10, pp.
336-337] supplied a proof in more detail.

s uppea 4 praot Olc Celal

Entry 31 (Formula (1), p. 288). For x > 0, let

SN (=1)"@2n + D) sech {1 (2n + 1)}
— 2 2
F&y=x ;. cosh {(2n + Dx} + cos ((2n + Dx}
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Then, ifa, B > O withaf = n?/2
F(a) = F(B). 3111)

This is a particularly beautiful result. Ramanujan evidently did not possess
a complete proof, for he recorded the result (in abbreviated notation) as “The
difference between the two series (@ = 72/2) F(e) and F(8) is 07" As we shall
see, upon examining our proof below, (2n + 1) can be replaced by (2n + 1)47+3
for any nonnegative integer m.

Proof. Let

23

f@) = (cosh(xz) + cos(az))cos(%nz_) cosh(%n’z)'
Observe that f(z) has simple polesatz = 2n+1, 2n+1)i, 2n+ Dr (11i)/2a),
for each integer n.

L,et [LN] N > l (]CI'IOIC a scqucnu, DI r(,ctanglcs l'ldVll]g Veﬁlcal d.l'lU l'l()l'l-
zontal sides and centers at the origin. We shall choose the rectangles so that, as N
tends to 00, the sides tend to oo but remain at a bounded distance away from the
poles of f(z). It is then easy to see that

Jim_ f f@)dz= (31.2)

We apply the residue theorem. By straightforward calculations, for each integer
n,

2(—1)"Q2n + 1)* sech {37(2n + D)}
Ropir = D ST S P> NN N R-ansnys
TACOSN (\4it T+ 1)dy + COS \(\2ft + 1)iEy) (31‘3)
2(=1)"(2n + 1)*sech {37 (2n + 1}
Ry = T ool 41D YT T T T = R_@n+nyis
TACOSN \\4Fi + 1)@} + COS \\<it T 1)0)) (31.4)

and

Reant1yn1+0)/02ay
(2n + Dl +i)) sec {(2n + D)r?(1 + i)/ (4a)} sech [@rn+ D20+ i)/(4a))
- 8ar® (sinh {1(2n + (1 + )] — sin (32 + Dx(1 + 1))
(=1D)"B%(1 +i)(2n + 1) sec {1(2n + DB + i)} sech {1 (2n + DA + i)}
me2(i — 1) cosh [ (2n + 1)}
2(—1)"p%(2n + 1)°

_ (31.5)
e n(2n + nl (cosh {(2n + DB} +cos ((2n + 1NB))

Furthermore, we sec that

Ronsnyn(1400/@e0) = Roavyra+irQa

= Ren+Dr(1-i/@ey = R-@nnri1-iy/Qa-
(31.6)
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Hence, applying the residue theorem to the integral of f(z) over Cy, employing

the calculations (31.3)-(31.6), letting N tend to 0o, and using (31.2), we deduce
that

8 Z (=1)"(2n + 1)* sech {7 (2n + 1)}
= cosh{(2n + )&} + cos {(2n + 1))
8_;92 S (=1)"(2n 4 1)’ sech { 12(2n + 1)} 3
ma? & cosh {(2n + 1B} + cos ((2n + 1)B}

Multiplying both sides by na?/8, we arrive at (31.1) to complete the proof.

If we divide both sides of (31.1) by 2 and let @ tend to 0o, and therefore let 8
tend to 0, and replace (2n + 1)* by (2n + 1)*"*+3_ as we may, for any nonnegative
integer m, we deduce that

V‘( I)n(zn + l)4m+3
4= cosh {1n(2n + 1))

n
v

This result is due to Cauchy [1, pp. 313, 362] and is a special case of another
theorem of Ramanujan (Part 11 [2, p. 262]).

Entry 32 (Formula (3), p. 288). Ifa, f > O withaf = n?/4, then

- (=" n
"Z;(, (2n + 1) (cosh {(2n + Da} + cos {(2n + Da)) ~ 8

: 2% (=1)" cosh {(2n + 1)} cos {(2n + 1)B)
=5 (2n + 1) cosh {in(2n + 1)} (cosh {(4n + 2)B} + cos{(4n + 2)B})

(32.1)

Proof. Let
1
z (cosh(az) + cos(az)) cos(372) '

f@):=

Note that f(z) has simple poles at z = 0,2n + 1, and 2n + Dri(1 £ i)/(2a),
for each integer n. Let {Cy} denote the same sequence of rectangles as described
in the proof of Eniry 3i.

We now calculate the residues of f(z). First,

Ro =

o] —

~~
R
)
S}

N

Second, by an easy calculation,
2(-1)"

7(2n + 1) (cosh {2n + Da} + cos {2n + Da)) R-cnt.
(32.3)

R2n+l = -
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Third, by straightforward calculations,
- -1y
7(2n + 1) cos {(2n + 1) (F1 + i)B) cosh {37(2n + 1D}

R(le+l)n|’(|ii}/(2cl) =

R_@an+nrii£id/ 200+ (32.4)

By (32.4) and an clementary calculation,

Ronsymii+0/Qa) + R@ntDyni=iy/ (2
4(—1)"cosh {(2n + 1)B) cos {2n + 1)8) '
= T 7@n + Doosh {3727 + D)) (cosh {(4n + 2)B) + cos {(4n + B

(32.5)
We now apply the residue iheorem to the integral of f(z) over Cy. Itis easy to
show that
im [ f(z)dz=0 (32.6)
N—oo j('\_
Hence, from (32.2)-(32.6),
1 4 (1"
0=2- QHZ:‘; @n + 1) (cosh {(2n + Da} + cos {(2n + Der})
8 & (—=1)" cosh {(2n + 1)B}cos ((2n + DA} .
2 ;, (@n + 1) cosh {37(2n + 1)} (cosh ((4n + 2)B} + cos {(4n + 2)41)

Equality (32.1) now readily follows.

If we let o tend to 0o, and hence g tend to 0, in (32.1), we find that
= (-1
£ (2n + ) cosh {$7(2n + D)}

B

| N

which is a special case of another theorem of Ramanujan, Entry 15 of Chapter 14
(Part 11 [2, p. 262)). .

If we let 8 tend to 0o, and therefore o tend to 0, we find that (32.1) yields the
well-known evaluation
-

n
7Y

-~

(32.7)

N

]
—

5
n=0

Entry 33 (Formula (4), p. 288). Ifaf = 7w2/2, where a, p > 0O, then

= (—=1)" cos {(2n + D) n n?

+ 5=
z—:o (2n + 1) (cosh {(2n + Da} — cos{(2n+ o) 8 327

= sin(nf) sinh(nf) coth(nm) @11
= 2;, 7 (cosh(2np) + cos(2nB))’
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Proof. Let

We observe that f(z) has a triple pole at z = 0 and simple poles at z = 2n + 1,
for each integer n, and at z = nn(£1 + i)/a, for each nonzero integer n. Let
{Cn}, N = 1, denote a sequence of rectangles having centers at the origin and
horizontal and vertical sides approaching 0o as N tends to co. The rectangles are
also chosen so that the sides remain at a bounded distance from the poles of f(z)
as N approaches co.

We now calculate the residues of f(z). First, after a modest calculation,

Ry = 3l 3 (33.2)
Second, for cach integer n,
3 2(=1)"cos {(2n + e}

7 (2n + 1) (cosh {(2n + Da} — cos {(2n + D))

Rongr = = R_@n41).

(33.3)
Third, straightforward calculations yield, for each nonzero integer n,

+(-1)"cos (nm(£] + i)}

Rnn i = - - =R_,» Y- 334
Ve = S in sinh(n) cos (nB(£1 + i) nrEL+D/ (3349
Using (33.4), we find that
2 coth(nm) sin(nB) sinh(nf)

Rinnqai Riuwz—14ivia = , 33.5
gnn(4ifa + Renr1inse = (cosh(2np) + cos(21B)) (33.5)

for every positive integer n.

Lastly, we apply the residue theorem. It is easy to show that

lim f f(dz=0 (33.6)

72 1 4 (-1 cos{(2n + Da}
0-Z-1-i%

8a 2 mi@n+ 1) (cosh {(2n + Da} — cos (2n + Da})

+ gi snin(nﬁ) sinh(nB) coth(nm)

£ BN 4 AoV OV
Lt ) T~ LU \&Lnip )

After a slight amount of rearrangement, we deduce (33.1).

If we let @ tend to 0, and therefore 8 tend to oo, in (33.1), we deduce the

well-known result
$_c
Qn+1)3 32°

n=0
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At the top of page 289, Ramanujan writes, “The difference between the series

6 +i sin(n?8)

2n+1

_])"B4n+26 *
nio2nn _ 1\
nee 19

I RN B BFe POURTTER Y
it 4 1)t \aft + 1)

and

”

NI
[z

[+

i g I's
“ n=1 n=0 \

il

The sentence is not completed. Observe that, by Stirling’s formula, the series on
the right diverges for all ¢ # 0. Most likely, Ramanujan realized that the series
diverges and stopped here, or that he proceeded formally and could not evaluate
the requisite integrals. These integrals do not appear to have evaluations in closed
form. Note below that Ramanujan has a (possible) misprint in the first cxpression
of the quote above. This entry should be compared with formula (3) on page 274
(Part IV [4, p. 298)).

Entry 34 (Formula (1), p. 289). Formaily,

6 i sin(n’9) li (—1)"Bay 4202+

E el n(e2nn’ -b = znzo (2n + l)l (2,, +1
= [ sin(x26) cos(2mnx)
2
w2y [ s,

n=1

(34.1)
where B;, j > 0, denotes the jth Bernoulli number.
“Formal Proof™. Apply the Poisson summation formula (Titchmarsh [2, p. 60])
to
__ sin(x%6)
fx):= P
Note that f(0) = 6/(27). Hence,
[ . 2 o0 : 2
i 3 5111(n 0) _ I' sin(x*6) dx
ar  —n(em ~1)  Jo x(ePr—1)
0 00 i 2
+2Z/ sin(x Ozcos(Znnx)dx‘
azi Jo x(e ~1) (34.2)

Now, by Entry 16(iv) of Chapter 13 (Part II [2, p. 220}),

[oo sin(xzo) dx:{i(_])neZn-H Ioo xntl
Jo x(erx-1) — @Qn4+ ) Jo -1
A (=D By
T = @n+1)! 8t 4

dx
ax

(34.3)

Note that the inversion in order of summation and integration has not been justified.
Indeed, the series on the far right side of (34.3) diverges. Putting (34.3) in (34.2),
we complete the “proof.”
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Ramanujan begins page 312 by stating two series identitics involving the Mébius
function w(n). He then offers a general claim, which contains the previous two
results as special cases, and which is an analogue of the Poisson summation for-
mula, with (n)/n as coefficients. We first formally state Ramanujan’s general
claim. We then show that the two examples follow from the general claim. Next,
numerical calculations show that Ramanujan’s two examples are false but that the
errors are numerically very small. Lastly, we indicate how G. H. Hardy and J. E.
Littlewood corrected Ramanujan’s claims.

In our calculations below we employ the prime number theorem in the form
ZZ":, wp{n)/n = 0. Perhaps Ramanujan used a stronger, but incorrect, version
of the prime number theorem, which would account for the excellent numeri-
cal agreement in the two applications. As we saw in Chapter 24 (Part IV [4]),
Ramanujan made several errors in deriving approximations to 7 (x) that involve
pin).

The author [8] has established a general arithmetical Poisson summation for-
mula which can be applied to series with p(n) as the coefficients. However, it
is considerably more complicated than Ramanujan’s claim. Similar arithmetical
summation formulas were derived via contour integration by the author (5] and
by P. V. Krishnaiah and R. Sita Rama Chandra Rao [1].

Entry 35 (p. 312). LetaB = 2n, wherea, 8 > 0. Let

Yn) =/ @(x)cos(nx) dx.
[

Then

o o p(mele/n) w~ k(m)y (B/n)
2 ,.sz n T n '

n=I|

Entry 36 (p. 312). Ifp > 0,
S o pln)e2r/ o)

pun)n
Zp2+n2_ Z n ’

n=1 P n=1

Proof based on Entry 35. Apply Entry 35 with ¢(x) = 1/(x2 + 1). Now, by
contour integration or tables (Gradshteyn and Ryzhik {1, p. 445, formula 3.723,
no. 2J),

T
dx = —e™".

V) = [°° cos(nx)

Jo xT41

Thus, by Entry 35,

RSN OLIE w(n) _NHm T g,
2Za2+n2_2§n((a/n)2+l)_§ n 20

n=l1
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or

— Wmn S pun) o~/
o« Z'T n :

n=1 n=
Entry 37 (p. 312). ifp > 0,

Z u(n)e p/n? ‘/ﬁ-i“(n)e-n’/(n’p).
- pn=] n )

Proof based on Entry 35. Replace @ and 8 in Entry 35 by /o and VB, respec-
tively, so that

o
_{: yp (n)go(s/—/") Z u(nh!f(\/ﬁ/n) 37.1)
2 &
where o8 = 4n?. Let p(x) = exp(—x?). Then
¥(n) = foo e cos(nx) dx = —‘/2-—7—'-e'"2/“.
0

Thus, by (37.1),

Jo & (n)e““/" = u(n) f 2
TP I b Db S

or

& plnye= /" /— $ plnye™ e
v~ n - Ve a n

n=1

We now numerically examine Entries 36 and 37. 1f 0 < p < 1,

o> N(n)n—oou(n)oo—z 2
;p2+"2—2 - g( /)

IE-TENT O NIR - b
- Z(—P ) Zn2k+| ; 2k + n’

where we have used the fact that 3%, u(n)/n = 0, which is equivalent to the
prime number theorem.
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Next, using this same fact, we find that

2 /(np)

T p(n)e”
il Z Lok it

n=1 n

=

T () o 1 2n
L SIOL S
Pi n g k!\ npJ
00 ()oo 1 2 k
reem sl (-2)
perSE e AR 0 7
&/ 2\t 1
EZ(“F) Kk +1)

=
i

Thus, Entry 36 may be rewritten in the form

00 ( l)l( 2k

[@k+1) p

Setting p =
we find that
i (=1
—~ 22k 2k + 1)
and

1
k._————
2”2( " Tk D

k 1
Z( ) Kgk+1)

5 and summing the first 50 terms of each series via Marhematica,

= —0.1600806325. ..

—0.1600806298 . .

Since the series are alternating, and since

{
2'92¢(103)

these calculations show that (36.1) is
If p >0, since Y oo, pu(n)/n =0,

< 1.98 x 107

i#e_p/nlzzﬂ(")z( 1 ( ) 2 (-1p
n=1

K CRk+1)

Also, by a similar calculation,

2m (47r)°!

and ———— < 4.65x 107",

(511 (52)
false for p = §.

oo

[Z u(n)e'” 2/(np) Z ( ])k 2k
= \f KPRk + 1)

Thus, Entry 37 may be rewritten in the form

i —1¢pt
KEQRek+1)

( l)k 2k
\/—‘Zk' PRk + 1)

469

(36.1)

(37.2)

Sctting p = 1 and summing the first 50 terms of each series above by Mathe-

matica, we find that

S (=
=

kT Tk+ 1)

—0.4805338008 .
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and

0 (_ l)k”2lc
Iy o = —0.4805622889 ...
o KISk + 1)
Since the series are alternating, and since

=102

1 —67 VAT -6
GO Z(103) <6.45 x 10 and G Z(103) < 5.85 x 107°°,
we conclude that (37.2) is false for p = 1.

Now, in fact, during his stay in Cambridge, Ramanujan told G. H. Hardy and J,
E. Littlewood about Entry 37, and they discuss the formula and the more general
claim, Entry 35, in their paper [1]) (Hardy {3, pp. 20-97, especially pp. 57-63]).
Assuming that all of the zeros of £ (s) are simple and that the series on the far right
side below converges, Hardy and Littiewood proved that

Z pn)e” pin’ ‘/' L Bwe” 1o’
el )
.

where the latter sum is over all complex zeros p of ¢(s), arranged according to
increasing moduli. Thus, Ramanujan’s claim in Entry 37 must be altered by the
latter expression on the right side of (37.3). This is then another instance where
Ramanujan’s ignorance of the complex zeros of ¢ (s) led him astray.

Hardy and Littlewood also briefly address the more general formula in Entry
35. Although they do not give a complete proof, they clearly demonstrate that
Ramanujan’s claim must be modified by a similar sum over p.

Returning to (37.3), Hardy and Littlewood [1, p. 161] showed that the estimate

00 k
R (—p) = O(p~V/*+), (37.4)
Lo k1 g2k + 1) "

as p tends to oo, where ¢ is any positive number, is equivalent to the Riemann
hypothesis.

Titchmarsh {3, pp. 186-187] also provides a proof of the corrected version
(37.3) of Ramanujan’s Entry 37 and briefly mentions (37.4) (with the exponent €
unfortunately missing) as well [3, p. 328). We are very grateful to Richard Brent
for correcting some inaccuracies in our discussions of the past two entries in an
carlier version of this chapter.

Although Entries 35-37 are false, it would be exceedingly interesting to dis-
cover Ramanujan’s heuristic arguments, since Hardy and Littlewood’s approach
is through contour integration.

The next result generalizes Entry 35 and is stated in the notebooks without the
latter series on the right side of (38.2).

I ¢(z) = 1 and we omit the latter series on the right side of (38.2), we obtain
(36.1).
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If wesetp(z) =1/ I‘(%[z + 1}), replace p by ,/p, and again ignore the second
series on the right side of (38.2), we deduce (37.2). To see this, we first note that

if n is odd m[_n\ =0 Hu — 2m ic aven ws chearva that
n 18 04q, ¢ = V. il n = 2m 1S EvVen, W OTserve aat

22 270 (L 2m + 1))
emTd{2m+1)  Cma(=D)"
(=2"@m—-D@m—-3)--1 (=D"
- am)! Jx TmlJm

Hence, (37.2) readily follows.

Entry 38 (p. 312). Let ¢(z) denote an entire function, and put

e PP
cos(3m2)¢(2)

where p is any fixed nonzero complex number, and where { (z) denotes the Riemann

sota ism~tinge Loar cismanlinion cocrisss tlnt 2k ansznal oonn AF PP peresy BN

(,ﬁl“-"l‘l'lbllull o Jll'l[lll\—l‘}, USIUITLC T3UL CULT ntnircue (,CI [ 24 UJ S \L} l\‘ \)i"l‘l¢C hc‘
Cy denote the positively oriented circle of radius N + 5 L centered at the origin,
where N is a positive integer. Suppose that

lim f@dz=0. (38.1)
N—=>oo Cw
Then
i (=D"e@n+ 1p+t x o (—1)"¢(—n) (gir_)
e {@2n+1) “onltn+)
LIy ee)p” (38.2)
2 &£ cos(zmp)t'(p)’

where the sum on p is over all nonreal zeros of {(z) arranged according to in-
creasing moduli.

Proof. We apply the residue theorem to the integral in (38.1). Observe that f(z)
has simple poles at z = 2n + 1, for each integer n, at z = —2n, for each positive
integer n, since ¢ (—2n) = 0 (Titchmarsh (3, p. 19]), and at each nonreal zero p
of £ (z). By a straightforward calculation, for each integer n,

2(=1)"p(2n + 1) p>*!

Ryny1 = — —— — . (38.3)
aL(2Zn + 1)
From the functional equation of {(z), (0.4), for each positive integer n,
. z+2n (=)' (2m)n+!
A% @ T AC@et i@ G849
Hence,
R, = R e(amp (38.5)

A@2n)c@2n + 1)
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Lastly, for each nonreal zero p of £(z), a simple calculation gives

o p(p)p® -~

Rp = ———. {38.6)

cos(3mp)¢"(p)

Thus, applying the residue theorem, using (38.3), (38.5), and (38.6), letting N tend
to oo, and employing (38.1), we find that

J 2§ EDCn Dpitt | 2 & (120 Dpr!
w

e {2n+1) St {(=2n-1)

@(=2n) 27r) 2 e(p)p*
—_— =0, 8.
" Z t@n + D! ( L e =Y 08D

where the sum on p is over all nonreal zeros p of ¢(z) arranged according to
increasing moduli. Now, by the functional equation (0.4) of ¢ (z),

(=2n — 1) = 2(=1)""' Q2r) 7' 2n + 2)¢2n + 2).

Using this in the second sum in (38.7), we deduce that

i(_])n¢(2n+ l)p2n+l _ _xi (p(_zn_ 1) (2—”)'&11—[
t@n+1) Si@n+@n+ DI\ p

n=0
i (=2n) (2_n)2"
t(2n + 1)(2n)!
wl n) nP

TR P 4L 38.8
"2 z,,‘ cos(3p)s"(0) e88

The first two series on C b3

C5 O ul

P af (
Bl Uiy
and since 1/¢(1) = 0, the proof of (38.2) i
In Ramanujan’s formulation of Entry 39, the latter series on the right side of
(39.2) does not appear.
Entry 39 (p. 312). Let ¢(z) be an entire function, and put

e(z)p*

IO = S T Dy eosnan @

VV"CIC P l.\ unyju.ea nonzero cumpuu nunwel, ana wnere g \Z} aenale.) me tuemurm
zeta-function. Assume, for simplicity, that all nonreal zeros p of [ (z) are simple.
Let Cy be the same circle as in Entry 38, and assume that

limf f(@)dz=0. 39.1)
N-oo Cwn
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Then

/a2 (m\”
TV L Tt ron \p

n=|

g‘(_l)nw(zn+])p2n+l
£(2n + n!

n=]

4
v

NP

« ¢(p)p* _
< TGlo+ 1D cosGmo)E (0) (39 2)

where the sum on p is over all nonreal zeros p of ¢(z) arranged according to
increasing moduli.

Proof. The proof follows along the same lines as the proof of Entry 38. The
function f(z) has simple poles at z = 2n + 1, for each nonnegative integer n, at
z = —2&, for each positive imcgcn n, and at z = p, for each nonreal zero p of

£(z). Note that the zero of cos(27rz) at z = 2n + 1 is cancelled by the zero of
1/ l"( (z+ 1)) atz = 2n + 1 when n is a negative integer. A simple calculation

yields

2=1)p2n + 1) p2+!
Rapyy = = 2 ;;‘(’;ﬂ"ﬂ);{’ . aso. (39.3)

By (38.4) and the duplication formula (or the functional equation) of the gamma
function, for cach positive integer n,
R, = @O¥emp™™  2A-1)e(=2n) (n)“
T AT(-R4 DL@r+ )Z@n+ 1) AR L@n+ 1)

399
For each nonreal zero p of £(z), we easily see that

¢(p)p*
F(z{p + 1)) cos(zmp)"(p)

Invoking the residue thecorem, using (39.3)-(39.5), letting N tend to 0o, and em-
ploying (39.1), we conclude that

2 i (=1)"e(2n + 1)172"+l Z (=1)'¢(—2n) (_)
n {(2n + n! f {@n+ D! \ p

n=1
+Y - ¢(p)p*?
5 TGio+ iDcos(Emp)ciip)

R, =

(39.5)

where the sum on p is over all nonreal zeros p of £(z) arranged according to
increasing moduli. The last equality is equivalent to (39.2).

Luly 1 L27.2

Entry 40 (p. 324). For each positive integer n,

n 1 - |
2(4&_2)3"(41(—2)=_2.k=I2n+2k_l' (401)
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Proof. The following proof is due to R. Sitaramachandrarao [1].
For any nonzero number 2 and positive integer n, define

va,n) = l+zzm

Then it is easy (0 see that

n

1
) @ @ = 1{e 2, 2n) - @(4,n)). (40.2)
k=1

By Entry 1 of Chapter 2 and Example 4 in Section 5 of Chapter 2 (Part I (1, pp.
25, 31)),

Ass
A1

i 4n 1 ~ 1 1
¢(2, 2n) — (p(4n)_l+2 R - - z
i 4 1 1 2 1 Sn+i 1
= + 2 —- - — - — -
an +1 kﬁ;}—l k 2 k=n+1 k k=2n+1
an 2n 2n—1
1 1 1 1
=) -5 =y — (40.3)
k=2n+1 k2 ka-H k o k41

Putting (40.3) in (40.2), we obtain an equality that is easily seen to be equivalent
to (40.1).

In the entry immediately following Entry 40, Ramanujan proposes an equality

between two finite sums of inverse tangent functions,

Ztn—l(2n+2k—l) Z'a"_l(.b \)

> 7

However, a line has been drawn through the right side. Indeed, it is easily checked
that this claim is false, in general.

Entry 41 (p. 324). For each positive integer n,

z‘a"_' (El-\ = "ﬁtan" (1 \3 @4L1)

\(2n+2k+1)V3) \(2k + 1)V3/
Proof. We induct on n. Forn = 1, (41.1) is trivial.

Assume that (41.1) is valid. We thus will prove that (41.1) holds with n replaced
by n + 1. Recall that, for0 < xy < 1,

tan~' x +tan! y = tan™" (lx—_—i-:—y) . (41.2)
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Thus, by induction,

n-1 1
[ U | / 1 1
T e \(2n+2k+1)f) \(2n+1)f}

n—2 1 1
- o . _.( )
;m ((2n+2+2k+1)\/§)+ o (2n + 1)v3

] 3
tan"! _) .
* ((Zn +1)/3

Thus, it remains to show that

an ((2n+1)v ) \(2n+1)\/ Jj
o 1 ) _,( 1 )
= —= | +t — .
o ((4n+1)ﬁ an (4n + 33 “413)
By (41.2),

(et =t
a ((4n+1)~/§ M VT

- V3(8n + 4) )
- 3n+1)@n +3) ~ 1,

et [@n+ D
= 3@+ 171,

an-! V3@2n + 1) (1 +3@2n + 1)?)
an 92n+ 1)° — 1

il

(a5 (a5m)
o ((2n+1)J§ e\ @ana)

by another application of (41.2). Thus, (41.3) has been proved, and the proof is
compieie.

On pages 334, 335, 340, and 341, Ramanujan offers four related claims about
products of certain aiternating series. In particular, on page 335, he asserts that
“a? 2ala2 + Qaa; + a}) - (2ala4 + 2aya3) + - - - oscillates between (a; —
a + a3 — -+ +)? & (/2) lim,_, o na?. For example

E CE RCINEE e
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oscillates between

(
\

Nll
u\ -
|
~—

~
+
(ST

L
V1

and

( 1 1 + 1 ) T,
Vi V2 V3 2

We state this claim more precisely. Suppose that, for 0 < x < 1, f(x) has the
power series representation 3 > (—1)""'a,x", where a, > 0,1 < n < 00. Let
£(x) denote the power series obtamed by forming the Cauchy product of f(x)
with itself. If L := lim,_, o, na? exists and is finite, then the even and odd indexed
partial sums of g(1) tend to f2(l)+(7:/2)L and f2(1)— (n/2)L, respectively. In
particular, if g, = l/ +/n, then the even and odd mdexed partial sums of g(1) tend

to {(l -2zt )} + 7/2 and l(l -V )] — /2, respectively, where ¢
denotes the Riemann zeta—function. The case when L = ( implies that the series
£(1) converges. In the case when L = +c0, the result states that the even and odd
indexed partial sums diverge to +oc and ~o0, respectively.

On page 340, Ramanujan states a generalization of the foregoing result for the
kth power of f(x), where k is any positive integer exceeding 1. Finally, on page
341, Ramanujan offers a similar theorem for the product of k (possibly distinct)
altemnating series 3 7 (= 1)"'any, 350, (=1)""ayy, . .., o (=1 'a,, un-
der the hypothesis that lim,,_, o, n*~ ‘a,,.a,,z -+ - @y exists or is +00. The statement
on page 334 is the special case k = 2 of the last claim.

We shall prove Ramanujan’s assertions under appropriate assumptions. Our
results are possibly not as general as Ramanujan intended. Slightly stronger theo-
rems can undoubtedly be established at the cost of additional technical details in
the proofs. (See the remarks following our proof of Entry 42.)

Ramanman s results are nlll!i’ remarkable for their P'ﬂ]l{“l' dpcr\nphnn of the
behavior of the partial sums of certain alternating dwergem series. We know of no
other comparable results in the literature.

The results in this section first appeared in a paper by the author and J. L. Hafner
[1).

We begin with a simple lemma concerning the asymptotic behavior of a certain
finite sum.

Lemma 42.1. Let a and g denote constants with0 < a, 8 < 1,

i

= —) > ]‘
fa(x) PrrE—— n=>

and

n—=1
cmy=Y_ falk), nz2. (@2.1)
k=1
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Then, as n tends to oo,

e(n) = _I‘Fl —a)lr(1 - ﬂ) + w N ;(ﬂ)
I'2—a - A)n=tp-1 nb o

where { denotes the Riemann zeta-function.

+
N

_x_n{i\
.ka}.

Proof. Define, forx > Qandn > 1,

1 1 1
{P(X)—x“a(l_x)ﬂ _;”-—“—(l—x)ﬂ +1 (42.2)
and
x) = 1 - : (423
b= x*(n—x)  nfx*  ne(n - x)p t e 3)
Note that
x
g =———o"(2).  jzo0
ne+b+j \n/
Since, for j > 0,
, O(x~I+1-a), 0<x<},
(p(j)(x) - { e : 2
Ol —x)/*=F), L <x<l,
uniformly for x in the given ranges, it follows that
x—J/Hi-a
o\ ———}, 0 2,
) ( nf+! ) <x=n
gl’(x)= (42.4)

— x)-i+1-p
(4] u), n/2 <x <n,

nao+l

We now apply the Euler—Maclaurin summation formula (0.5) to &n(x). Recalling
that B,(x) denotes the second Bernoulli polynomial, we find that

n—1\

Egn(k) =f ga(x) dx + 1g,(1) + Lga(n = 1) + R,, (42.5)
k= 1

where

1
nr-H} +0 \ ﬂ+l} +0 \na+ﬂ+1) (42.6)

42.4). (Note that the notation R, has a meaning here different
.) Using (42.4) and (42.6) in (42.5), we deduce that

1
;gn(k)=f g,.(x)dx+0( +|)+o(n—ﬁlﬁ>, 42.7)

as n tends to 0o.

||
«< /‘-\ —_



478 Ramanujan’s Notebooks, Part V

Recalling the definitions (42.2) and (42.3) of ¢ and g, , respectively, and setting
x = nt in the integral above, we find that

rn 1 rl
‘/0 gn(x)dx = W‘/o e(t) de

1 [PA-e)l(1-p) 1 o
= - - +1ip,
w1 | TTQ-a—p) l1-« 1-p |
where we have used the classical integral representation for the beta function.
Hence, by (42.7), as n tends to oo,

2=l 1 rd -e)ra - ) 1 1
;gn(k)—ncu—ﬁ—l{ F(Z—a—ﬁ) _l—a_l—ﬂ+ll
/ l \ / } N\
+0 (W) +0 (F) . (42.8)

Now, from the definitions (42.1) and (42.3), we deduce immediately that

Ll n—1
c(n)—Zg,.(k)-F ﬂzk“ nazz;'_'k_)ﬂ noth

R T S RS RS 25
_;g"()—*-n_ﬂ;k—“*‘;;;k_ﬁ_w' (42.9)

Recall (Part I {1, p. 150]) that for any complex number r # —1, as n tends to 0o,

r+1

nk’,N 3 n
2K ~En

r 00 By T 1 r—2k+1
+ 24y Bt Dn (42.10)

2 & QOIT(r -2k +2)
where B;, j > 2, denotes the jth Bernoulli number. Employing (42.8) and (42.10)
in (42.9), we conclude that

r{l—a)f(1-4) ] - N 1 1
FrR2-a-Bnetp-t  patp-t \l—a 1-8 nath

I-a

c(n) =

...... ( 1 A
(m— v tO () ol )

which completes the proof of Lemma 42.1.

Our next lemma extends the result to multiple sums.
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Lemma 42.2. Let k > 2, let ay, «a, ..., ax be constants such that 0 < a; <
G <--<aj<landeytoar+---+ay>k—1,andlet yy = as + o3 +
ooy —k+3.Then Ve > > 1 and there exist constants b, ; and ,3;‘_,; such fh(ll_f()r

= 1IEANLY O

each j,1 <j <3V —lLa +oar+ - +a- k+]<ﬁk,<land

n—1 n—n;-1 n—ny—-—ny—1 1
am=%"3 Y
* = e = ngtngl cengt(n —my — - — ng)M
_ rad—e)rdd —ey)--- 'l —ay)
T Tk -y -y — - — ag)nr etk k]
-ty
: ; 1
+ %“)(E)‘ (42.11)

j=1
as n tends to 0o.

Proof. Naturally, we induct on k. The case k = 2 is just a restatement of Lemma
42.1 with @ = @, and 8 = a; (assuming 8 < «). In this case, we have by =
(@), b =8(a), By =y, fn =0z, and yr» = &y + 1.

Suppose that Lemma 42.2 is valid with k replaced by k — 1, where k — 1 > 2.
Then for some constants by_y ;, Bi—1.j, With 1 < j <37 —1and0 < an +
@+t —k+2 < Bi- 1y <landyey =op+az+-- “t oy —k+4,
it follows that

) B il rd—a)rd—az)---rad — )
Ck(n) 'g r(k -1 - o) =0y — e — ak—l)(n - nk)"“*"’*“'“”‘"_"”

32

3 b, of 1 \1
* n—mps k(nfnk)”‘ ')i

J=1

1

Annlving T amma 42 1 a total of 342 times. we deduce that
APPrYIng 1AMiMa &<.¢ &0 01 5 umes, we qu
Frd—e)l'd —o)---T(l —ay-y)
c(n) =
Fh—1—am o~ — &)
Frl—a)l(l —a)y —ay — -+ —ogy +k —2)
l"(k - —ay— - — ak)n"1+'-'z+“-+m —k+1
o) o+t +au-—k+2)
na.+az+m+m‘.~k+2 ne

1 1
+0 no ot —k+3 +0 noxtl

Sy Tl — Beoy )T — @)
+ ; bl(—-l.j I r(2 _ ﬁk—l.j _(xk)nﬂk—).,ﬁn—l

Be-1.) | $low) 1 1
+c :ml : + nﬂn-]:,, +0 (II""H) +0 (nﬂn—l,,+l)]
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1
+0 (nn-rﬂn—l )

F{l—ea)l —ay)-- T —ay) +3§l b"f+0(l).

Tk —a; —ay — - - — ag)n@+ar+—+a—k+] e

= nﬂA/ nr
Here the set {b;; : 1 < j < 3*~' — 1) comprises the numbers
F'Ad—a)l (1 —ay) - T(1 —ayy)
— (o),
Fk-—1—a)—a;— -+ —a_y)
Ml —a)ld —ay)-- T —az_y) (
R P ——— flay+ar+ -+ oy —k+2),
and, fori < j <3*?-1,
L1 = By IT(1 — o)
by, j o J — br-1.j¢(Be-1.), bi-1. 8 ().
F2 - A i.j — %)
Furthermore, the set (8;; : 1 < j < 3*' — 1) is composed of the numbers

oty + -+ oy — k + 2, 04 (with multiplicity 3*72), 8,_; ; + &, — 1, and
Be-1js where 1 < j <3k2 — 1. Lastly, we observe that

e=az+az+---+oy—k+3
= inf oy +or+ o —k+3 0+ Lo+ 1 yoy g — 1),

1<j<3t-2—)

which justifies the exponent in the final O-term.

We are now in a position to state and prove one form of Ramanujan’s assertion
on page 341 in his second notebook [9). Our result is the specml case of the genera]
claim to which we referred in the m!rcductcry paragraphs of this section, when

-1

a,i = n~% and lim,, .00 n*= An1@p2 - -Gy = 1.

Entry 42. Let k > 2. Suppose that «\, «y, . .. , &y are constants such that 0 <
o <o) < Zay<landay+ar+ -+ =k — 1. Let cp(n), n > k, be
defined by (42.11). Then the even and odd indexed partial sums of

o0
( £ 1Ml A7 1)
L\ 1) k) \44.14)
n=k

tend to S; + %l"  and Sy — %Fk, respectively, where
S = (=DFA =272 (@)1 — 278 (o) - - (1 — 27 %) (@)
and

=T —ea)l'(l —az) - Tl —a).
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Proof. Let 0 < z < 1 and suppose that N is a positive integer. Then by Lemma
422,

n=k
N—-1
= S =1)am + Z( 1) ()"
n=k n=N
N-]
= Y (-1 + Ty Z( 1"z
n=k
kg 1)z
+ z: bxy Z nbu +0 zn_n
=1 n=N n=N

NN
% +o(l) + O(N'™),

(42.13)
as N tends to co, uniformly for 0 < z < 1. The term o(1) arises from the fact
that the series Y oo, (—2)"/ns converges uniformly on 0 < z < 1. Letting z
tend to 1— in (42.13), we see that the left side approaches S, while the right side
alternates like

= Z(—-l)"c " +

N—1
Y (=1)edn) + S(=DVTi + o)),

n=k
as N tends to oo. The proof is now complete.

We next state a simple corollary of Entry 42.
Corollary. Let ¢, (n) be given by (42.11), witha; = 1 — 1/k,1 < j < k. Then
the even and odd indexed partial sums of (42.12) tend to

Sk +iM*(/ky  and S - iT*(1/k),
respectively, where
S = (-D*{a =2 - k)
In particular, if k = 2, the even and odd indexed partial sums of (42.12) tend to
S+ /2 and S —n/2,

respectively.

This corollary is an immediate consequence of Entry 42, when, for k = 2, we

recall that F(%) = /7. Note that this last case is the example that we mentioned
in the opening paragraph of this section.
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We now offer several remarks.

From the proofs of Lemma 42.2 and Entry 42, we can furthermore conclude
thatif @) 40z +- - +a; > k —1, then the series in (42.12) converges to S, while
ifa; +a;+--- +ay < k— 1, then the even and odd indexed partial sums of this
series tend to +00 and —oo0, respectively. This observation partially explains the
meaning of Ramanujan ’s assertion on page 334, “The product of the two series
@—aytay—---Yby —by+by~-..)is convergent, divergent, or oscillating
as lim,_, o, nanb, is zero, infinite, or ﬁmte when g, and b, do not contain any
logarithmic functions.”

It seems that Ramanujan is tacitly assuming that a, = (@ + €)n; ™, and

b, = (b + €,2)n""1, where a, b, @, and «; are constants with a,a; > 0, and
where ¢, and €,,, tend to 0 as n tends to 0o, Ramanujan evidently assumes similar
hypolheses for the aforementioned claims on pages 335, 340 and 341. Indeed, our
iheorem can undoubtiediy be generaiized by replacing 1 /n ' by (a; + €, jm; T
where, for each j,1 < j < k,a; ; 18 a constant and €, ; ls a suitable functlon
approaching 0 as n; tends to co. We have been able to show that this claim is
correct under the assumption that ¢, ;, 1 < j < &, is monotonic, though this is
probably not the weakest assumption under which Ramanujan’s assertion would
hold. We forego giving the details of the proof of this more general result.

Adolf Hildebrand has kindly pointed out to us that Ramanujan’s weak assump-
tion is not sufficient for the conclusion of Entry 42 to hold, even in the case k = 2.
He observes that the series in (42.12) cannot oscillate if ¢, (2n) — ¢, 2n—1)> 4,
for sufficiently large n, with 8, > 0 and } % 8, = oco. We reconstruct his
example here. In the notation of the previous two paragraphs, set

l f(l + €,), ifniseven,
I —, if n is odd,
Jn
where ¢, tends to zero, J o €2 = 00, and €, saiisfies ihe reiation

€ = €, + o(€l), 42.19)

uniformly for «/n < & < n, as n tends to co. For example, we can take €, =
(loglogn)~'/2.

Define, in analogy with (42.11), ¢2(n) = c(n) = pI ,aka,,_k If n is even,
then

"i (1 + €)1 + €n2) + 1
P Vk(n — k) = Vk(n—k)

k ;en k odd

c(n) =

P’J_

n—-1

€r€n_i

Semz Z ot Y Hnep
keven keven

=c'(n) + 2d(n) + e(n),
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say, where

YN v\ N o~ =112
cin) = ==+ 0n ),
& kb
according to Lemma 42.1 and the fact that l"( } = /n. To estimate e(n) we
proceed as follows:

€x€p—

ORS ID VD ST DI I =1
I<k<y/n  Jfncksn—-/m  n—fn<k<n—1 (n—k)
k even k even k even

The first and last sums can be estimated trivially as O(n~"4) = o(e?). Now we
use relation (42.14) to express the second sum as

(+o) D —— =1/ +oled)).
Si<kan /i «/k(n — k)
k even
Consequently, e(n) = 7e?/2 + o(e?).
A similar and simpler argument shows that

d(n) = mé./2 + olel). (42.15)
We then deduce that for n even
c(n) = (1 + €5 +€2/2) + o(ed). (42.16)

On the other hand, if n is odd, then

n—1

s (I +€)

=2 _
W= L Km-n

k even

1 n—1 _
P R NS NS
g Vk(n — k) ; Vk(n — k)

k even k even
=n+ 0w '?) +2d(n)
= (1 + €,) + o(€2), (42.17)

by (42.15).
Thus, by (42.16) and (42.17),
c(2r) —c@2n ~ 1) = ined, +o(el),
and hence
00 oc
Z(C(Zn) —c@2n-1)) > Ze%,, = 0.
n=1 n=1

In light of the remarks above, it seems to be very difficult to determine the most
general conditions under which Ramanujan’s claim is valid.
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We quote Ramanujan in the next entry.

ax

Entry 43 (p. 348). ¢°* can be expanded in ascending powers of &P — & and
consequently e°* can be expanded in ascending powers of €** sinx and hence
many franscendental equations can be solved.

The content of Entry 43 has been thoroughly discussed in Part 11, pp. 308-312].

Entry 44 (p. 350). Let n be complex, ¢ be real, and b > 0. Then, if0 < x <
(1/c) tan™'(c/b),

M1t ne="* sin(cx) + % _d_;, (e"” sin(cx)Y ,
c = ki \ c J
where
n(n +kb) {(n + kb)? + (20)*} {(n + kb) + (4c)?} - --
J x{(n+ kb)? + (k — 2)%c?} , ifk is even,
k =

n {0+ kb + 2} {(n + kb)Y + (Be)?} -+ {(n + k) + (k — 2%},
ifk is odd.

See Part I (1, pp. 309-310] for a proof.
At the top of page 352 Ramanujan writes, “If an nth degree series can be
expressed in terms of M and N only, then
du nLu
T 12
can be expressed in terms of M and N only.” The degree of a series is vaguely
defined in Chapter 15 (Part II {2, pp. 320-321]). The identity of the function‘ u
is not divulged. However, L, M, and N are undoubtedly the Eisenstein series
L(g), M(g), and N(q) defined at the beginning of Section 4 of Chapter 33. Al-
though the meaning of Ramanujan’s claim is unclear, he gives atwo line “proof” of
his assertion. But, Ramanujan’s “proof” appears to have only a shadowy connec-
tion with his claim, and so we shall let the next entry encompass what Ramanujan
sketchily proves.

Entry 45 (p. 352). Let f be any differentiable function and set u(g) =
M"/* £(M3/N?), where M and N are the Eisenstein series mentioned above.
Then

du nL(q)u(q)

9% " 12

is a function of only M and N .
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Proof. We shall employ Ramanujan’s differentiation formulas ([7, eq. (30)), (10,
eq. p. 142}, Part II (2, p. 330])
dL  L*-M dM LM —N dN LN -M?
q— = , _——— and g— = ———
dq 12 dq 3 dq 2

(45.1)
Thus, using (45.1), we first observe that

qd(M3/N2) 3 MM M?dN

dq  INtag "IN aq
_ M (LM - N M (LN -M
N2 3 N3 2
2
= 7 (M7 = N7, {45.2)

Hence, by (45.1) and (45.2),

de nlu n_ . dM (M , (M>\ d(M3/N?)
05~ = g () e () S

N2 N2 dq
nL M3
ENGag VLILY N el
12M f(N"’-)
n LM -N (M e o M2\ M?
= G S () <o () w0 - 9

nL M3
—=pMhe
12 f(Nz)

AL
vz

wiapr | N\ M2 s 2 Ry nja-l (M
=M ) M- N - N ()

which indeed is only a function of M and N (and not of L), as claimed by Ra-
manujan.

Corollary (p. 352). We have

d(L*/M) 2L} and d(LS/N) 3L°M
dN T 3M? aM_  aN®

There is a misprint in the noiebooks; Ramanujan wroie 34 insiead of 342 in
the first equality. It is not clear why Ramanujan used the appellation, “Corollary,”
here.

Proof. By (45.1),
4aLdL _ L'aM
d(L*/M) d(L*/M)/dq "M dq M? dq
dN ~  dNjdq dN/dg
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4L (L2 - M L* (LM ~-N
M 12 M 3

2
= LN — M’
2
2( ., LN\
I\ T )
TTIN-MT T 3M?

The proof of the second equality in the corollary follows along the same lines.

Entry 46 (p. 353). ForRea >0,

R N GV = n! (a),

i @rn | TG+ @+ by

~~
éh
N
Pt
A

Proof. Observe that each side of (46.1) has simple poles at x = *i(a + n) for
each nonnegative integer n. It then suffices to show that the residues of each pole
are equal. For if F(x) denotes the difference of the left and right sides, F(x) is
then an entire function which tends to 0 as x tends to co. By Liouville’s theorem,
F(x) is a constant, which obviously equals 0. Thus, (46.1) is established.

If R, denotes the residuc of a pole « on the left side of (46.1), then it is easy to
see that

=1
Ri(a+n) = i(a = _R—i(a+n)~ (462)

+
Z

difficult. Now

ks o "D PREE PRSP
111C Caltulativ!

R, denotes the residue of a pole « on the right side of (46.1). We have

£ tha racidia
1 Ot i€ resigues on ne

& i (a); |

Ri a+n) = ) = 2 :
o L [Tisox + @+ )H2ia + ) [T, (2 + @+ 0P

j=n

x=i(a+n)

(k +n)! @sa(x* + (@ +n)?)

o0
a ; @+ xDnpkrr(@ — xiusisr2ila +n)

x=i{a+n)

(@),n! (x* + (a + n)?)
@+ xi)ppr1(@ — Xi)apr2ila +n)

= (n 4 1)(a + n)
(@+xi+n+1)(@a—xi+n+1)

X

£=0 le=itatm)

_ (a)nn!
T (@ +xi)ala — xi),2ia + n)

IL,n+l,a+n
X 3F3 i ) |
a+xi+n+la—xi+n+1

x=i(a+n)
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_ (a),n! Ln+l,a+n
(~n)a2a +n),2i@+nm) > 2| 1,2 +2m+1" ]
_ @iy [r+latn ]
Qa+n)2ila+my > | 2a+ma1’ J
@.(-1)"  TQa+2n+1)la)

T Qa+n)2i@a+n)TQa+n)@+n+l)

- '@+ n)(—1)'T'(2a + n)T'2a + 2n + DI (a)
F'@)r'(2a + 2n)2i(a + )T Ra + n)I@+n+ 1)

_ (=D"Q2a+2n) (-1

T 2ila+n)a+n) i@+n)

(46.3)

where we applied Gauss’s theorem (Bailey {1, p. 2], Part 1I {2, p. 25]). Thus,
_(46.3) agrees with (46.2). The calculation of R_,(a+ny is similar. Thus, the proof
is complete.

Observe that the right side of (46.1) equals

1 JF. 1,1,a
a2+ la+xi+l,a-xi+1]|"

Entry 47 (p. 355), For|x| <1,

x2n+l 00 n(n+1)/2

X

Proof, The left side of (47.1) may be written in the form

o0 [o ¢}
Z Zx(2n+l)m_
n=0 m=1
Arrange the terms in the array
x x¥ X 17 X
x2 x6 10 yl4 18
I IR E R (R
Xt x'2 x20 ,2 ,36
x5 x15 x5 35 48

Summing these terms by the column-row methed (Part II1 (3, p. 114]), we arrive
at the right side of (47.1).
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Entry 48 (p. 364). For |x| < 1 and positive integers n > 2, the polylogarithm
Li, (x) is defined by

— x%log(l — e~ %)

1
— > 1£(3) — Lis(e™™)}.
27'[2 ) (48.1)

Proof. Trivially, (48.1) is valid for x = 0. It therefore suffices to show that the
derivatives of both sides of (48.1) are equal.

Differentiating both sides of (48.1), simplifying, and dividing both sides by 2x,
we find that we must prove that

00 =2mx
» 1 ot mx meer™ (48.2)
N\ T+ 2K 272 1-em

For |x| < 1, the left side of (48.2) equals

Z Z( 1)"x 2n 1 :i(_l)nxhg(zn).
k2n =
On the other hand, if B,,0 < n < 00, denotes the nth Bemoulli number, and
|x| < 1, the right side of (48.2) equals, by (0.1),

1 nx 1 _ lmﬂ n
272 22 y(2nx 2Z_:n!(2”)

n=0

o0
—_——— 2n —1\ty2n
= Z Gy 70 g( 1)"x¥(2n),
by Euler’s formula (0.2). Thus, (48.2) has been verified for 0 < x < 1. Thus,
(48.1) has been established for 0 < x < . But both sides of (48.1) are analytic
for all complex x with Re x > 0. Hence, by analytic continuation, (48.1) is valid
for all complex x with Re x > 0.

In notation slightly different from that of Ramanujan, he claims on page 365

that if
2
1 14++/5
= _— ‘1
x (nlog( ) )) (49.1)
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then

77 TR o iV + X \ki .
€' = lim ¢ \ ) . (49.2)

=l

This result is also found on page 370 of Ramanujan’s lost notebook [1 11. As we
shall see, Ramanujan’s assertion is incorrect. In our corrected version below, the
proposed equality is independent of the value of x.

Entry 49 (p. 365). If|x| < 1, then

12 1 X 5 0 (—l)kf(Zk)XZIH'Z
- - = t“cotht dt = —_—
7~ 2 fo kz=1: P (49.3)

Proof. Recall that, for |x| < = (Gradshteyn and Ryzhik (1, p. 42]),

cothx = — + Z 2(2’52'k %=1

where B,,0 < n < 00, denotes the nth Bernoulli number. It follows from Euler’s
formula (0.2) that, for |x| < 1,

o0
mx?eoth(rx) = x +2 3 (=¥ g (2h)x %+,
k=1

Upon replacing x by t and integrating over (0, x) for |x| < 1, we find that

X k—1 2%k+2
Ccomian df = F o CDFIE@R
/; wt? coth(nt) dt = 5 +Z e

’

which is easily seen to be equivalent to (49.3).

Now suppose that (49.2) were true for |x| < 1. Then

|
3
x=
~
026 5
—~
|
—
~—
<
!
*
-

0

_i( 1/ ¢2j)xi*!
4 i+l

Jj=l
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where the inversion in order of summation is justified by the absolute convergence
of the latter double sum. Replacing x by x?, we deduce that

asserting that, by (49.1),

t2cothr dt = 0,

/»log((u-\/i))/z
0

which is obviously false.
In connection with the Lagrange inversion formula, in Chapter 3 Ramanujan

studied infinite exnonentials
studied infinite expo
a’ (50.1)
(Part 1 [1, p. 771). L. Euler [1], [2] was evidently the first person to seriously
examine (50.1), and he showed that (50.1) is convergent if and only ife™* < a <
l/e
e’s.

Upside down, on page 390, Ramanujan offers a theorem about the convergence
of the more general infinite exponential

a;t. (50.2)

Before stating his result, we mention some further relevant papers. As we indicated
in [1, p. 77], many authors have written about the convergence of (50.2), and an
extensive bibliography on such results is contained in A. Knoebel’s comprehensive
survey paper [1]. Most authors assume that {a,} is a real, positive sequence and

establish convergence when e™¢ < a, < e'/¢, for n sufficiently large. D. F.

Barrow (1] appears to have been the only one to venture outside this interval.
Writing a, = '/¢ + ¢,, where ¢, > 0, he showed that (50.2) converges if

el/e
lim €,n° < (50.3)

n—00 2e

and diverges if
1fe
. e

lim €,n’ > (50.4)

n—>00 2e
.. —2 ~ O L e at manacoarly
Furthermore, writing a, = e¢~° — €,, where €, > 0, he proved hat necessarily
lim,— 00 €2 = O and that lim,_, ., n%, = 0, for some ¢ > 1, is a sufficient

condition for convergence. For complex a,, the most general result isdue to W. 1.
s AN Ve £~ : baroo

Thron {1] who proved that (50.2) converges if [a.| < €'/ for a sufficiently large.
We now state Ramanujan’s claim on page 390. He asserts that (50.2) is conver-

gent when

1{1 1 1 } .

- +---}, (50.5)
I +logloga, < 2 { + (n Iogn)2 (nlognlog log n)?
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and is divergent when the left-hand side is greater than the right side when any 1 is
replaced by 1 + €. This statement needs some clarification. First, the series on the
right side of (50.5) is finite for each n and persists as long as the iterated logarithms
remain positive. Ramanujan evidently had in mind a test for the convergence of
(50.2) when a, z 1. If for n sufﬁcienlly large, (50 5) holds, then Ramanujan
claims that (50.2) converges. On the other hand, if one of the numerators 1 in the
series on the right side of (50.5) is replaced by 1+ ¢, for some fixed number ¢ > 0,
and if there exists a subsequence a,, tending to oo for which the left side of (50.5)
is greater than or equal to the right side with one of the numerators 1 replaced by
1 + ¢, then Ramanujan claims that (50.2) diverges.

An easy calculation shows that Barrow’s theorems (50.3) and (50.4), even in
the stronger form when the inequality < in (50.3) is replaced by <, are contained
in Ramanujan’s assertion (50.5) with the right side of (50.5) truncated after the
first term.

In the remainder of this section we follow the analysis in Bachman’s paper [1).

We shall establish a version of Ramanujan’s claim for complex a,. So that the
exponentiation is unambiguous, we assume that the sequence of complex numbers
{bn}, 1 < n < o0, is given and set

a, :=¢€", n> 1 (50.6)
With this dcfinition,

an

E,:=a® ., n21, (50.7)

is well defined. We first give the following test for the convergence of {E,)} for
complex exponents.

Theorem 50.1. Let {a,} and (E,) be given by (50.6) and (50.7), respectively. Set

L (50.8)

and define (E,},n > 1, by (50.7) with &, in place of a,,. Then, if {E,) converges,
{En) must converge as well.

The test above is of independent interest. In particular, Thron’s result (1] follows
from Barrow’s theorem for real exponents a,,, 1 < a, < ¢'/*, and Theorem 50.1.
To state Bachman’s results concerning Ramanujan’s test for convergence, we

ntroduce the fn"nunng notation for iterated "‘gamhms Se"lng X = ¢ and
Ly(x):=L(x):=logx, X >e,

a v and S €an L
UVIINV Ax alg Lop, 1UL X

v

2, by 51 i= e, and

Ly = Li_(L(x)), X > xi.

Entry 50a (p. 390). Let{a,) and (E,} be defined by (50.6) and (50.7), respectively.
Then {E,} converges if there exist positive integers ko and no, such that for all
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n = ny,

1 +log|loga,| =1+ logb,|
< 11 + 1 + 1
T2 |n2 (nLi(n))?  (nLy(n)Ly(n))?

1 )

to ot LW I

(50.9)

Entry 50b (p. 390). Let (E,) be defined by (50.7), where the sequence {a,) is
real, a, > 1, for every integer n, and

s -

if1 1 i
o N
L+logloga, > 5 ‘nl P L2 T aLimLan)y

1 N 1+4+¢€ 1
LWL - Lo T GLimLam) L@ )

(50.10)

for n > ny, for some positive integers ko and ng, and for some € > 0. Then the
infinite exponential {E,} diverges.

We first set some convenient notation and establish three useful lemmas. The
first lemma reduces the principal case of our problem to an equivalent problem
that is easier to attack. Set

Xa

Xy, x2, .00, X0) 1= x,7 and [x1, %2, ... )= x,

Also set
1
1

1. (50.11
Lo Lo tEh e

€o(x) := and £,(x) =

| -

Lemma 50.2. Let {x,},n > 1, be a sequence of real numbers such that x, > 1.
Define another sequence {Xp},n > 1, by

1+ X,
x,,:exp( +e ) (50.12)

Then (x), X3, ...] converges if and only if there exists a sequence {Y,},n > 1,
such that Y,y > —1 and such that the inequality

|0 12
V.3

N - . Y. f{ AY
i+ 7 = 1+ Xpje (S0.13)

holds.

Proof. Since x, > 1, the sequence [x, x3,...] is monotonically increasing.
Hence, to prove that it converges, it suffices to show that it is bounded. By (50.12)
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and (50.13),
[x13x2! "-9x.'z] =< [x!:xl-. s Xy, el+}’,,...|! =< el+h-

In the opposite direction, suppose that [x), x3,...) converges. Since, x, >
1, then [x,, x4, ...} also converges for each n > 1. Denoting the limit of
[Xns Xn4rs .. 1 by ' *1» we observe that ¥, > —1 and that

b/ .
el+yn — [Xn,el-.-y“"] - e“-{-x,,)e » |.

Thus, we deduce (50.13) with equality, and this completes the proof of the lemma.

The next two lemmas are the primary ingredients in the proofs of Entries 50a
and 50b.

Lemma 50.3. Let T}, CX, and X* be defined by

k
TS =) tiin—-1), (50.14)
j=0
1 k
Cri= 32 6, (50.15)
j=0
and
L4+ X4 = (1 + The ™, (50.16)

where €;(n) is defined in (50.11), and where k > Q and n > 2 are any integers
Jor which the right sides of (50.14) and (50.15) are defined. Then there exists a
sequence of integers (n,} such that, forn > n,,

Ck < X} < CH1, (50.17)

Proof. Letk > 0 be fixed. For brevity, set 7, = T* and X, = X*. By (50.14) and
(50.11), T, = O«(1/n) < 1, forn = ny, say, and where the notation Oy indicates
that the implied constant is dependent on k. For such n, we can expand the right
side of (50.16) in a Taylor series about 0 and so find that

1 + Xn = (] + Tn)e_‘r"H
=0+ T) (1 = Toi + 3(Ti1) — §(Tr)’ + Oc(n ™)

=1+ T, ~ T + 5(Tos )’ = TTog + 3T (T1)? = HT0pt) + O(n™%).
(50.18)

Now, by (50.14) and (50.11), expanding T, about n + 1, we find that

T, =T+ — Tn/+| +% ,,'tH - %Tm’ (50.19)
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for some number &, such that n < § < n + 1. Note that

Lo
Ty = Le ()= =D 4(m Y bitm), (020
j=0 i=0
k / k J \
1 = 260 = - (@ + 3wy )
=0 j=1i=0
2 1
_ 2 _ 50.21)
PO (n’logn) ' (
and
k .
Té‘ii - Ze:’(s _ ]) — Ok(‘n—‘)‘ (DU.[L)
j=0

Substituting (50.19)-(50.22) into (50.18) and simplifying the resulting ¢xpression,

¢ find that
: 2 1 1
1+ X, =1-T,,, - (L) + 303 + O« m .
Hence, by (50.20), (50.14), and (50.15), we deduce that

1 1
’ 2 _
Xo = =Ty = 3(Tun) +ﬁ+ok (n”ogn)

1
2 i
=3 260+ 55+ 0 (57

1 1 )
—Cck 4 — S (50.23)
=Gt 3n? + O (n”ogn,

Thus, for n > ny, (50.23) implies (50.17), and this completes the proof of Lemma
50.2.

Lemma 50.4. Let T* and X* be defined by (50.14) and (50.16), respectively.
Moreover, let x* be defined by

k
i (1+ X\ (50.24)
. = (JuU.2%)
X, exp\ B }
Then
: k 147X
Jﬂnw[x:.xfﬂ, s xk) =t (50.25)

Proof. We begin with the observation that it suffices to show that there exists
a sequence of integers {n}} such that (50.25) is valid for each n 2 n,. Indeed,
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assuming this, we have, for each ¢ > n},

: Kk _k ky _ [« & k k k1]
mh_’mw[x,i,x"““;wxm}—[x,,,.:,,“,...,xi,”'!Lméo{x,+,,n(+z,...,xm,J
= [xboxbarsooxb o]
k
= It

by (50.24) and (50.16). To exhibit the existence of such a sequence {n}}, we first
observe that, by (50.24), Lemma 50.2, and Lemma 50.3, any infinite exponential
[x,,, : 410 -+ - )s with n > ny, is convergent, where {n,} is a sequence defined in
the statement of Lemma 50.3. Denote the limit of such an infinite exponential by

€'+, Then (50.25) will follow if we can show that

S =T*, (50.26)
foralln > nj, > n,.
To this end, we define, for integers k > 0 and n > ny, the numbers ¢ by
thi=Tk - sk, (50.27)
We will deduce (50.26) from the three inequalities,
St >58is0, k > & n > sup(ng, ny), (50.28)
>0, (50.29)

and

k (Lk(m - 1)\’ 212

&(m—1), m>n>n, (50.30)
Ly(n)

where 1, is sufﬁcnently large, where in the case k = 0, Ly(x) = x. Indeed, assume
that (50.26) fails for k¥ = 0 and some n > nj. Then, by (50.29), 1% > 0, and so,

by (50.30) and (50.14), we find that

>0 (”’T_l) Lo(m — 1) > Ly(m — 1) = T?

for some m > n, where m is sufficiently large in terms of °. But, by (50.27),
this implies that S° < 0, which contradicts (50.28). Thus, (50.26) is valid with

k=0foralln > "U Prnmiprhna hv induction on &, assume that (5(\ 26) holds u up

to k — 1. Assume, to the contrary, that (50.26) fails to hold for some £ > 0 and
n > n;. By the same argument as used above, we find that

1> L(m — 1),

for some m > n that is sufficiently large in terms of ¢¥. This, together with (50.27)
and (50.14) shows that

Sh=Th—th <TH =857, (50.31)
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by the inductive hypothesis, provided that m > nj_,» which we may assume. But
since (50.31) contradicts (50.28), we conclude that (50.26) and therefore (50.25)

PT-7 0 T ANV a Yo T4 )Y

hold. Thus, it remains to prove {3V.20)-\2v.ou).
To that end, assuming that {n,) is increasing, as we may, we find that, for k > €
and n > nyg > ng,
& £
X;>X, >0
and so
x> xl> el (50.32)

by (50.17), (50.15), and (50.24). Recall that Euler (1], {2] showed that the infinite
exponential with constant exponents ¢!/ converges to e. This fact, together with
(50.32), yields (50.28).

To prove (50.29), we first observe that, form > n > ny,

Wk xk xk) < [xX, xk,, ...,x,'ﬁ,,e'”':*'] =t

by (50.24) and (50.16). Hence, S; < T¥, and so (50.29) hoids by the definition
(50.26) of t¥.

For the proof of (50.30), we first observe that, by the definition of Sf‘ and (50.24),

Hence, S¥ satisfies (50.16) with T replaced by Sk. We now fix k and write S, Ty,
and 1, for S, T, and £¥, respectively. From our last observation it follows that
(1 + Sp)e S+ = (1 4 Ty)e ™.
Substituting S, = Tn — tm andm = n, n + 1 into the last identity, we find that
Iy
1+ 7,
By (50.29), (50.28), (50.14), and (5

=1- e—lul. (5033)

10
x)s

&
R

0<t, 2T, €k (5039

3| -

Hence,

Lot — ¢ WE L) < i o)t
— g i = -—(— R = !
n1 - i n+1 n+1 £ 2 1+ 1041/2

provided that n > nj, where m} is sufficiently large. Using this bound on the rigl
side of (50.33), we deduce that

! >t 1+ tn+l/2

n+1 n 1+ Tn .

Hence, for any integers m > n > n,

m—1
14 4i41/2
tm > tn | | T}Lrl/' (50.35)

i=n
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We use (50.35) twice. First, by (50.35) and (50.34),
m—1 1

,_,_/ . m=1
tnc)\p\ZlUS 1 +T,) > i"t‘:)‘(p(—gﬂ),
W,

. . .
form > n > n;, where n, is sufficiently large. No

m—1
37
t=n

by (50.14) and (50.11),

m—1

k k m-2
ZZ@,(:‘—])<Z[2 €;(x) dx

i=n j=0 j=09n

k
k
= ;) (Lj+1m=2) = Ljyi(n —2)) < ZLJ-H(m -1.
im0 (50.36)

~.

Hence, by (50.11),

k
tm>t,lcxp(—ZL,-+|(m—-]))=t,,( !
\ =0 /

m—DLim~-=1)-..Lim-1)

=t &i(m — 1), (50.37)

for any integers m > n > n,. We now rei i
‘ ‘ : > nj. reiterate the argument above but this
time using (50.37) instead of (50.29) on the right side of (50.35). Employing also
(50.36), (50.34), and the inequalities ¢,£,(i)/2 < T; /2 & 1/i, we find that

m—1

L+ 66 wt .
tn >0 [ ] _1"% =1, exp (Z log(1 +t”£k(l)/2))

i=n ]+7;

m—1
> 1, exp (Z (3 (i) - T:))
/

i=n

k
> I exp (%tn(Lm(m 1) = Liga(0) = Y Ljsalm — l))
\ i= /
_{Lim = D\"?
— (—Lk = ) eelm ~ 1),

where the second inequality above holds form > n > n;, P i
. : > ny, where n, is sufficient}
large. Thus, (50.30) is established, and the proof of Lemma 50.4 i; complete. ’

integer n and, for any complex number z, set

d
f(z) = Z[als A2y -0y Qp, Z] (50.38)

and

( — d A A PN
g(z) := ;{;[ahaZ;-‘.,arHZL (50.39)
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For eachm > n,

- a1 _Ta. a, al=1Ia a a. la.... a..o ﬂn.n
Le4], L2, yem) Lejy e,y yleng Wi 22, 3 Shis HFn T2 d
[ar. a2, ...,a0, 1]
ala, .0, a_l
- f(2) dz (50.40)
1
Setting
u:={Gny1, ni2, -+« @m]) (50.41)
and
wi= [én+ls an+2, ceey am]» (5042)
we find, upon estimating the right side of (50.40), that
u
|[al,02y--».am]_[01,02,--'.‘%“: f f(z)dz
1

1
= f F+ - Dd( + @ - 1))

<|u- II/ 1f(1 4+ (e — 1)l dr.
(50.43)

...... = O

Thus, by (50.38), (50.6), (50.39), and (50.8),
d n
f(z)=bilay, as, .. ”a_,!,z]a.—zlal,az,...,an, z] = nbk[akyak+l, e @y, 2]
k=1

and

n
8@ =[] 1bcllaw, acsn, - -, 80, 2)-
k=1

Hence, by (50.6), (50.8), (50.41), and (50.42), we obtain the inequalitics

n
170 =t +unl = [T 1belac, aier. - @ (0 =1 +un))l

< [T teelt@e, Genrs v, (1 =1 + i)

< gl —t+wr), (50.44)
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which is valid for 0 < r < 1. Applying (50.44) to the right side of (50.43), we
find that

l"
|[a1,az.....am1—[a..az,...,anns|u—1|j g1+ (w— 1)) dt
0

= 1), ¢ w +(w - Dy
w—1Jo
u_l w
= l ! g(2) dz
w—1
fu—1] . R . .
— (a1, a2, ..., a,) — &y, &2, ..., 4,)),

(50.45)

by (50.39) and (50.42). Observe that w > 1, since a, # 1, andso a, > 1.
Moreover,

lu—1] = |ebn+l[“n+21“n+3»~-~~am] -1
| e
1 k
= Zk—( n+10n42, @na3, - G])
k=1
21
= Z k_ Ibn+l|[au+2: an+3, ey &m])k =w-—1.
k=1 (50.46)

Theorem 50.1 now follows from (50.45), (50.46), and the Cauchy criterion for
convergence.

Proof of Entry S0a. By Theorem 50.1, it suffices to consider real exponents

a, > 1. In such a case, [a; 1 ic monotonically increacing and so it
an = 1. 2D} SUCH & CaSE, 144,43, ..., 4y 1S MONOICMCAnY nireasng, ans s¢ it

suffices to show that it is bounded. Define the sequence {c,} = {c**!] by

C e /1+Ck“+‘\ o
Cn =c)\p\ } = gl

where C¥*1 and ny, 1 are defined in the statement of Lemma 50.3. Setting C, =
Ch*!| we find that, by (50.15), (50.11), and (50.9),

1 3
1+ logloge, =log(1 +C,) =C, — EC" + 0(C)
ko
. lv‘n2/,\>1.|A.|A_
>3 2 ¢ Wn) =1+ logloga,,
=0
for n > ny, sufficiently large in terms of k,, as we may assume. Therefore, for
n > ngy, we have a, < ¢,, and so
[an“y Qug+ls - s an] =< [Cnna Cry+lseey Cal.

Thus, it suffices to show that the infinite exponential [c,,, Cagt1. - .. ] converges.
By Lemma 50.2, this, in turn, is equivalent to the existence of a sequence §,, n =
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no,ng+1,..., suchthat S, > —1 and
148, = (14 Ce™. (50.47)
But, by Lemma 50.3,

14+ C, =1 +Chtl <1 4 x0* = (14 TP+ )e " pi

Hence, (50.47) is satisfied with §,, = T,,"0+1 ,n > ng. This completes the proof of
Entry 50a.

Proof of Entry 50b. We proceed by contradiction. Suppose then that the infinite
exponential (a1, az, ...) is convergent. Then, since a, > 1, so is [an, @nsrs -]
convergent for any n > 1. Denote the limit of the latter infinite exponential by

e'*+5 Define also a sequence {A,} by

I
a, = exp( “:A") : (50.48)
\ > /

Then
e!tSh = [a,,, eHS""] = (1+ANE (50.49)

In the remainder of the proof, n always denotes an integer such that n > no.
For such 7, it follows immediately from (50.10) that A, > 0, since a, > e'/*.
Moreover, by (50.48), (50.10), (50.11), (50.15), and (50.17),

A, > log(1+ A,) = 1 +logloga, > Ck + Le& (n) > CX*' > X}, (50.50)
for n > ny, where ng, which depends on k and ¢, is sufficiently large. Thus,
an > xk,

efined by (50.24). Therefore, by the definition of S, and Lemma

Sy > Th, (50.51)
For brevity, set T, = TX, X, = Xk,

By=A,-X,, and R,=8,—T,>0, (50.52)
by (S0.51). By (50.50), (50.23), (50.15), and (50.11),

1 1
B, > Ck 4 1t} (n) — X} = Lebf (n) — 7 + O (;”Tg;) > Jebi (n),
(50.53)
where n > ng, and where r is sufficiently large.
The remainder of the argument in Bachman’s paper [1] is incorrect. We are
very grateful to A. Hildebrand for supplying the following elegant argument to
complete the proof. We begin with a lemma.
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Lemma 50.5. For M, N > n,,

Proof. From (50.11), we observe that

LI
£,(x) = ;1 (x)
Lj(x)’
Thus,
M Mk k. M pieon
Si= Y Ti= Y Y gin-1= E 3 Ll
"=N+1 n=N+1 j=0 Jj=0n=N+1 Lj(n -1

Since ¢;(x) = L’ (x)/L;(x) is decreasing for x > ny,

Li(n—1) n L’(x)
Lijn—1) ‘[, L

LML L,(M) &(N)
S > ! lo d
= =oﬁ L™ Z (L (N)) m(&w))’

J

Thus,

and so the proof is complete.

14X, = +T)e ™ and 1+A4A,=(+S)e 5.  (50.54)
Thus, from (50.52) and (50.54),

14 B _1+A._ 145, ~R,,+.=(,+ R, )e-R~~-.

1+X, 1+X, 14T, 147,
Hence,
log( R )—10 (1+ B ) 50.55
n+| 1+T,,( g I+X,,' ( . )
Since R,.41 = 0 by (50.52), equality (50.55) first implies that
Rn - B’l
g
1+7, ~ 1+ X,

and then, with the use of the inequality,

log(1 +x + k) — log(1 +x) < L, X, h=20,
14+x
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secondly implies that

-1
w3\ Thr T TEx) U TR
1 (1+X,,R _B\
1+ X, + B \1+T,
<1+X"RH—B,,=8_"'“R,.—Bm
“1+T7,

where, in the last inequality, we used the fact that R,y > 0 from (50.52), and
where, in the last equality, we used (50.54). Thus,

R, > R,,+1eT"” + B,.eT""‘.
Tterating this inequality, we find that
R, an+zeTnll+Tn+7 + B"+]eT’|1l+Tn~2 + B’leTrM-l

>

m

Tosr -+ Tns § : Tovit+To
2R,,+m€r”' bt Tpem + Bn+j—le il +)
j=1

> Z By j1eTrt T (50.56)
=1
By Lemma 50.5, for n > nop,

Tkt Ty o G L (50.57)
T+ )T bnti—1

Hence, using (50.53) and (50.57) in (50.56), we conclude that

e

Since m > 0 is arbitrary and since }: yan+j—1) diverges, we have reached
the desired contradiction, and so the proof is complete.

38

Approximations and Asymptotic
Expansions

One of the primary areas to which Ramanujan made fundamental contributions,

but for which he received no recognition until recent times, is acvmntr\hr annlvcm

VU0l Wit < ICCCIVCE DO ICCoE! TCCCH VMCS, s asy Wl ar

Asymptotic formulas, both general and specific, can be found in several places
in his second notebook, but perhaps the largest concentration lies in Chapter 13.
Several contributions pertain to hypergeometric functions, and an excellent survey
of several of these results has been made by R. J. Evans [1]. The unorganized
pages in the second and third notebooks also contain many beautiful theorems in
asymptotic analysis. This chapter is devoted to proving these thcorems and a few
approximations as well.

On pages 270-273 of the second notebook, Ramanujan examines some related
functions that can be considered as hybrids of the Riemann zeta—function and
hypergeometric functions. Some of these results were established in a paper with
Evans [2). Entries 2-8 contain accounts of Ramanujan’s findings described on
these pages.

In Entries 12 and 13, Ramanujan determines the asymptotic behavior of some
multivariate exponential series. These results are in the spirit of several theorems
that can be found in Chapter 15 (Part 11 [2, pp. 303-314)).

In Entry 16, Ramanujan derives the asymptotic expansion of

1-1¢ n{n+1)
2 1)"(1“) :

n=0

as f tends to 0 +. A complete description of the asymptotic expansion of this falsc
theta—function involves Euler numbers. All of the coefficients in Ramanujan'’s
asymptotic expansion appear to be integers, and this was recently proved by W.
Galway [1] using a formula from Ramanujan’s lost notebook (11].

Entry 17, which can probably be generalized, gives the asymptotic expansion
of a function which is a hybrid of a theta—function and a hypergeometric function.
This is also related to the aforementioned material in Chapter 15.

Entries 18 and 19 present families of approximations to certain finite sums and
certain infinite series, respectively. These approximations arise from the orthogo-
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nality, respectively, of the discrete Hahn and discrete Charlier polynomials. The
results are quite remarkable, for no one had previously realized that Ramanujan
must have, in essence, discovered these orthogonal polynomials.

Entry 23, which can also undoubtedly be generalized, provides an asymptotic
formula for a certain Lambert series as x tends to 0.

ot antec af thic chantar

We quow ndllldlluylll in the first iy Ot ulis CRapll

Entry 1 (p. 265).

z::ai? = 0.1015314 + loglog(x? + x + 8); (1.1)
x=o00, 6=14; 1.2)
x =1, 0 =0.46811; (1.3)
130489 quadrillion terms to get the value of 5. (1.4)

Proof. Applying the Euler-Maclaurin summation formula, (0.5) of Chapter 37,
to f(x) = 1/(x logx), we find that, for some constant c,

X 1 1 1 ( 1 )
= - +0(———). (0.5
;klogk ¢ +loglogx + 2xlogx  12x’logx x2log’x

as x tends to oc. From Entry 14 of Chapter 7 (Part I [1, p. 166)),

Jim —l— — loglogx | = 0.7946786, (1.6)
x=00 \ &4 klogk

i.e., the constant ¢ in (1.5) equals 0.7946786. On the other hand, observe that

o—1
=21 -
ogx+ -+ —

o 2o+ ()
= (4] ,
(2logx) (1 + 2x logx + 2x2logx + x3logx

as x tends to 0o, Thus,

1 6-13 1
loglog(x? +x +8) = log 2+ log log x + +53 i-4+0 (m;) .

2xlogx  2x2logx
“* X5 =3 /
a.n

Now log2 = 0.6931472, and 0.1015314 4 0. 6931472 = 0.7946786. Hence, by
(1.6) and (1.7), the constant terms in (1.1) and (1.5) are in agreement. We also see
that if we set 8 = m (1.7), then the first three nonconstant terms in (1 .5) and
(1.7) agree. This then proves Ramanujan’s assertion 1.1).
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When x = 1 and @ = 0.46811, the right side of (1.1) should approximately
equal 0, if Ramanujan’s claim is correct. Since

loglog(2.46811) = —0.1015315,

the right side of (1.1) to seven decimal places is —0.0000001, which justifies
Ramanujan’s claim in (1.3).

The assertion (1.4) is recorded in a different color or different shade of ink
in some “empty space” further down the page. With an American interpretation,
130489 quadrillion = 1.30489 x 10%°, However, in the United Kingdom and areas
under its former dominion, one quadrillion equals 10?4 instead of 10'. Therefore,
Ramanujan claimed that 1.30489 x 10?° terms will give a sum exceeding S. This
is in agreement with work of Hardy [2, p. 61} and R. P. Boas Jr. {1, p. 244], (2,

p. }5\” who showed that 1.3 x 1 |n29 ara raouirad ta avcaad 2 sum of §. Saa

terms are cyunvu {C exceed a sum of 3. See
also Part I (1, p. 328).

We are grateful to R. P. Brent for showing us the advantage of log log(x%+x +6)
over log log(x?) through his analysis in (1.5) and (1.7).

Some of Entries 2-8 below, recorded on pages 270273, are not approximations
or asymptotic estimates, but since all the results are connected and asymptotic
expansions are the focus, we prove and discuss all of them here.

Entry 2 (formula (1), p. 270). For p > 0,

i (pk:z)k _ 1 —e + i kk(-:i—(lp)-:k) j:l (—l)/‘;;(;l;c;— l)j_I. n
Proof. Let S denote the double sum on the right side of (2.1). Then
°C g ("kk——:)‘ ; - 1)"(:; = ,Z: *k —(;!_(;lr)ir k)7
_ Z?,“ zg cly JZ: (;(r:_kj";i
Sty B S
_ gk"‘zg . ! - (g (-l)’;‘;’_(;:n-)r!k)"" +g) (—1)::2;;; k)”') .

2.2)
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We examine the contribution of the double finite sum on j and m. Inverting the
order of summation, we find that

k 1 J (—1)m+j(p+k)_ m (- l)»ﬂj
= k -
§<k—j>s"§ G-m! D"” z:(k—;)'o—m)'
k 'mk m _])n
=Z(p+k) Zo k—m—n)'n!
ky—m K k—m
(p+k)“‘+ ( + )), Z( 1)( . )
=(p+i™ @3

Hence, substituting (2.3) into (2.2), we have shown that
1"t (p+ k)"

Z(Hk)ﬁZ”Z(k_J).L CE T

Let A, denote the inner double sum in (2. 4). Inverting the order of summation
and employing Vandermonde’s thcorem (Bailey [1, p. 3]), we deduce that

A*‘Zz(mﬂ)! =

m=0 j=1

= —1)”'(P+k)”' (=k),
=_z::n Z(m+j)!

& ()P " [~ (R
—Z k! m! (;(mq—l), l)

m=0

- 1>"'p+k)"'( (m)x _I)
P il (e

m=0

_ K o0 (_])rn(p+k)m
k! e ml(m+k) ’

Thus, in view of (2.1) and (2.4), it remains to show that

l—e? KD+
Z ktm! (m+k)

[\’J8 3"[\’]

ii kk-H-m-n(_l)mpn ' (2.5)
ey e k!'nl (m —n)! (m+k)

where we have employed the binomial theorem and inverted the order of summa-
tion. Comparing the coefficients of p” on both sides of (2.5), we sec that it suffices

=
=]
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to show that

(_‘)n o0 O kk 1+m—n( l)m
= . n> 0. 2.6
(n+ 1! ?;}2;;:'(!7 (m —n)! (m + k) )

Multiplying both sides of (2.6) by (—1)"n!, we sce that (2.6) is equivalent to
1 o0 0 kk—i+m-n(_1)m—n
n+1 _gzk!(m—n)!(m+k)
oo O kk-—H-)(_l);
a ?;Z; KjrG+k+n

E"" k7 =1y
k(i _lr\|{1.1.n\
=k ™\

H
J =7

_oo (GRVMIR Ky j—1
—ZWE()( D

k=|

_— +i 1! ZJ:()( Dfk L. Q7
n+1 __2]‘(]+n) ’

It is an easy and well-known consequence of the binomial thcorem that, for
each j > 2, the inner sum on the far right side of (2.7) is equal to 0 (Gradshteyn
and Ryzhik (1, p. 5, formula 0.154, no. 3]). Hence, the right side of (2.7) reduces
to 1/(n + 1), as desired. Thus, the proof of (2.6) and, consequently, of (2.1) is
complete.

Ramanujan’s formulation of Entry 2 is slightly imprecise, because he only offers
the first three terms of the sum on & on the right side of (2.1). Note that the first
three values of k*~2 are 1, 1, and 3.

Ramanujan next expands the inner sum on the right side of (2.1) in powers of
k with coefficients that are powers of 1/p. Perhaps Ramanujan was striving to
obtain an asymptotic expansion for the left side as p tends to 0o. This procedure
does not lead to the desired end, because the contribution of ¥”,m > 1, to the
sum on m yields a divergent series. At any rate, we next establish Ramanujan’s
expansion of the inner sum.

Entry 3 (p. 270). Let 1 < k < |p|, where k is an integer and p is any complex
number. If m and n denote integers withm > 0 and n > 1, define

k+m—n n—1
a(m, k) = Z —nm" ’( _r)s(r+n—m,r+l), 3.
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where s(a, b), a, b > 1, denote the Stirling numbers of the first kind. Then

B Y GV (el VSR S A UNO)
VT LT e & A

~
W
]
~—

n
j=1 m=0 n=m+1 I

Moreover,ifn <kandm +1 <n <2m, thena,(m,k) =0

Proof. The Stirling numbers s(j, r), j, r > 1, of the first kind may be defined by
(L. Comtet [1, p. 213, eq. [S¢e]])

J
k=Dk=2)--k=j+D =) sG.rk" (33)

r=1

Thus, using (3.3) and inverting the order of summation, we find that
k k i r—1
s(j, r)k
T = ——————
Z Z (p+ k)
By the generalized binomial theorem, for k < |p]|,

Ll & e k\¢
L))
(p+K) p,; ¢ ’

Thus, letting £ =m + 1 —randi = j — r, we find that

k kr+£l ¢ i—1
-y DG~ (+2 )

r=1 j=r ¢=0
3 z;kmArL (=15 (G ) fm o+ § —r\
_mz:o ,=1jL=r’ prtiti=r m+4+1—r
-ﬁ‘km-k—,f—'—"(—l)’"*'"'s(r-!-i,r)/ m+i \
=L Ll e \mbior)
o0 k—1 k~i .
1 m4+i
=Y k" , (—1)'"*‘-'s(r+i.r)( )
[ k—1\ k—i—1 |
i . m+1i
=Y kY — Z(—l)"'—’s(r+1+1,r+1)( )
m=0 =0 P r=0 m=r/ 3.4

m+k 1 k+m-n

=i""‘ > r

m=0 n=m+1i © =0

_ n—1
-n" ’s(r+n—m,r+l)( ),

m-r

—~

3.5

N

where we have set n = m + i + 1 in the last step. Hence, the proof of (3.2) is
complete.

Lastly, from (3.5) and (3.1), we see that it remains to show that the inner sum
on r vanishes if n < k and m + 1 < n < 2m. Alternatively, from (3.4), we will
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show that

From Comtet’s book i1, pp 227-228j, S(r +i+ 1,7+ 1) is the coefficient of
t' in the power series expansion of

( t VP e +in
e -1 rt

+z\

Therefore,
-0 Tstr+i+i,r+ 1)\
is the coefficient of ¢/ in the expansion of

( ' r4i+] (_1)"'—’ m (m+i)'
e -1 r m'

Thus, the sum in (3.6) is the coefficient of #' in the expansion of

s t ) (m+i)!( '
> (1) (75) {5 (7)
_(m+i)!( ' )“*'( t _I)'"
T oom e —1 el — 1

0 .
= E a,'l',
i=m

for certain numbers a;,i > m. Thus, for 0 < i < m — 1, the coefficient of s
indeed equal to 0. Thus, (3.6) has been established, and the proof of Entry 3 is
complete.

Entry 4 (Formula (2), p. 271). For each p > —1, define 8 = 6, by
N _1-—e“’+e_pf 1 1
Zp+F - p \p+1 G+ +2

4
+
3p+Dp+22)(p+ 9

4
T+ DP+D(P+HCp +23 +9))' (4.1)
Then 6_, = —2.5856, 6 = 0.0069, ¢, = 0.4137, and 6o, = 3.
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Proof. Multiplying both sides of (4.1) by (p + 1) and then setting p = —1, we

find that
1=0+ ’1 1+ 4 4 \
= e — —_— = —].
( 3.3 3(20+9_|))
Thas,
12¢
6_, = — 20 = -2.585603,
' 4e-9

which is in agreement with Ramanujan’s claim.
Second, letting p tend to 0 in (4.1), we find that

72 &1 ) 1 4 4 )
TZZEZ + 1_;+77,1_') o W Ry A
V] prdl \ < Jrahs 2-4251+6)/

Solving for 6y, we find that

w

= —23=0.006912,
o= 553 — 23 = 0.0069

which again is in agreement with Ramanujan.
The case p = 1 is more challenging. Letting p = 1 in (4.1), we see that

N 1 l(l 1 2 2
= =l-—4-(z-ct+=—-—].
=+ 1 e e\2 6 45 1526+6y)
Solving for 8,, we find that

o= ——— 26 (4.2)

N +

45¢(S§ — i) +
To determine 6, to the accuracy demanded by Ramanujan, we need a very precise
determination of §.

Write
] k1
M — ) -~} k>1
TR ((k + 1) e)
Then
00 ”2 7[2
S=Y Mi+—=A+B+—, (4.3)
E (o 14 (v 124
where
A=>"M, ad B= ) M.
k=1 k=10841

We are grateful to W. Root who calculated A and found that
A = 0.16410279790586.
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Hence, from (4.3),
S =0.7692402231818 + B.

Since (k/(k + 1))* — 1/e monotonically decreases to 0 and has a value at k = 10°
that is less than 2 - 1077, we deduce that

& 10*' *2.1077
Z f —dx =2-107".
s X

k=100

Hence,
§ = 0.769240223182.
Returning to (4.2) and using the value of § calculated above, we find that
6, = 0.413696,
which agrees with Ramanujan’s calculation.

We have calculated S to more accuracy than needed to establish Ramanujan’s
claim. However, it seems to us that a calculator or computer is necessary to cal-
culate S to the precision needed to determine 8, to the accuracy indicated by
Ramanujan. So, we wonder how Ramanujan computed S.

The proof that 8, = % is considerably deeper than the previous calculations.
We show later that this result follows from Entry 7.

Entry 5 (Formula (3), p. 271). Let0 < p < a. Then

. (@a+na)! S (—p)'uq(a) 5.1y
no(p+a+n)n+1—§ nt . (D. 1]
where, for n > 0,
>~ Tm+k+1)

@) = . 5.2
ua(a) ; @+ kG + 1) ©2

Furthermore, forn > 1,
u,,_|(a) - u,,(a + 1) _ ‘i (5.3)

un(a) = un(a + 1) - n

Proof. By the generalized binomial theorem, for |p| < a,

%‘R (@+n)y"! _%\ 1
A

L..z(p+a+")n+| n+1
S (i)

IR D+ p )
_Z( +n)2X_: k! (a+n>
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_Z )koo (n+ 1)k

+2
s @+ )t

from which (5.1) follows.
Next,

i (k + Dns _i (k)n
Up1(@) —unla+1) i@ +hytl = (a+ k)2

un(@) —ual@+1) & kD) i (k)
e (a + k)n+2 — (a + k)""'2

(n—1) i(k+l)n !

an+l P ( + k)n+2 {(a +k) - k)

i(k+1)n 1

an+2 — (@ + k)2 ((k+n)—k)

(n—1) “Z (k + Dpoy

ant! o (a + k)n+2

n! o (k 4+ 1)0-1
ant? +n ; (a + k)n+2

Thus, (5.3) has been established.

Entry ¢ (Formula (4), p. 271), Let u,(a) be defined by (5.2). Then as a tends tc
0,
oy o 1 .L.{ AN (n n(n—])\ {
A T R VALY ol Vi ) a*
1 n nn—1) nn—-1)n-2)
+( wtnt 4  * 16 )5
n Snin—1) Sn(n—1D(n-2) n(rn-1DHrn-2)(n—-3)\ 1
+( T *t 24 + 32 ) ab
) /_1_ _n nr-1) Sn(n—1(n—2) , 5n(n—1Dn-2)n-3)
"\2 12 T 16 A 32
n(n - Dr-2Y(n=-3)(n — 4)‘) 1
64
n In(n—1) Tn(n—1)(n- 2) 35n(n— 1)(n — 2)(n —3)
+ (E Tt 7 + 9%
" Inn — 1)(n —2)(n — 3)(n — 4)
64
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n(n ~ D@ —2)n—3)n—dH(n - 5)) L.
128 as

6.1)

First Proof. Recalling the definition (3.3) of the Stirling numbers s(n, r), we find
that
n+l
k+ D= (=1"Y_str+ 1, r)(—k)""

r=1

=(=1)"Y s+ Lr+ D@~ (k+a)

r=0

= (-1)* Zs(n +1,r+ 1)2 (;)(_l)r-j(k +a)ia’.

KD
\ 274

_—

AY

7

Recall that the Hurwitz zeta—function ¢ (s, a) is defined forRes > 1 anda > 0
by

(s,a) =) (k+a)™.
k=0

Thus, from (5.2) and (6.2),

un(a) = (=1)" Z(a +k)™? Zs(n +1Lr+1) Z(;)(—l)"i(k +a) a’
r o ~

=(-1)" Zs(n+l r+1)2( )( Y at(n+24 j—ra).

r=0

6.3)
By the Euler-Maclaurin summation formula, (0.5) of Chapter 37, as a tends to
oo, forRes > 1,
ts,a)~ D (=" nBnm 45 =D e
s, a - e
L ml (s — 1)!

where B,,, m > 0, denotes the mth Bemnoulli number. Employing this asymptotic
expansion in (6.3), we deduce that, as a tends to oo,

uq(a) ~ ZZ( D™ *stn+1,r + 1)( )

r=0 j=0

m\(1+n+j—r)

Inverting the order of summation on j and m in (6.4), we are led to the inner sum
i(_l),(r')(m+n+{'—r)' _ (m+n—r)'z( r)f(M+n—r+1)j
c A+n+j—r) +n—r) J1rn—-r+2),

_ (M+n—r)!(l—m)r
T —r 4+ (-1 +2),

% Z(_l)m Bm(iﬁ+ﬁ+j-7)ga-n+r—m—|. (6.4
=0
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by Vandermonde’s theorem (Bailey (1, p. 3)). Observe that if 0 <m <, where
r > 1, then the sum above equals 0. Extracting the term for m = 0, we find that,
from (6.4), as a tends to 00,

n—r) r!a_,HL,_l

n
~ _ n+r
u.(a) N (1) s(n+ Lr + 1) ot D

r=0

+Y (-1)*Ts(n+1,r+1)

n

r=0

& B mtn (Mmoo
X Z( D m!(n——r+l)!(n—r+2),a .(6.5)

m=r-+1\

We now calculate the coefficients of a=V, 1 < N <8.
First, the coefficient of 1/a equals

i

st ln+—o =
stn+ b+ Do = a

s

in agreement with (6.1).
For the remainder of the calculations, it will be convenient to use the following
formula (C. Jordan [!, p. 150, formula (3)]):

2m n
s(n,n—m) = Cm,k( ) (6.6)
,‘_ZO 2m —k

where Cy o = —1,Cx =0ifk # 0, and
Critx = —(2m —k + )(Cmx + Cri-1)- 6.7

The coefficients C, x for 1 <m < 6, 0 < & < 5, are found in a table on page
152 of Jordan’s book {1].

Forn > 1, the coefficient of a~2 equals
(n—1! n@n+1) 1 1
_ ] = = =
s(r + ’n)(n+l)! 2 (+Dn 2

If n = 0, the series in (6.5) also yields 3 for the coefficient of a2
For » > 2, the coefficient of a~> equals

2(n — 2)! n+1 ‘n + 1\ ] 2
soe =0 = ) 225 )ierma
n—-2 2 n
s t37%
For n = 0, 1, we obtain the same value.
For the remainder of the calculations, we assume thatn > N — 1. In each case,

the same formula for the coefficient of a=* also holds for0 < n < N —2, from
an examination of the double sum in (6.5).

1
L
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The coefficient of a=*, if n > 3, is equal to

~ L 3tn =3
s(n+1,n 2)—_(n !
( /m+1\ _(n+1Y _[(n+1\]3n-3)
=115 A
{"Ue )T s )04 ) arm
(=N -9 _ 3 _n nan-=1)
——8 + (n 3)+§-—L—1+—8—'.

We employed MACSYMA in (6.5) to calculate the remaining coefficients as
polynomials in n. We then collected terms to write Ramanujan’s coefficients as
polynomials in n to verify that the polynomials agree for each coefficient. The
coefficients of a=3, a~%, and a~7 are, respectively,

4 (n — 4)!
s{ﬁ-}-}’ﬁ_g}_(:T])!)_

=ch+v+m%””)mmc+v+uc+j]ﬂ&;ﬂ
s 7 6 5 an+ 1)

1573 + 1502 — 10n — 8

240 ’
1 —
—4m+hn—®iﬁij
(n+1)!
— [nnc{n+1\ 1 0:’)ﬂn{n+l ‘)QQ(\{"+1\

— 4 3 _ 2 _
+onam TN 4 pof® T )| B oD 3n% 4200 — Tn” — 6n
\ 7 \ 6 /] (n+D) % ;

and

6! (n — 6)!
(n+ 1)

:bM%C;j+MmC;j+me;j+me;j
4—7308("“*')-+720("’*1) & - O

8 7 (n+ 1)!

_ 63n° ~ 31503 — 224n% + 140n + 96
- 4032 :

s(n+1,n—5)

The coefficients of s(n + 1, n — 6) are not found in Jordan’s book [1]. Thus, we
used (6.6) and (6.7) to calculate the needed cocfficients. Therefore, the coefficient
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-% equals
T (n—7)
(n+ 1!

- {135135(";1)“40540( ')+866250( )+705320( “)

"
n+ n+1 n+1 N(n-="1"

—sn+1,n-6)

9n —9n° — 75n* — 23n° + 114n? +80n
1152
This completes the proof.

Although our first proof is a natural one, Ramanujan’s formulas for the co-
efficients of a~" indicate that another approach utilizing less calculation was
employed by him. In our second proof, calculations lead to coefficients in the
form given by Ramanujan, but the calculations are even more difficult to perform
by hand than in our first proof.

Second Proof. Forn >0anda + & > 0,

@+ = J: - / " gty
< Jo

Using also (5.2) and inverting the order of summation and integration by absolute
convergence, we find that

© 9kt Dnle™ iy
J{ § (n+ 1)1 a

o0 e—ar,n+l

u,(a) =

o0

= f e o, (1) dt, 6.8)

0
where we have used the generalized binomial theorem and set
1 t n+1

)= —— .

0= (l—e")

Applying Watson's Lemma (Olver [1, p. 71]), we deduce that

un(@) ~ Yo @at",

k=0

as a tends to oo. Thus, it remains to calculate ¢*)(0),0 < & < 7. Since

n+l1
1 (&8
@a (1) = P (g r_!(_t) ) ,
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where B, denotes the rth Bernoulli number, we may readily calculate the coeffi-

cients. With the help of MACSYMA, we easily verified Ramanujan’s coefficients
ofa™ 1< N <38,

Entry 7 (Formula (5), pp. 272-273). Leta, p > 0. As p tends 1o o0,

n o0 (a+n)n—l oL _2p 00 —l)"
S(a,p) '_§(2p+a+n)"‘“ Z(a-i— )2n+l’ 1.1

where Py, := Py,(p),n > 1, is a polynomial in p of degree n — 1. In particular,

1
Po(p) = —
P
Py(p) = E'
s, 1 . p
r{p)= 30 + 6
1 p S5p?
P - = - _9
«(P) 42+ 5 + 13
1 3p  1p*  35p°
P T~ —'
e T T R "
5 5 17p*  35p*  35p°
Pio(p) = 6+?p+ e
691 691 616p° 451p> 385p* 385p°
PlZ(p) = "IN + GI{\P + ACp + IDp + 1op + :Al) 4
LoV ALY “0 10 10 S
and

7 35p 7709p* 26026p% 2002p* 7007p°  S005p¢
P =- 4+ == :
WP =gt 5t 50 t s "9 YT Tam

Moreover, forn > 1,

Pu(p)
n(n — 1)(:0;02)(:: -3) [(n -5+ 7(,, _n4 ?l -
n(n = (n ;42)((;:0— 3Hn —4){(n S 6T
+g(n—5)(n—6)+3go( 5)+6—S-2—- "—5+...)_ 7.2)
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Lastly, for n > 2 and n even,
(=D Pa(p)

=B, +(n+1)B.p+ [(" + 1)(,,+2)B _nln ])B,,_2] p?

" 6
n+ DB+ +3  AE-Hy 1o,
+ T B, — 5 Bn—-2l p
(n+ D +2)n +3)(n+4) _nle?-1)
+ B2
180 36
n(n — 1)(n — 2)(n — 3) 4
+ 170 Bn—-4| p
M+ DM+ +Dn+H@A+95)
t 2700 B
_ @ -De+d
270 "
L n = 2;‘(:)0— H@Bn—25) _4} Pt (1.3)

where B;, j > 0, denotes the jth Bernoulli number and where Py, (p) has degree
n—1,forn>0.

Before proving Entry 7, we shall show that the case 6, = % of Entry 4 follows
from Entry 7.

Completion of the Proof of Entry 4. Let

1—e”?
A(P)=ep(5(l~P/2)— > )

In Entry 4, Ramanujan is claiming that, if the rationai mncuon within the large
parentheses of (4.1) is expanded in powers of 1/p when 6 = g, then the first five
terms coincide with the asymptotic expansion of A(p) inpowersof 1/p as p tends
to 00. Expanding this rational function in powers of 1/ p, we therefore must prove
that

1 2 16 56 3712

Tt T TGy

as p tends to 00.
Now let g = | and replace p by p/2 in (7.1). Then, as p tends to co,

{_N\ID. ()

h _ Z \— 1) ‘Znuv/ +0 /i\
) - (] + p/2)2n+l Lpﬁ)

1 J4
2 4/3 32(30+ )

20 +2/p) | pPav2/py  pU+2/p)

e? (S(l, p/2) —

3| -
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1 p Sp)
128( =
12 72 0

BYIRY]

p’(1 +2/py’ p°
2 16 56 3712 1 )
= -4+ ——=—-—+_—Z+0(—=] 4.5
723 T3 T a5y * (.Dﬁ, @

Comparing (4.4) and (4.5), we complcte the proof.

Proof of Entry 7. From Entry § and (6.8), for0 < p < a,

oC
(~2p)"
S@,p) =) ——un@
n=0 *
1 [ & —2p)"*!
= - ——/ e_‘" Z ( p ) d[
2p Jo He+Da- eyt
1 2p |
—5 A e Iexp( r_1)—1}¢1t
1 1 [*® _. 2pt
— - — -4 dt. 4
2ap 2p Jo ¢ cxP(e—‘-l) 7.4
Referring to the definition of S(a, p) in (7.1), we see that S(a, p) represents an
analytic function of a and p for Rea > 0 and Re p > 0. Likewise, the right side
of (7.4) is analytic for Rea > 0 and Re p > 0. Thus, by analytic continuation,
(7.4) is valid for all ¢ and p with Rea > OandRe p > 0.

Multiplying both sides of (7.4) by —e2?, we see that (7.1) is equivalent to the
asymptotic expansion

1

— —‘(lH‘P)’ exp (2p + p' +
«p Jo

)d Z (=1)" Pn(p) 1.5)

(a + ..\2n+l !
n=0 \* T

as p tends to oco. Since the first term on the right side of (7.5) is equal to

‘ x
—[ e~@rPigy,
2p Jo

the asymptotic expansion (7.5) is equivalent to

1 s_1\nn
1

— / e (exp(p w(®) — 1}t~ Y EH Pauip) (1.6)

2pJo = (a+ py+t’
where
o 2t e BQ,, 2"
w(t) =2+ 1+ ——— =2—tcoth(t/2) = —22 oo <o
(1.1

where B;, j > 2, denotes the jth Bernoulli number.
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Let us now define the polynomials Py,(p), » > 1, by the expansion

epm(!) -1 _ %o‘ (—1)"P2n(p) ,2n
2 = em

Vor
.

—~
™~
<0

~

1#] -
’ L8 B

We therefore shall prove that the polynomials P»,(p) have the properties enunci-
ated in Entry 7.

By employing MACSYMA, we verified that P2(p), Ps(p), ..., Pia(p) are in-
deed given by the formulas displayed in Entry 7. Second, we remark that it is easy
to see from (7.8) that the polynomial P,,(p) has degreen — 1,n > 1.

Next, we prove (7.3). From (7.8),

(=1)" Py (p) = 1 & w'p =1
2:' e Z . il <27 (7.9)
In particular, by (7.7),
(=1)" P, (0) 2 w o By , t ) 10
"%T_T)' E—_L(2n)' ’ ||< . .
Equating coefficients of 12", n = 1, we find that P,(0) = (=1)""' By, as claimed
by Ramanujan in (7.3).

Next, differentiating (7.9) with respect to p and setting p = 0, we find that

o) ’ 2
=P, 0) ,, w
; 2n)! T4 1h
00 1 nPN (0) w3
Zi( L)’)' = —, (7.12)
n=1 14
o) m 4
(- l)"Pz’l(O) m W
ZI ami 3 s (7.13)
o0 (4 5
"R 0 ,, w
nz=.: a2 @19
and
VPO, w (7.15)
L (2nm)! 5! = 1440° A

n=|

Since the coefficient of p™, m > 0, in the Taylor series of P,(p) about p = 0
equals P{™ (0)/m!, we can calculaie the coefficients of p™ on the right side of
(1.3), for 1 < m < 5, by equating coefficients of t** on both sides in each of
the foregoing five equalities. These calculations are facilitated by observing from

(7.7) that
w? = 2w + 21w’ + 2.
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Hence,
w? = 2w? + r(w?) + we?,
w* = 2w + 21(w?/3) + wi?
w' = 2w + 2 (wt/4) + w?,
and

w® = 2w’ + 2 (W¥/5) + whl.

Using these five equalities in (7.11)-(7.15), utilizing (7.10), and employing MAC-
SYMA, we can readily verify that each of the coefficients given by Ramanujan in
(7.3) is comrect.

Lastly, we prove (7.2). Replacing p by i/p and ¢ by t/P in (7.8), we find that
-D"P,Q0
1p(exp (w (VP) /p) — 1) = z CLBCD 4 sy,

or

© [y
exp (w(t/p)/p) — 1 =2Z %ﬂ", (7.16)
n=| )

where Q2,(p) := p"~' P,,(1/p) is a polynomial in p of degree n — 1. Thus, the

coefficient of p"~" in Py, (p) equals the coefficient of p™~! in Q.,(p).
Now, by (7.7),

u(p, 1) —w(tf)/p-——T—(mz" _—ﬁ‘ Buu nojon,

= @n)! = @n )'
(7.17)
In particular,
2B,t? 2
w0, = -2 = -5 (7.18)
Thus, from (7.16),
n 00 1Yk e2k
zz( l)QZn(O)g,, Zu(Ot) =\ (=Dt .
(2n)! p 64k!
=1 k=1
Equating coefficients of £, » > 1, on both sides, we find that
(2n)!
Q2n(o) 2.6 )
as claimed by Ramanujan.
Next, by (7.17),
Byt? 14
up(0,1) = ——— = —. (7.19)

12 360
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Thus, from (7.16), (7.18), and (7.19),

oc - o0 o .2 k=1¢.4
2%(-1)"@%(0)'2,,_ u*=1(0, Nu, 0.0 _ g~ (=£2/6* ¢ /360).

L7 @ny = k- = k-1

Equating coefficients of £2", n > 1, on both sides, we find that

, 2n)! @ n(n—-1)
2O = 60 =2 ~ 2. 10
which again agrees with Ramanujan.
Next, by (7.17),

4Bgt® t6 (7.20)
6 .35 '

upp(oa f=-
Thus, from (7.16) and (7.18)-(7.20),

1 k=2 2 k=1 0.
=100 5, [0 w10, Du,, 0,0

Sl =ini . + erl
HL:{ @n! pey \ (k —2)! k — 1)
o (—12/6)72(14/360)° . (—12/6)*1(—1%/(6* - 35))) _
=kz=;( (k—2) (k—1)!

Thus, equating coefficients of 127, we find that
05,0)  (@2n)! 1 N 1 )
20 4 \67%360)2(n — 4)!  6"35(n — 3)!
@2n)! (nin— D —D(n-3)  nn-D0xn-2)\

T 2.6\ 200 T 70

as claimed by Ramanujan. ‘ o
The remaining two coefficients recorded by Ramanujan are simifarly calculated,
and we omit the details. (We used MACSYMA to effect the calculations.)

We now return to the task of establishing (7.6). We would like to employ Wat-
son’s Lemma, but we cannot do so because exp(pw(¢)) — 1 depends upon p. Thus,
a completely new procedure seems necessary. We prove a very general _theorem
(Theorem 7.1 below) from a paper by the author and R. J. Evans [2] that includes
(7.1} as a special case.

Define

Fin+s)y (a+n)”
n! x +a + n)rts’

~
~
38
—
~—

where r is a fixed positive integer, and a and s are fixed complex numbers with
positive real parts. Note that when r = s = 1, T(2p) = S(a, p), where S(a, p)
is defined in (7.1).
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Theorem 7.1. Let N denote a positive integer. Then as x — 00 in the sector
|Argx| < %n -8, where § > 0,

r—1 . N—-I C (X) )
— ~k—s __ -x i —l—r-Ns2
T(x)= ; Agx e (g @r e T o ), . (7122
where
k
A=) (=D*Ir(s +k)<f)(a + )4, (7.23)
j=0

and where the functions C,(x) (defined in (7.32)) have the estimate

d

m/2)-
(‘,\I):O(x[ /2] ’}'

as x tends to 0o.

The arbitrarily small positive number § is fixed throughout the sequel. Observe
that (7.22) is a genuine asymptotic expansion, in view of (7.24). Note also that x
can be replaced by x + b in (7.22), for any constant b. Thus, for example, if the
sign of a is reversed in the denominator of (7.21), then Cp(x)/(a + x/2)™* is
replaced by 2"+!C,,(x — 2a)/x™+!,

Ifr = s = 1, the leading sum on the right side of (7.22) equals 1/x. Further-
more, assuming the validity of (7.22), we conclude that

I Oa ifm iS Odd,
Ty Py, (p), ifm = 2nis even.

Before beginning the proof of Theorem 7.1, we need to define several functions
and prove an auxiliary lemma.

Consider the confluent hypergeometric function

($)m2”
(s +r)mm!’

Cn(2p)

o0
i s+r=) 2| < oo. (1.25)

m=0

This function is related to U (s, 5 + r; z), the confluent hypergeometric function
of the second kind, by

L(s+r) C(s+r
lFl(S’er’iZ)=¥é'”"U(s,S+r;z)+ s+ )(—1\’elU(r,s+r; —2),
() r'(s)

(7.26)
where 371 < arg z < 37 (see, e.g., Olver’s book (1, p. 257, eq. (10.09)) or N. N.
Lebedev’s book [1, p. 270, €q. (9.12.4))). In many texts (e.g., Lebedev [1, p. 263)),
U is designated by W. As z — 0o with | argz| < 2x —§, we have the asymptotic
expansion (Olver [1, p. 256))

o _1\m _
Ur,s+r;2) ~ Z%ﬂ (7.27)
m=0 m:-z
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Since r is a positive integer, U (s, s + r; z) can be expressed as a Laguerre poly-
nomial (Erdélyi [2, pp. 188-189, eqs. (7), (14)])). Thus,

r—1 k _
Uls,s +r2) = ZL)(ZZLS——’E (7.28)
k=0

For brevity, write, for ¢t > 0,
(7.29)

so that by (0.1) of Chapter 37,

oC

Bn .
w=Yy_ e 1t} < 27 (1.30)

7Y
m=y

Fort > 0 and Re x > 0, define

Fir 1) o oUW HI2 (N STI
J,X) .= ¢ AT W U\

s 4L rwx) (7.31)
s wx), (7.31)

Finally, the functions Cp,(x) in Theorem 7.1 are defined by
Con(x) = f™™(0, x), Rex > 0, (7.32)

where the superscript m denotes the mth derivative with respect to .
We remark that in the case r = 1,

flt,x) = x5, wx),

where T'(s, z) denotes the incomplete gamma function

oo
I'(s, 2) :-—-j e~ ldr, Res > 0.

4

This follows from (7.31) and the formula (Erdélyi (2, p. 136, eq. (15)])
F(s,2) =e?2°U(, s+ 1;2).
Define, for each integer m > 0,

= F(n+s+n)
2

[} ms4r
— ! (a +n)

Un :=Un@) = (7.33)
Note that U, () generalizes the function u,(a), defined in (5.2). From Euler’s
integral representation of the gamma function,

1 | [ ®

— P—m—mtm+s+r—ldl_
(@a+n)mtstr T Tm+s+7r)Jo

Thus,

L(m + ) s e At ymts - 1 Z F(m+s+n) e~"dt, (7.34)

Um:l"(m+s+r) o T'(m + s)n!
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where absolute convergence justifies the interchange of integration and summa-
tion. The sum on 7 in (7.34) equals (1 — ¢™*)~™~*, and so

_Tm+s) [* _
Um — at r 1 m+sdt 7.35

T(m+s+r) [ 739
where w is defined in (7.29).

Recall that T (x) is defined in (7.21) for Re x > 0. Assuming for the moment
that |x| < |a|, we find that

00

C(n+s x \7"*
"= e (*ata)
_i T(n+s) Zr(m+s+n)( —x )"’
pro n! (a +n)tr = m!'Tin+s) \a+n) ’ (7.36)
By (7.33) and (7.36),

X
0=y <, (137)
=0 m!
where absolute convergence justifies the interchange of summation. Note that (5.1)
in Entry S is the case r = s = 1 of (7.37).
Put (7.35) in (7.37) to deduce that, for |x| < |al,

o0
_ (=xy" T(m+s) * —atr—1,, m+s
Tx) = Z m! Cm+s+r)Jy e

m=0
X ”n r*
e )“( —xw)t Tt 4 (gas)
Jo —0 m! L+ 5 T ;

where the interchange of integration and summation can be justified by absolute
convergence. By (7.25) and (7.38), for |x| < |al,
T(x)= F(r(j—)r) f = wt  Fy(s, s 4+ r; —wx) dt. (7.39)

As |x] — oo with |Arg x| < 57: —8, —wx — oo with ! 37 +6 <arg(—wx) <
27{ — 4. Thus, by (7.26)—(7.28), the integral in (7.39) is convergent and analytic
in each variable a, x in the right half—plane. From (7.21), T (x) is also seen to be
analytic in each of a, x in the right half-plane. Thus, (7.39) holds for all x with
Rex > 0.

The proof of Lemma 7.2 below makes heavy use of Faa di Bruno’s formula (J.
Riordan [1 p. 36], S. Roman [1))

—h(g(t)) _ Z kn" ::(g(t)) (%)k. (g_?)kz o %)k,. ’ 7.40)

where the sum is over all integers k), k5, . .., k,, for which

n=k +2ky+---+nk,, k>0,1<i<n, (7.41)
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and where k = ky + k2 + -+ + Ky,

d* d
Pl PN 3 s — 5.{2) ‘= — g{2) (7.42)
hi(z2) = dzknlz), and 8i = 8ilt) = g (7.42)
Lemma 7.2 Fixan integer N > 1. As x = oo with | Argx| < 37 —§,
N .
™, x) =0 |x A EIXII’ , (7.43)
=0

uniformly for t in [0, 1].

Proof. Let 0 < ¢ < 1 and n > 0. We shall obtain uniform estimates for the nth
derivatives of each factor (—¢) =1, w®, -2+ and U(r, s +r; wx) of [ (1, x)
in (7.31) and then combine them to deduce (7.43) from Leibniz’s rule.

First, for each n > 0,

4 oyt = o) (7.44)
dr” !
since  is a positive integer. Next, by (7.30), we find that, for each & > 0,
dk
Ww = 0(1). (7.45)
Consequently, by (7.40) with h(z) = z* and g(1) = w,
dar

For |Arg z| < %7: — 8, U(r,s +r; z) is analytic (Olver (1, p. 257, eq. (10.04)]),
and so we can differentiate (7.27) (Olver (1, pp. 9-10, Theorem 4.2}) to obtain,

o Pa. =1 onnfhRos
for k > 0 and |z sufficiently large,

k cO — m+k1_ -
g_U(r’Hr;z)Nz(r)mu( " - s)

= 0% ). 7.47
7 ™) (7.47)

| pm+r+k
m=0 mz

Now apply (7.40) withh(z) = U(r,s+r; z) and g(t) = wx to deduce from (7.45)
and (7.47) that, as x tends to 0o with |Arg x| < 37 =8,

d" -
—U(r,r +s;wx) = 0(x7"), (7.48)
dr
uniformly for0 <7 < 1.
A final application of (7.40) with A(z) = ¢%* and g(t) = 1 +1/2 — wyiclds

a — Kk PR

We,t(lﬂﬂ w) exg(l) z B(kl,kz. e, kn)g| gzz cooghnx kot s (749)
where the sum is over all integers k; satisfying (7.41), wherc the coefficients
B(ki, ka, ..., ks) are independent of x, ¢, and where g; is defined by (7.42). By
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(7.30),
g0 = =3 Do
= 2m)
and so
g2 =0(), foralloddi > 1 (7.50)
and
g; =0qQ), forail j > 1. (7.51)
Since g(t) <Ofor0 <t <1,
80 = 0(1). (1.52)
By (7.41),
ky+ka+ ket < 5k + 2k + -+ nk,) = n. (7.53)
Combining (7.49)-(7.53), we see that
dn

2 x4t f2—w) kitkg+--4kn ko Hh3 4
dt,,e /2—w <<Z|x|| 24+ [|+3+

n
& 3 xpfth e g 2y
i= (7.54)

The result now follows from (7.44), (7.46), (7.48), (7.54), and Leibniz’s rule.

Proof of Theorem 7.1. By (7.26) and (7.39),

T(x) = A(x) — B(x), (7.55)
where
— E_(_‘Q *® —-at r=lg s .
Ax) = ro /s e Mt T (—w)'U(s,s +r; —wx) dt (7.56)
and
B(x) = /{; e~ (=1 'wie ™ U(r, s + r; wx) dt, (7.57)

where ;7 < arg(—wx) < 3.
Wg first examine A(x), which yields the dominant part of the asymptotic ex-
pansion of T (x). Using (7.28) in (7.56), we find that

T(s) <

Alx) = —— Z("l)k(s)k(l - r)k/ e~ N (~w) (—wx) X di
rr = 0

T G EDRO = [ i,
= I‘(r) 2y ﬁ—‘/o‘ e t l(e it l)kdf
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_ () S (1 ()1 — ) (k) [°° @t -kl g
T (”)zygo X ills € " (7.58)

k=0 j

where we have expanded (e~ — 1% by the binomial theorem. It follows easily
from (7.58) that

r—1
A(x) = me-‘-ﬂ
k=0

in agreement with (7.22) and (7.23).
Now (7.24) follows by putting ¢ = 0 in (7.43). Thus, by (7.22), (7.31), (7.55),
and (7.57), it remains to show that

[ = G

~ta+x/2) dt = R L O(x"iTTNy, 7.59
_,0 e f(t,x) ,"L=3(a+x/2)"'+' + O ) ( )

By (7.27) and (7.31),
£, x) « S I7oHDr =Ny (wx)™",
and so
eIV f(t,x) LM TP, (7.60)

uniformly for ¢ > 1. Since, for ¢ > 1, we know that | —w < —3, it follows from
(7.60) that

oo o0
f e—v(a+x/2)f(t,x) di & e—.r/lx—r/ e‘l ReaIRe.s—ldt « e—1/2' (7.61)
1 1

In view of (7.59) and (7.61), it remains to show that

1 N-=1 C (X)
f et (a+x/2) fF(r,x)dt = S + 0(1_]_’_N12)= (7.62)
Jo / 2 a5/

Integrating by parts N times, we find that
! Nl ¢(m) 0, x) — f(1, x)e~@+s/D
/ e R x di = E L za +fX/2()m+1

Y m=0

]
+(a+x/)7V f e~He+x/2 fN) (4 xy dt.
0

By Lemma 7.2,
e—(a+x/2)f(m)(1‘x) < e—(a-'rx/‘leSm/’z & e—‘/.‘;.

Thus, to prove (7.62), it remains to prove that

f' e~t(a+x/2)f(N)(t'x) dt = O(XN/Z-r—I)_
0
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Again, by Lemma 7.2,

rl rl N )
j e—l(a+x/2)f(N)(t' x) dt & xN/Z-rj e~ Reta+x/2) Z [xt|/dt
0 0 j=0

A7
N

oo
&« xN/2-—r Z le; / e~ Re(a+.r/2)t)dl
i=0 0

N P
— (N2 x|/ !
o ,go (Re(a + x/2))+!

N I
<<xN/2"‘_‘|x|j-’! o Nj2=r=]
= ! ’

This completes the proof of Theorem 7.1.

We show now that C,,(x) possesses an asymptotic expansion in descending
powers of x.

Asinthe proof of Lemma 7.2, we shallestimate C,, (x) = f™ (0, x) by combin-
ing Leibniz's rule with formulas for the nth derivatives of (—1) =", w®, eX(-~w+1/2)
and U (r, s +r; wx). The nth derivatives of (—¢)"~! and w® at1 = 0 are constants.
Since, for the function g(z) in (7.49), we have g(0) = 0, the nth derivative of
e*(1+1/2=%) 314 = (is, by (7.49), a polynomial in x. It remains to show that the nth
derivative of U(r, s +r; wx) at ¢t = O has an asymptotic expansion in descending
powers of x. By (7.40) with h(z) = U(r, s + r; z) and g(t) = wx, we find that

&/ RS

d'l
d?U(r, s+ r; wx)

L

n d"
=) Ex' U s+ri2) (7.63)
=0 k=0 a2

Vz=x

for some constants E;. Using the asymptotic formula (7.47) in (7.63), we obtain
the desired result.

If 5 is a positive integer, we can deduce the stronger result that C,,(x) is a
Laurent polynomial. To see this, note that when s is an integer,

o S EDRORQ — )

) —
)=

ng

0

by (7.28) with r and s interchanged. Thus, U (r, s + r; z) and its derivatives with
respect to z are Laurent polynomials in z, and the result follows from (7.63) as
before.

After stating (7.3), Ramanujan provides what is evidently a hint for proving
(7.3). However, we have been unable to use Ramanujan’s advice in establishing
(7.3). Correcting three misprints, we state Ramanujan’s “hint” as a separate entry.
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Entry 8 (p. 273). Let n be a nonnegative integer and suppose that0 < p < a.
Then

wle—p +n) 1 2ap p? Inp
@+p+nt  (a+n)? pka+n (@a+n)? 3 +n)3
Lo we
2@+n)* S@+n)S’  3@+n)b Ji

al+ 1 4p® (a* +2a
=— (142 2 2 T2 P
(a+n)2( p +n+ p(a+n)2+ 3 |(@+n)

1 ] 2p* [a‘+5a2+% 2a }

T 2@+n)? 3 (@+n?*  (a+n)
4p° ja’ +10a’ +23a/2  Sa*+4) ®1)
15 @+ n)’ (a+n)“} ) '
Proof. Write
p n—1
w@-—p+nyt e (l_a"’")
(@+p+n+t (a+n)? e nti
(+)
e’ p p
(a+n)2exp (n —1)log —m - (n+ l)log 1+a+n
2p 2 3 4
e—-exn((n—])! P - — P - — P
(a + n)? l a+n T 2@+n)? 3a+n)?® da+n)?

_ 2ap p? 2np
@t P (a Tn T @+t 3a+ny
4 2 S 6
AN ) NN

2a+n)* S@+n)?®  3(a+n)b

This proves the first equality in (8.1).

If A(a, p, n) denotes the expression in large parentheses on the far right side
above, then

exp(A(a, p,n))

2 2 3 4 2715
=]+(2ap p np p p

a+n * (a + n)? " 3a+n) + 2(a +n)* 5@+ n)

2 2 3 4 2
o +l 2ap + p — "p S+ Ld 4_...)
2\a+n  (@+n)? 3@+n)? 2a+n)
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+ 1 ( 2ap p? 2np? . ’
6\a+n (@a+n? 3a+n)}
. ;- o N ¢ N P < s
1 2ap p° 1 2ap N
+24(a+n+(a+n)2 )+l20(a+n+. )+
- 2ap 1 -2 { 2n Aa \
- a+n+(a+n)2(+ ( a + n)? L 3 3)
4 4
4 1 dan 1 2a
2a® + —
+(a+n)“( ERRE +3)

p’ 2n N 2 4a’n ta+ 4q3 N 4a’ +.
_F (2, =7 —_ ..
(a+n)’ 5 3 3 3 15

‘+3 4apjat+2a 1)
=1+2 +2 Atz 4 -

pa+n v’ (a (@+n)y? 3 l@+n) 2(a+n)2|

4p a’ + 1003+23a/2 5ar+ 4
15 (a + n)’ (a + n)*
This concludes the proof.

The next result is somewhat enigmatic. Ramanujan offers an asymptotic series
for 3";_, 1/k as n tends to co, but he expresses the asymptotic expansion in
powers of 1/m instcad of 1/n, where m = %n(n + 1). We cannot find a “natural”
method io produce such an asympiotic series. Therefore, we take Ramanujan’s
expansion, convert it into powers of 1/n, and show that it agrees with Euler’s
well-known asymptotic series for a partial sum of the harmonic series.

Entry 9 (Formula (5), p. 276). Letm = %n (n+ 1), where n is a positive integer.
Then as m approaches 0o,

1 1 1 i
12m  120m2 T 630m® _ 1680m% | 2310m°

n
1
kz:; ~Llog(2m) +y +
=1

191 29 2833 140051

— — - 4 — - 4 - —
360360m°  30030m’ 1166880m® = 17459442m°

©.1)

where y denotes Euler’s constant.

Proof. We rewrite (9.1) in the form

oy 1 1 1
- ~1 Llog(1+ =~ -
;k ognTY T+ g( +n)+6n(n+l) 30n2(n + 1)2
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4 1 16
T 358G+ 1) 105a%n + 1) Y 5w+ 19
8191 64-29 8 - 2833
T 2504505 (n + 1° T 1501587 (n + 1)7  36465n3(n + 1)8
256 - 140051

e + 9.2
8729721n°(n + 1)°

Using Mathematica, we expand log(1+1/n) and (n+1)7%, 1 < k < 9, in powers

of 1/n and collect coefficients of like powers of 1/n. We then find that (9.2) can

be put in the shape

"y 11 1 1
z :_A,] - _
2 g ~IoBn Yt 5T o T 120w T 2526

] ) !
240n ~ 132710 © 32760n12 12014
3617 43867

9.3)

_ o
+ 816026 14364n'?
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Theorem 10.1. As x tends to oo,

0
logn 7 log x
F(x) := Z p ixz ~ __ng i (10.1)

n=1

Proof. By partial summation,

i logn log N! +fN 2tlog Mt + 1)
1

= dt.
n2+x? N2+x2? (12 + x2)?

n=1
Letting N tend to 0o, we deduce that
®tlogl(t +1)
F(x) =2 ————"dt .
w=2 [ TR, (102)
since, by Stirling’s formula,
logF(u+1)~(u+%)]0gu—u+0(l), (10.3)
as u tends to 0o. Using (10.3) in (10.2), we find that

- pouaaf /0 A aith wxnnlnnnd
n}ﬁsﬂm—w—% S ATp et

0. w. DeTepi
byn + 3.
We quote Ramanujan in the next entry.

Entry 10 (Formula (13), p. 284). The property of the function

o0

z logn
n? +x2

n=1

/°’° t dt
o (€2 — D{t +x)

Ramanujan did not inform us what property he had in mind. Since these two
functions are not equal, it would seem that he is claiming that they arc asymptot-
ically equal as x tends to co. However, as we shall demonstrate, this is not the
case.

and the integral

S A ) ‘ 19.4)
say.
First, from elementary considerations,
/4 .4 n
e 2x + 4x 4x (10.5)

Next, from Gradshteyn and Ryzhik’s Tables [1, p. 564, formula 4.231, no. 8],
2 *®lo 2 | ]
,]__f g(xu)du__(n ogx+f og u du)zﬂloi, (10.6)
0 0 X

x u? 41 T x 2 ul+1
2 [* log(xu) 2((* logu [ du )
L=--f = == L TR -
2 xfo @+ I(/ﬂ @1y "+°g"fo (u2+1)2)
__nlogx+0/l o
= r \x} (10.7)
and

13=l % ulog(xu) _0(loxg21).

2 A m U= (10.8)



[oo fm(t) ' [oo fm(t) e’ —1

fO~Y anr, (109)
n=\

as t approaches 0. Then, as x tends to 0o,

) = n! 1
[P~y e iR,
Joo e H n=1 o

provided that the integral converges for x sufficiently large, where [(z) denotes
the Riemann zeta—function.
Proof. Let
m—1
fa) = @)=Y ant"
n=1

Then

00 (o]
/ f© f fnt)
0 ext — 1 0 e —1
f,,,(t) ‘a.n!t(n+1)
f Z xnt! :
(10.10)

The integral on the right side converges for x sufficiently large, because the cor-
responding integral with £, (t) replaced by f(¢) converges for all x sufficiently
large.

Ast tendsto 0, £,,(t) = O(t™). Thus, for some positive constants k,, and K,

[fm )] < Knt™, 0 <t <kp.

ex — 1 xm+1

N ! 1
< Kn.f " g <k,™EMED o0
[4]

km
f Sn®) 4
0 ext — 1

Let X be a value of x for which the integral on the right side of (10.10) converges.
Now

)

Fo() = oXu _ ]

du

e - m m
% d (X -1
=- Fn()— ( — ) dt.
[km w7 (ex, = 1)
An elementary calculation shows that, for x sufficiently large,

d{eXI_l\ >k
dt\e"'—l}\v’ e

us,
o0 ] Xt Xk
fm(0) / d e —1 e 1
gmrs —L, —_ dt = L,——. 10.12
.[k,, ext — ldt s-L r, dr\e’ —1 e*km — | ( )

Taking (10.10)-(10.12) together, we deduce that

f(r) apn! {(n+ 1) 1
f d _Z .X"'H +0(xm+l)’

as x tends to 0o, which completes the proof of the lemma.

Theorem 10.3. As x tends to 0o,

* 1di 2 (—1)y(n + DI L +2)
= ~ . Q013
G(X) . ](; (ezm _ ])(t +X) Z (2ﬂ)"+2x"+l ( )

n=0

Proof. Write
Gy — X f"" tdt
)= Q) fo (e —1D@E/QRr)+ 1)

Since

f s D"
e+ & ey

Vo
7T,

0<t<
we may apply Lemma 10.2 with f (1) = t/(¢/(2m) + 1) to deduce that, as x tends
to 0o,

x X EDTatrm+ )
G(x) (27!)2 g (2")n—lxn+l

The proposed result is now immediate.
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In particular, the leading term in (10.13) is 1/(24x). Since, in Theorem 10.1,
F(x) ~ m logx/(2x), F(x) and G(x) are asymptotically quite different. At x =
0, F(x) is analytic, while G(x) ~ —logx/(2m), as x tends {0 0. In conclusion,
we have not been able to discem a property of F(x) and G(x) held in common.

We quote Ramanujan in the next entry.

Entry 11 (p. 307).

§n s _ v 1B/

nearly. (11.1)
loga

n=0

Here, y denotes Euler’s constant. Ramanujan evidently intends (11.1) to be an
asymptotic formula as x tends to 0 + . Clearly, @ > 1.

In 1907, Hardy (1, p. 283], {4, p. 160} proved that

o0 Y lng 1 v 00 (_l)n—lxn
o —a'x L N
anae T loga Y2 loga " ﬁ n! (a" —1)
o .
+ _1_ r (_2_n£) Xlnni/loga. (11.2)
loga , 2=, loga
n#0

(We have corrected a sign error in Hardy’s formulation.) The first three terms on
the right side of (11.2) are identical to the right side of (11.1 ). By Stirling’s formula,
the latter series on the right side of (11.2) converges absolutely for 0 < x < oo.

Entry 12 (p. 307). Leta, b > 1. Suppose further that

2nmi 2mmi

’

loga log b
for every pair of nanzero iniegers m, n. Then, for x > 0,
& log? 1 1

Ze—ub”‘xz 0g~ X +Iogx( 14 _ _ )

— 2logalogh logalogh 2loga 2logh
1 [logb | n? + 6y? 1 1 1
L _g_+1g£+_+_y_)_z( + )+_
12 \loga logh logalogh 2 \loga logb 4

) _2'””.\ x2nm‘/l0ga

o T
Q0 st -
(—x)" 3 \ loga)
+ ; nl(@® — @ —1) + loga , 1 — p2iftoga

=—x

n#0

r _2n"i) xan‘/logb
1 = logb 2.1
+ @ Z 1 _ gnmiflogh ’ :

n=-00
n#0

where y denotes Euler’s constant.

38. Approximations and Asymptotic Expansions 537

Equality (12.1) is a double series analogue of Hardy’s thcorem (11.2). The three

series on the right side of (12.1) do not appear in Ramanujan’s formulation. There
is one further discrepancy in that Ramanujan omitted the e,x_prcssinn

n?

12logalogh

on the right side of (12.1).
Proof. Set

fx) = i e,

m.n=0

Then, fora = Res > 0,

f@xtldx = j" e x5 dx
J 2

m.n=

- Z b ™a "I (s) = ——71“(3) .
A (I —a—)1-b>)

By Mellin’s inversion formula,

1 pere C(s)x~*
f(x) = i /;_oo (Tm‘)‘ds, a>0. (12.2)

C(s)x~*
IM.T b— [ T—:%:—Tds, (12.3)
Jey, (h—a=)(i —b7%)

where Cyy 1 is a positively oriented rectangle with vertices ata+i7 and —M +iT,
where T > 0 and M = N + 3, where N is a positive integer. We choose 7 =
T.,n > 1, tending to 0o so that

\T,loga — kn| > n/3 (12.4)

9
3

|T, logh — kx| > /3, (12.5)

for every positive integer k.

We evaluate I r by the residue theorem. The integrand in (12.3) has a triple pole
at the origin and simple poles at s = —n, for each positive integer n. Furthermore,
there are simple poles ats = —2nri/loga ands = —2mmi/log b, where m and
n are nonzero integers. The latter two sets of poles are simple poles by hypothesis.
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To calculate the residue at 0, we use the expansions

1 V2 L A A ) N L W g
F(S)—;—}"F\E 2) k—+—— ) ,(12.6)
I (-sl 1 1
L _ (Csloga) _ o+, a2
l—a=* slogaes¢d —1 sloga 2 12
1 1 1 logh
o, (12.8)

I—b— slogb 2 ' 12
and
= l—slogx+1s210g21 —(—';s3log3x+~- . (12.9)

The expansion (12.6) can be deduced from a well-known formula found in the

Tables of Gradshteyn and Ryzhik [l p. 944, formula 8.321, no. 1]. After a lengthy
calculation, we find that

_ log'x +lox( v _ 1 1)
" 2logalogh g logalogb 2loga 2logb

1 flogh loga n2+6y2) y ( 1 1 ) i
=ttt — ) Sl =)+
12 \loga logh logalogh 2 \loga logh 4

(12.10)
The remaining residues are much casier to calculate. For each positive integer
n,
_x n
R, = S . A (12.11)

n! (a7 — 1\(bh" — 1)
n! (a 9]¢ 1)

For cach nonzero integer »,

{ 2nmi\ osa
r amr/ ioga
]oga)

12.12
loga(l — b2/ loga) ( )

R—-an/ loga =

and

2nmi
x2nm/|ngb
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r (_ 2nmi xlmrljlogb
1 log b

— .
ogh ) iwebi<r 1 — a¥riflog 12.14)

{
\ie.afy

+

By (12.2), (12.3), (12.10), and (12.14), if we can show that the integrals over the
two horizontal sides tend to 0 as 7 tends to 0o and that the integral over the left
vertical side approaches 0 as M tends to oo, then (12.1) follows.

By (12.4) and (12.5), we see that, fors = o £ iT,

N-a>12+3/2 and |1-b7"12+3/2
respectively. Recall Stirling’s formula

T(o +it) = V2re ™27~V 21 + 0(1/|1))),

uniformly for — M

untformly fo as |t| tends to oco. Hence

IA

m < o
o Lo, e,

o r(a + iT)x—(atiT)
[ o = o(1),

M (] _a—(uﬂ:iT))(l — b—(o:kﬂ‘))d

as T tends to oo.
By the reflection formula for the gamma function,

=DV
(M + 1 —if)cosh(nt)’
Also, fors = —M +it, |1 —a~*| > a™/2 and |1 — b™*| > b /2. Hence,
/°° T(-M +inxM
—oo (1 —aM-it)(1 — pM-ir)
as M tends to oo. This completes the proof.

F(—M+it) =

dt = o(1),

Entry 13 (p. 307). Leta, b, c > 1, and assume that no two of the numbers

2nmi 2mmi . ki
Tooa’ > and
loga logh logc
are equal, where n, m, and k are nonzero integers. Then, for x > 0,
3 e—a"b”‘c“x - _ 1033 X
k.m,n=0 6]0ga]0gblogc

(—x)"
I =R
M.T "+Ln' @ Do =1
r _2””i y2nmi/loga
1 loga
+ loga 1 — b2nni/loga

12ani/logal<T

B logalo;;blogci ~ logx iz (B?E; + TO—;?*— E’E;)

_r( 1 + 1 + 1
2 \logalogh logblogc logcloga

+ l logc loga log b
12 \logalogh logblogc * logcloga
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(Z+2) rrnris
T2 7 2 ) logaloghloge

1 (logb +logc

loge + loga l_"w)

24 loga + logb logc
xt y? 1 1 ___ +__l__)

t\mt T) (W + log b 108 ¢ logcloga
oy (_loge loga N —_logb )

12 (loga logh logblogc log8 € loga

y( 1 1 1y a@rrria2rt 1
—Z(\@+@+@)”'ﬁlogalogblogc 8

0 =1y

I G S
t L @ - Do - e — D

r (_ an') 1_zm,“-i/logn
loga

i el -
+ loga Z W_Cﬂnm/loga)

n==-00
r (_M) x%"'illogb
log b

n#0
1 e -
—_ E _\ o) o _
+ logb o a- CQ""'/lUgb)(] — al’) wi] logh)

n#0
e r (_’inﬂi)lemﬁllog(' B
og ¢ ——, (13.1)
T oge n:z_w (1 = gy (1 = 27

n#0

7 a—function.
where y denotes Euler’s constant, and £ (s) denotes the Riemann zeta—fu

The four infinite series on the right side of (13.1) do nOt appear in Ramanujan's

formulation. Furthermore, the terms

nllogx
- 12logalogblogc
and X
n? S S 1 \ 4t(3)1+1;7:
Yt ) T P
24 \logalogh ~ logblogc ~ logcloga) 12logalogblog

are not found in Ramanujan’s version.

The proof of Entry 13 follows along the same lines &
particular, (12.6)~(12.9) are necded to calculate the residu
at the origin. Therefore, we forego the proof.

In Entry 14 we quote Ramanujan.

45 the proof of Entry 12.In
e of the quadruple pole
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Entry 14 (p. 314), Let perimeter of ellipse = n(a + b)(1 + h), then
/a - b\l Al 3h2
=4n - — ===
\a+b) 2+ J1-3h

very nearly. According 1o the above approximation, the perimeter of a parabola
= 3.99944(a + b) for 4(a + b).

(14,1

A 5.2)

Proof. Set A = (a — b)/(a + b). If L denotes the perimeter of the ellipse given
by x =acost,y =bsint,0 <t < 27, then (Part 111 [3, p. 146])

L=mn@+b)Fi(=} —5: LA = (@ +b)(1+h). (14.2)
Hence,
1 1 2 4 441
h:-x2+—x‘+—xﬁ+—5A8+—9x'°+—x‘2+.~. 14.3)

3h% 4 (16 — AR + (A4 — 8AHHh + 1 = 0. (14.9)

Beginning with the approximate solution h = A%/4, we solved (14.4) by the
method of successive approximations to deduce that
h~ %xh%x%%x%%xu j—?x‘°+%x”+---. (14.5)

Comparing (14.3) and (14.5), we find that the two power series agree up to the
coefficient of A2, where the difference is remarkably only 21'2/4'° Thus, Ra-
manujan’s claim is certainly justified.

The second claim in Entry 14 remained an enigma to us for a few years before
R. J. Evans deciphered the proper interpretation.

Since the eccentricity for a parabola equals 1,seth = 0in (14.1). Solving (14.1)
via Mathematica when the left side equals 1, we find that & = 0.2730576913.
Using this value of & in (14.2), we find that

L~ n(a+ b)(1 +h) =3.99943(a + b).

Taking h = 0.27306, we would obtain the approximation 3.99944(a +b) claimed
by Ramanujan.
Lastly, we know that

nf2
L= 4[ a?sin®t + b2cos?t dt.
0
If b = 0, then
n/2
L=4] asint dt = 4a = 4(a + b).
0

This concludes the explanation of Ramanujan’s sirange claim.
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The work in the following section first appeared in a paper by the author and
Evans [1].

Before stating and proving Entry 15, we introduce some notation and offer a
preliminary lemma. Ramanujan defines the logarithmic integral Li(x) by

Y | A
Li(x) =P —_ >0
0 lOgt
Define the unique positive number x by
Li(n) = 0. (15.1)

Ramanujan (9] and Soldner (N. Nielsen [1, p. 88]) numerically calculated .
We used MACSYMA to also calculate . The table below summarizes the three
calculations:

Ramanujan 1.45136380
Soldner 1.4513692346
MACSYMA | 1.4513692349

Lemma 15.1. Let 11 be defined by (15.1), and let y denote Euler's constant. Then,
forx > 1,

O

. log*
Li(x) =y + loglogx + E % X
k=1

Kk

Lemma 15.1 can be found in Ramanujan’s notebooks on the same page as Entry
15, and a proof is given in Part IV [4, p. 126]. For another proof, see Nielsen's
book [1, pp- 3, 11].

We first give Ramanujan's version of Entry 15: If

1 1\*
= - —) = 15.2
s Zk( +—) =togp, (15.2)

k=1

thenn = (p+ §)logu — ;.

We might interpret Ramanujan's statement as giving an estimate for § when
n = ((p + 3)logu — 3}. With such an interpretation, the error made in the
approximation by log p is O(1/p), as p tends to co. However, if p is chosen so
thatn = (p + 1) logu — 1 is a positive integer, then, as stated in our version
of Entry 15 below, the error term is O (1/p®). Amazingly, Ramanujan found the
precise linear function of p that yields an error term of O(1/p?). Thus, if the
constant L log iz — 1 in the definition of » is replaced by any other constant, the
error term is O(1/p).

Entry 15 (p. 318). Let S be defined by (15.2), and letn = (p + ) log u — 3 be
a positive integer. Then, as p tends to 0o,

S=logp+0(p7). (15.3)
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Proof. Setting y = log 2, applying Lemma 15.1, and using (15.1), we find that

00 k ¥ el —_ 1
Gzy+lagy+zl:—k=y+!egy+1{) — dt. (15.4)
Sectting x = 1 + 1/ p and using the definition of §

a
QN ~od (1
o}

familiar estimate for a partial

1
sum of the harmonic series (Olver {1, p. 292]), and (15.4), we deduce that, as n
tends to 00,
n k n
x<—1 1
S= E p + E Z
k=1 k=1

n k

+logn 4y + o +0 (=
k ogny2n n?

k1 1 Y —1 gk
= al +log(£)+———/ —dt+0(——2).
P y/ o Jo 8 P*/ (155)
Next, applying the Euler-Maclaurin summation formula from (0.5) of Chapter
37, we deduce that, as p tends to 00,

" xk— | 1 x" -1 nxt—1 1
=—=1 dt+0|—=]. 15.6
2% 7 lox+ +f0 ‘ (pz) (136

k=1
Employing (15.6) in (15.5), we find that

txt— | Ye' —1 1 n x" 1
S = dt — dt — =logx +log{ — —+0| =
fo T fo t 2 %* g(y)+2n (Pz)

alogx 1 1 1 x 1
= [ f(dt — Slogx +log|p+ 35— 53 +—=+0|—
y4 < “JyJ \ (

LR

Y \ 2n P77 (157)
where f(t) = (¢' — 1)/t. Now,
| 1 Ve } \
—51 =-—+0(=].
plogx =7, % PZ)
1 1 1 1 1
1 e —)=lgpt+ —-—+0{ ),
Og(p+2 2y) 87T 20 " 2py (pz)
and
% 141 )p_\'+(,v—l)/2 e’ 1
’1_:=('7n\|/_lpi(\l_.l\ =7nv+0 ? '
TR ‘rl—l‘y LI 4 2y ~rJ AN /
as p tends to oo. Substituting these estimates in (15.7), we find that
i nlogx f(y) {1
S= f)dt+—=——+logp+0|—}),
-’y 2p \p?/
as p tends to oo. Thus, it remains to prove that
Y Sy ( 1 )
Wdt=—-+0{|\—])- (15.8)
n log x f 2p p’
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Now,

LIPS I -
nlug,t=y—2—l;-r(}k?)4 (15.9)

By the first mean value theorem for integrals and (15.9),

fv f@)dt = fu)(y —nlogx) = AC +0(L2), (15.10)
n 2p P

logx

for some value « such that nlogx < u < y. By the mecan value theorem, there
cxists a value v such thatu < v < y and

1
f@) = f)+w—y)fu ):f(y)+0(-.\, (15.11)
\p/
where the last equality follows from (15.9), since f’ is bounded on (u, y). Using
{15.11) in {15.10), we compleie the pf‘ oof of (15.8).

So as not to interrupt the proof of Entry 16 below with two calculations, we
now set them aside in two lemmas.

Lemma 16.1. Ifa and 0 are positive and n is a nonnegaiive integer, then

+
oo+ai z"e‘znladz _ 6" (2n)!

b= iV 4 /oo+m 2t -

Proof. Setting u = z/+/9 and applying Cauchy’s theorem, we find that

oo+a:/f
Il
‘V oo+m/~/-

6"/‘ m —ul
= ue " du
NZ A

0" 00
= [ 12 dy

2
n udu

V7 Jo
9" L er@n)!
= Jm et )= e

Lemma 16.2. Ifa and 0 are positive, and n is a nonnegative integer, then

_p? _ 2
2z /9e(ln+l)udz —e (n+1/2) 6_

[
0 J-oo+ai
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Proof. Setting z = u+/8 and applying Cauchy’s theorem, we find that
1 pootai/e ,

J, \/_j J_exp\ (u—(n-i— )l\/9) (n+%)20>du
—co+at /

— Le—(n+l/2)20 [ e~ du

VT J-w

_ e—(n+l/2)’9.
Entry 16 (p. 324). Ast tends to 0+,

n{n+i)
2 1 ~lt 42420 4504 175+ (161
Z( )" (1 +:) +r 420 45004170 + (16.1)

The function on the left side of (16.1) is not a theta—function but is a false
theta—function in the sense of Rogers {3]. In fact, we shail obtain a more explicit
asymptotic expansion, which cnables the calculation of further terms in the as-
ymptotic series. It is interesting that Ramanujan appended an abbreviation for
“asymptotically” after the series on the right side. We are unaware of any other
instance in the notebooks where Ramanujan used this word. Usually, he wrote

“nearly” or “very nearly.”

Proof. Let
e_g = 1_;‘,
1+¢
so that 6 is small and positive. If a > 0 and n is a nonnegative integer, by Lemma
16.2,

o 1 foo+ai N )
et _ e ¥/ ntizg,

v 6 ./ —o0+ai
Multiply both sides by 2(—1)" and sum on 7,0 < n < oc. Upon inverting the
order of integration and summation, we see that the resulting series on the right side
converges absolutely and uniformly on (—o0 + ai, 00 + ai) and that the resulting
integral also converges absolutely, and so the inversion is justified. Hence,

\_oo‘ (n+1/2)%0 2 [oota = g 1h
2 (e o 2 TN (—1yrelnt gy
,,L=l b4 l—co+al é’
1 [oo«i—(u e? /0
= 0= —dz. (16.2)
VJTO j—oo+ai cos 2 e ¢ )
Now recall that (Abramowitz and Stegun (1, p. 804])
o0
(—l)"Ez,, 2n
secz = ——2", lz| < 7/2,
; (2n)!
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where E;, j > 0, denotes the jth Euler number. Thus, for |z| < /4,

|
{(—1)"E
secz — E——z”‘

< 1212V,
2 ") Izl

aNbutnotonz. If0 <

a < 1 an
< a = o

(=%

£

-
Lo

a 1 —1)"Ep, 2
’ AN+’ and Z2N+2 Z @n)!
are bounded functions of both a and z. In particular, observe that
cos((2n — D /2 +ia) = i(—1)"sinha,

COx 4N 1 L2

where n is an integer, and so a/ cos z remains bounded as a tends to 0. Hence, for
all points on the contour,

<G, (16.3)

N n
a (—1D)"Ey n
m‘(“"‘zowz ) =

n=|

for some positive constant C;, which is independent of both z and a.
Therefore, by (16.2) and Lemma 16.1,

2 i(—[)ne‘(nﬂlzﬂo 1 Z (=1)"Ep f ZZne‘Z’/(?dZ + Ry
= VT @n)! J_cotai

T\("'l)nEann .
T Ty UM

_~
-

n=0
where, by (16.3),

ootat N (__l)n Ean
R e secz - Y L2 |dz
=176 oo ( 2 o
G o ~(x+ai)?/h 2N 42
< — e~ T (x + ai) dx
~ a/né l
— G [ RC —xlm)(x +az)N+ldx
a/né J_
G (a’—x’)/ﬂ 2\N+1 2\N+1
2 + (2a*) dx,
= — Neri {ex» ( }

BV RT 4

; — 42
since x2 + a? does not exceed the larger of 2x? and 2a”. Setting « = x?/6 and
evaluating the resulting integrals in terms of gamma functions, we find that

2N+lczea2/ﬂ

a/né

IRyl < {F(N+%)0N+3/2+r(%)a2N+291/2“
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We now choose a = /8. Hence,
2N +1

v
In conclusion, by (16.4) and (16.5), we have obtained the asymptotic expansion
1—¢ n(n+1) 141 1/4 oo (-1)"E;, 141
2) (-1 ~ )
Z( )y (1+:) (1—:) ;0 it Ogn(l ) (16.6)
Using the values E,, = 1, —1, 5, —61, 1385, and —50521, where n = 0, 1, 2, 3,

4, and 5, respectively, and employing Mathemaiica, we calculated the coefficients
displayed on the right side of (16.1).

iRn| < TN +3) + ymjer+ie, (16.5)

Using operator methods, D. Bradley found a shorier rouie io {16.6).

Itis curious that each of the six coefficients on the right side of (16.1) is a positive
integer. Using Mathematica, we calculated the first 50 coefficients and found all of
them to be positive integers. Using his own muliiple-precision inieger arithmeiic
package, Brent calculated the first 1000 coefficients to further substantiate the
conjecture that all coefficients are positive integers. Brent easily showed that the
coefficients are positive, while Galway [1] later established the more difficult
assertion that they are integral.

Entry 17 (p. 333). Forn > 0 and x > 0, define
—ntxa i (=¥ (n + 2k)(n + 1 )k_le-<"+2k>’x/4) |

u, = up(x) :=In+l) (e

= k!
Then
n? du
Uny2 = gn + d—x" 17.1)
and
1 TAN+2 n(n— x
— 72 [(4x)
u,, = 2n—| (;) e (] _T—{»A“). (]7.2)
Proof. We first prove (17.1). After a simple calculation,
n? du,
—Uu; + —
dx
0 k —(n+2k)2x/4 2 2
_ (=D*(n + 2k)(n + 1) e~/ (n (n + 2%) )
_I‘(n+l); o T )

=D+ l)((rz +2)(n + l)e—<n+2)2x/4

+

i =D Yn 4 2k)(n + l)ke-(n+2k)21/4)
= *k— 1)
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=Tn+3) (e_(n+2)zx/4 i (—DF(n +2 + 2k)(n + l)k+|€'("+2+2“2‘/4)

= k(n+1)(n+2)

= Uny2-

Thus, (17.1) has been shown.

We are pleased to present M. L. Glasser’s proof of (17.2). We induct on n.
First observe that

up =142 (~D*e™™ = p(—e™) = 2400, ix /),

k=1

in the notation of Ramanujan (Part III [3, p. 36)) and, e.g., H. Rademacher {1, p.

166), respectively. Now (Rademacher [1, p. 177)),

ug = 8,4(0,ix/m) = \/?92(0, —n/(ix))

\/ E -7 (2n4+1)2/(4x)

n=-00

n
=2 /;e‘””“‘” (1 +e g )

which agrees with (17.2) forn = 0.
Next recall that (Rademacher (1, p. 166])

00
(v, ix/m) = —i 3 (=1)le~ /D @urmiv (17.3)

n=—00

and (Rademacher (1, p. 177))

(v, ix/n) = i“,@"’_”’”l"‘ﬂn(vn/(x’x), —7/(ix)). (17.4)
Hence, by (17.3) and (17.4),

o0

up =Y (=1)"Q2n + e~ Grthv/e
n=0

1
= 27rd v).(v ix/m) -

= d(ﬁ-ﬂv/*a( x), /(i )))
_27rdv‘ Wor/(ix), —m/(ix o

o0
_ 1 i Z (_])ne—n'z(n+l/2)2/x—n2('2/x+(2n+l)n2v/x
2/nx dv

n=-00

v=0

2n + l)7r B
Z: 1" 2 n+1/2)% x
2,/er ,,7_00( ) X
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- (1)3/2 e—ﬂz/(4.l) (1 _ 3e—2n2/x +.. ) ,

ahial a0 coitel £1°7 AN I PO 1
WIIILIL aplCld WIUt(1/7.2) 1n U claye n = 1.

Having proved (17.2) for n = 0, 1, we assume that (17.2) is valid and that it is
also valid with n replaced by .+ 1. We shall then use these two equalities and (17.1)
io establish (17.2) wiih n replaced by n + 2. By siraighiforward differentiation,

n? + du,
Upyy = — —
=T
_ 1 (z)n+l/2 . n* n’(n—1)x e 2n + 1
n—1 4 42 2x
(2n + Dn(n — 1) 2 nn-1) n(n—1) )
—2}:2_ '+4X2_T .‘._J-—2 .../

+
R B2 2N I 72 1 {2n+1 nn-1)
ol (x) € 4x?  x 2 + 4 T

:#(g)nnﬂe_n!/(m(l_%(n_._z)(n_}_l).}....),

which is precisely (17.2) with n replaced by n + 2.

The function u,, can be regarded as a modified theta-function or a modified
hypergeometric function. Recalling the proofs of (17.2) forn = O and n = 1,
in general, we can regard (17.2) as an inversion formula for a modified theta—
function. It would be interesting to find further terms and even more interesting
to find an exact inversion formula. Entry 17 can also be regarded as an analogue
of the many asymptotic expansions for exponential series found in the first seven
sections of Chapter 15 (Part II [2, pp. 303-314]). V. Kowalenko, N. E. Frankel,
M. L. Glasser, and T. Taucher [1] have considerably generalized and extended
these results. In particular, Ramanujan's results do not cover certain “exceptional
cases,” and these are encompassed in their theorems.

The origins of the two families of approximations in the next two entries were
a mystery to us until Askey [1) explained their roots in Gaussian quadrature with
respect lo adiscrete measure. Thus, the following proofs are due to Askey, although
we have amplified the details.

Entry 18 (p. 349). Let

n-1

S(om) =) ok —n+1+2%).
k=0

Then S(x, n)/n has the foliowing successive approximations:

o(x), (18.1)

! x+ 1 PN U Ll 18.2
> ] 3 ] 3 , (18.2)
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7 _ 2_7
5(n2—1)l¢<x+ 3"5 ! +¢>(x— 3"5 )]+8(n’—4)¢>(x)

(18.3)

and
1 nt-16 a+ B et
(3-= )l,,,(x+,/_7 )+¢(x : )}
I n?-16 «-p a—ﬁ)l
- — J—— | +elx- .
+(4+ 68 ){‘p(H 7) ¢< 7 Jasa
where

o=3"—13 and B=[i6n*—45n? +164). (18.5)

Proof. Let f(¢) be a continuous function on [a, b}, and let da(¢) be a nonnegative
measure on [a, b]. The problem of Gaussian quadrature is to approximate

b
f (1) da(t) (18.6)

by a finite sum which is exact for all polynomials of as high a degree as possible.
Leta <t <t <--- <t < bandset

k
we@) = [ - 1)
i=1

and
' .
wia) = —2__ <<k (187)
u"k\-j/\" 7
Then
k
L{(®) =) fU)w;u() (18.8)
j=1

is a polynomial of degree at most k¥ — 1 such that
Liey=rfa), 1<j<k (18.9)
Now let £ (¢) be a polynomial of degree notexceeding k—1. Then f(¢) = L,{ (1),
since, by (18.9), these two polynomials of degree k — 1, or less, agree at k points.
Hence, by (18.8),

b k b
f f@)da(t) = Z f(t,-)f w; k(1) da(r). (18.10)
a j=1 a

Thus, we have an exact quadrature formula for polynomials of degree k — 1.
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We now want to keep the number of terms, &, constant and choose the points
tj,1 < j = k, so that (18.10) is exact for polynomials of degree as high as

possible. We will show that, if the points #;, 1 < j < &, are appropriately chosen,

(18.10) is exact for polynomials of degree 2k — 1. Then
f@0 = LL(®) = we@ri-, @), (18.11)

where r;_ (1) is a polynomial of degree k — 1.

Now let {w(#)},0 < k < 00, be a set of polynomials with w; (r) of degree k,
which are orthogonal on [a, b] with respect to the measure der (t). Then, of course,
w(¢) is orthogonal to all polynomials of degree < k. Then, by (18.11),

b b b
f f@) da(t) - f L,{(r) da(t) = [ Wi (¢) da(r) = 0.  (18.12)
a a a
If
b
A} = k!"k = J[ !l)!‘.k(‘) da(f), (]813)
a
then, by (18.10) and (18.12),
b k
/ [ da@) =2 (1)),
a j=1
and we have an exact quadrature formula of & terms for a polynomial of degree

2k~ 1. In general, for an arbitrary continuous function £ (1) on [a, b], the Gaussian
quadrature approximation of (18.6) equals

N

PN (18.14)

i NG 14

~.
li

Other representations for A ;, given by (18.13), exist; e.g., see G. Szegs’s book
{1, p. 48]. Two of these representations show immediately that A; > 0.

We now apply this theory to f(t) = ¢(x —n + 1 + 2¢). Since S$(x,n)isasum
of n terms, we want da(¢) to be a discrete measure weighted at the integral points
0,1,2,..., n— 1. This leads us to the Hahn polynomials, which were introduced
by P. L. Tchebychef [1] in 1875 and which are constant multiples of

—kk+a+B+1,—¢
Qut;0, B,N) := 3Fz[ ;1]
a+1,—-N
k
—k): (k (—1);
B (G LAY L2 TR
j=0 @+ D,=N);jt (18.15)
For 0 < m,n < N, they satisfy an orthogonality relation of the form (A.F
Nikiforov, S. K. Suslov, and V. B. Uvarov (1, p- 33D

@+ 1), (B+ Dy, —c 8
I3 (N —pt — “mnomm

M=

On(t,a, B, N)O,(t; ¢, B, N)

-
Il
=}
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for certain constants ¢, ,, 0 < m, n < o0o.

In our application, we want @ = 8 = 0, so that the weights equal 1 at each
nonnegative integer k.0 < k < N := n — 1. Thus, we(t) = ¢ Q:(¢; 0,0, N)
for some constant ¢;, 0 < k < N. Although the value of ¢ is not needed in
applications to Gaussian quadrature, we see that, by (18.15),

o = (- D k) (N — K)!
£ (k12N
We are now ready to calculate the four approximations (18.1)-(18.4) claimed

by Ramanujan.
Let k = 1. By (18.7), w; ,(t) = 1, and by (18.13),

n-1
)\_! = [ da(!):'L
0

By (18.15),
2t
0:(1:0,0, N)=1—N-

Hence, 1) = N /2. Hence, by (18.14), the first approximation to S(x, n) is
Mf@w)=nrp(x —n+1+ @ — 1) =nekx),

as claimed.
Second, let k = 2. Then, by (18.15),

. . 6 6t =1
0,(t,0,0,N) =1 N+_—N(N—l)'

We therefore want the roots of

61> -6tN+N(N -1 =0,

and they are
1 n?—1
= = -1+
t,bh 3 (n 3
Hence,
n?—1
f@), f@)=9¢lx=x ol B
By (18.7), we find that
t—1 t—1
wy 2(1) = —r and wa2(t) = _—
n® -1 n?—1

3 3
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Hence, by (18.13),

and, by a similar calculation,

[ 3 -l n
Ay=— nz—l_/o (’_’l)da(t):i-

Thus, by (18.14), the second approximation of S(x, n) equals

n .t n?—1 +n n?—1
2% 3 271 3 )

as claimed in (18.2).
Third, let & = 3. Then, by (18.15),
12+ 30e(e—1) B 200t — 1)(r —2)

10,00N)=1—- —
Q;0,0,N) =1 N+N(N—l) NN -1(N -2)

We therefore must solve
200> — 30N + (4— 6N + 12Nt = N(N = I} (N =2) = 0.

These roots are found to be

3n -7 2
2!1=n—l—\/" . 2,=n-1, and 2:3_n—|+\/3" -7

553

s 5
Thus,
3n 47 2
f(n)=¢(x— "5 , f() = px), andf(ra)=w(X+ 3n 5+7
(18.16)

Also, by (18.7),

t —-n)n —1n)

o o [ |,
3"2_7\ l\ }fzv 5 Il

1 ) 3n? -7
+Zl(n—l) +Mn-1) 3 I)

P
wy3l) =
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t—1n) — 1)
)= — "7
wa.s(0) (2 —4)( —13)
20 , e o 12 1 . 3)
T T 7\ —Wl=DET g Tt 5)
and
=)t —1
wya() = (__M

=) — 1)

Thus, by (18.13),

10 el 1 [3n2 -7
A]—mL (f —l(ﬂ—])-{'—i Tlt
2 _
+%l(n—l)2+(n—l)1/3n5 7])da(t)
_ 10 (n—Dn@n—1) 1+1 3 =7| n(n—-1)
T 6 TIT T s 2
2 _
+%|(n—1)2+(n—1)‘/3n5 7In)
q y 7/

_ Sn(n® - 1)
By almost an identical calculation,
Sn(n? —1)
3= m (18.18)
Lasily, by (i8.13),
20 n—1 3
M:_m.[; (fP—m—-De+ —n —in+ 2)da(r)
= -3 (n—Dr@n—1) = (= 1)’n + (%Hn* — sn + 2)n)
4n(n? — 4)
= m (18.19)
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Using (18.16)-(18.19) in (18.14), we obtain Ramanujan’s approximation (18.3).
Fourth, let k = 4. Then, by (18.15),

20t 90t(¢ - 1) 140:(1 -1t -2
Qu(r:0.0,N) = 1= + N(N-1) NWN-1)(N-2)
700 — 1Dt —2)(t ~ 3)
+ NN = DN —2)(N =3)’
We used Mathematica to determine the roots of Q4(¢; 0,0, N) = 0 and found that

,l=;(~+ a;ﬂ), ;(N_ a;ﬂ),
t1=1(N+./a_ﬂ\L t4=1(_N—./°’;‘B\.,
2\ V1) 2NV T as20

where o and § are given in (18.5). For brevity, set A = (@ + 8)/7 and B =
{a — B)/7. By (18.13),
o f"“ (t =)t — 1)t = 1q)
N T R )

n-1
= % A (£ = (12 + 5 + )8 + (0213 + tats + tatx)t — tat315) dex(2)
14 (n*(n—1) 3n—-1 1 n—-Dn@2r -1
(e ) et
3n—-1)?% 1 1 \n(n-1
- %(n —1=vA)(r - 1) - B)n)
_ 14 (n(rz2 - n(a—ﬁ))
B 24 56
16 —n2 |
- ,,( S E) , (18.21)
The calculations of A5, A3, and A4 are similar, and we find that
. 14 (n*(n—-12 [3(r—1) 1 2\ (r=Dn2n~1)

N7 U R U R A 6
— 2 —_
T b A Y/ S ) Gl
\ 4 2 4 ) 2

- %(n — 1+ VA - 12 = B)n)

= (—16_"2+1) 18.22
=n oF i) (18.22)
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14 (n?(n —1)? 3n-1 1 )(n— Dn@n -1)
)"='ﬂ~/§( 4 _( r "3VE 6
3n-1?% 1 1 \nan-1)
# (X - - 0vE - 34)
- %(n = VB - 1) - A)n)
-16+n2 1
_ 2 18.23
"( & " 4)’ (1829
and
14 [n¥(n —1)? 3n—1 1 )(n— Dn@2n - 1)
Aq:ﬁﬁ( a _( 7 t3VB 6
In—-1* 1 1 nn—1)
+(—4—+§(n—l)~/_—zA) >
- %(n —14+VB)(n -1 - A)n)
—164+n% 1
_ 2 18.24
—n( a 4). (18.24)
Using (18.20)—(18.24) in (18.14), we obtain Ramanujan’s last approximation
71Q AN
\10.%).

After his four approximations, Ramanujan illustrates his theorem with five ex-
amples. In all examples he uses a different notation from that of Entry 8.

Corollary 18.1 (p. 349). We have the following approximations:

7
> ue = Lz +ue), (18.25)
k=1

2

Z ug ~ 13(ue + un), (18.26)
=1

13
Zuk ~ B(Tuy + 1wy + Tun), (18.27)
k=1

22

Z“" ~ 345 (161u3 + 256u23/2 + 161u20), (18.28)
=1
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and

21
Y et ~ & (506 @(2) + 9(20)) + 931
k=1

x (w | +2J22/7) + o(11 - '2‘/22/7))) .
(18.29)

Proof. First, in the notation of Entry 18,setn = 7and u;, = ¢(x -8 + 2k), 1 <
k < 7. Then y(n2 —1)/3 = 4, ¢(x — 4) = u,, and @(x + 4) = ug. Hence,
(18.25) follows from (18.2).
Second, letn = 26 andu;, = @(x —27+2k), 1 <k <26.Then/(n? —1)/3 =
15, ¢(x — 15) = ue, and p(x + 15) = u,,. Hence, (18.26) follows from (18.2).
Third,setn = 13 and iy = @(x —14+2k), 1 <k < 13. Then/(3n2 - 7)/5 =
10,

Smr—-1) 7 8(n’—4) 11
6(3n2—7) 25 6(3n2—-7) 25
@(x — 10) = u,, ¢(x + 10) = uy2, and ¢(x) = u7. Hence, (18.27) follows from
(18.3).
Fourth, letn = 22andu; = ¢(x—23+2k), 1 <k < 22.Then/(3n2 - 7)/5 =
17,
Smi-1) 161 8(n —4) 128
6(3n2 —7)  2-289’ 6(3n2 -7) 289’
@(x —17) = u3, p(x + 17) = uq, and p(x) = uz32. Thus, (18.28) follows from
(18.3).
Fifth, letn = 21 and w4y = ¢(x —22 4 2k),1 <k <21. Thena = 1310, 8 =

958,
[a+ 8 /a— /
— =18, =4
7

1 n?2-16 506 1 n —16

4 68  3-958’ 4 68 =3 958‘

Ppx — 18) = up, olx + 18) = uyp, olx — 4J/22/7) = uy_rmp, ad
@(x + 43/22/7) = u\1,2 5573 Lastly, replace u, by @(a). Then (18.29) follows
form (18.4).

To the best of our knowledge, with the exception of this and the following entry,
Ramanujan’s notebooks, published papers, and unpublished papers give no indi-
cation that Ramanujan had any knowledge of Gaussian quadrature or orthogonal
polynomials. Thus, Entry 18 is very remarkable, for it shows that Ramanujan must
have derived some of the principal underlying ideas in these theories.
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his approximations would have been exact for all polynomials of degree S or
less. To simplify the approximation, it is natural to choose ¢, = x as one of the
interpolation points, because it is the expected value of the Poisson distribution.
Amazingly, Ramanujan found the proper interpolation points,

T+/1+12x

2

[
Ll

. —
1y =

3 =X+
so that his approximation is exact for all polynomials of degree 4 or less. It is a
tedious calculation to verify that (19.3) is exact for ¢(x) = 1, x, x2, x3, x*, and
we resorted to Mathematica to check the right sides of (19.3) for x* and x*. Thus,
(19.3) is not a Gaussian quadrature formula.

o0 n 00 D"
“Z#’(")% =e"p(x) - exp (Z x""\' = e p(x)
o \& ! )

as the first approximation.” Undoubtedly, D denotes a differential operator, and
so the latter equality is trivially true. However, we have no idea why Ramanujan
introduced this series of differential operators. Perhaps this provides a hint to
Ramanujan’s derivations.

In Entry 10 of Chapter 3 (Part I (1, pp. 57-65]), Ramanujan provides an asymp-
totic expansion for e™* Y 02 ¢(n)x"/n! as x tends to 0c. As 10 be expected, the
form of this expansion is quite different from the approximations given in Entry
19.

On page 350, Ramanujan claims that

o0 n oc -1
nf2 1+ a )= ( f (4 (ax) d ) 20.1
“ ﬂ( @) =P e x0T 2.1

“when a is very great. The above theorem is very useful to know.” Prior to writing
(20.1), Ramanujan gives the special case when n = 2. As might be expected,
Ramanujan does not give the value of ¢ or any hypotheses about ¢. Although the
form (20.1) was perhaps convenient for applications that Ramanujan may have
had in mind, we shall make a simplification. Suppose we let f(x) = (p(x)/a)" .
Next, reintroduce a by replacing f(x) by ¢(x)/a. After a change of variable in
the integral, we find that

= a ®  g~lax) )
— ) = _— , 20.2
‘/ZU (' * w(k)) cexp (/n xa+0%, 202

which is simply the case n = 1 of (20.1). Thus, it is no loss of generality 10 assume
at the outset that n = 1.

The following theorem is not as explicit as we would prefer, but its formulation,
due 1o J. L. Hafner, is better than the author’s original version.
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Entry 20 (p. 350). Assume that the product on the left side of (20.2) converges,
@(x) is monotonically increasing, and p(0) > 0. Then (20.2 ) is valid, when ¢ is

given (approximately) by (20.9) below.

Proof. Taking the logarithm of each side of (20.2), we find it suffices to show that

1l0ga+§:|og(1 +L) =logc+/°° qp-l(ax)dx 203)
2 k=1 plk) woyra X(1+x) )

Since ¢(0) > 0 and ¢(x) is monotonically increasing,

o0 a vl a o a
log{14+ — }d ] —_ 4.
j: og( v(x)> ‘5§°g(’+¢(k>)5/0 bg(”v(x))dx’

By the intermediate value theorem, there exists a number X4,0 < x, <1, such
that

S'-‘ﬁlo /1 a\_rcol / a \
a'_,‘z:T gk +W)_/x, og(l+§0(x))dx

(v o} a Xy a
= g1+ -2 )ax- [T e
fo °g( so(x)) ¥ fo °g(1+w<x))‘”

=1 -5, (20.9)

say. By examining the inversc function of log(1 +a /9(x)), we see that

tog(l4a/9(0)) a
1| = / q)_l ( N )11_)1.
0 ey —1

Setting x = 1/(e® — 1), we find that

o0

-1
I = @,

Jowyja X(1 +x)
Thus, from (20.4),
o0 -1
¢~ (ax)
S, =/ ——dx — . 20.5
v ©/a X(1 4+ x) ’ @05
Comparing (20.5) with (20.3), we see that (20.3) has been proved with

o~
()
S
(=)}
&

We shall make the determination of ¢ slightly more explicit.
ForO0 <x <x, <1,

log(14+a/¢(x)) = loga—log (x)+log(1+¢(x)/a) = loga—log ¢(x)+0(1/a),
as a tends to co. Thus,

X
I, = xqloga —j; logg(x) dx + O(1/a) = x, loga — L+ 0(1/a), (20.7)
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say. Since ¢ is increasing,
Xalog 9(0) < I3 < x, log p(x,),

so that by the second mean value theorem for integrals,

fa (x) P(xa)
0 < I3 — x,10g p(0) = / log g@dx =(u-tlg T (209)
for some number £,, 0 < £, < x,. Combining (20.6)-(20.8), we deduce that
so(O))*" px)\ %
= —_— 1 . X
JE( ” ( 20) (1 + 0(1/a)) (20.9)

This completes the proof.

It seems likely that, in many cases,

X, = %+o(¢) and x, — &, = 0(1),
as a tends to oco. In such cases, (20.9) yields
c=o©) (1 +0(1)).
The next entry is recorded in Ramanujan’s Quarterly Reports and is discussed
in detail in Part I 1, pp. 311-312).

Entry 21 (p. 351). Consider the equation

o0 (__x3)k e e 4 e—wzx
F(—x):= = =0, (21.1)
Z; (G3k)! 3

where @ := exp(2ni/3). Then there exist an infinite number of positive roots. They
are close 10 the zeros 7 (2n + 1)//3 of cos(x+/3/2), where n is a nonnegative
integer. More precisely, if

b= e-n(2n+1)ﬁ/2

then these roots are given by

aQn+1) 1/, 13 , 28-31 49-52.57
x=——"— (R + =k 6 8
V3 2( LTI T A TR
76-79-84.91
+ at h10+'“)
7. /
(=1 7., 19-21  37-39.43 , 61.63-67-73 4
+ 7 (h+ﬁh+ 5 A+ ™ A"+ o1 h

(21.2)

91.93-97~103.111h,,+
1 A

Lastly, all roots of (21.1) are given by x, wx, and w*x, where x is given by (21.2)
and w = exp(2wi/3).
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Entry 22 (p. 351). Ler xo, X1, x2, ... be the real roots of (21.1). Then

00 3
¥
F(x)=n(1+—,,\. @21
n=0 \ Xal/
Proof. The real roots of F(x) = 0 are —x5, —x;, —x3,.... Then —x,, —x,,

—xp,@?,0 < n < 0o, constitute all the roots of F(x) = 0, where w = exp(2mi/3).
Now

(X + %) (x + X,0) (x + X,0%) = X° + x2.

We now apply the Weierstrass product formula. From the definition of £ in (21.1)
and the fact that the infinite product in (22.1) converges, since x, ~ n(2n+1)/ V3
as n tends to co, we easily deduce that F(x) has the representation (22.1).

Entry 23 (p. 370). As x tends to 1 —,
7 3n+l J3nd2 N —
X X 3

o0 1 1
L 1
— ~ — 4+ ——lo ]+ﬁ _—
g(lﬂ“"“ 1+x“"+3) FAW W

Proof. First,

0 3n+l 3n+2 oy _ 42y, 3041
E( x . ):Z(l ) —x"")x @3.1)

1+ x4+l ] 4 xénd3d Lt (14 xHh(1 4 xdnt3)

n=I1
We apply the Euler—Maclaurin summation formula, (0.5) of Chapter 37, to
_ — pH+2y 4]
i) e (1-x)(1-x )x :
g (1 +x"‘+')(l +x4a+3)

Thus,

a0

Y fm =fowf(t)dr-%(ﬁ; - %xs)ﬁow(wm— 1) £ty de
n=1

(23.2)
Let x* = u. Since

4x? 4x 4x?
T—u%x?  14u*x  1+uxd)’

f@)y=f@)logx (3 -

) (t—1-3) f@ade

€
B ' flogu logu 1 (1 — u'x?)
s [ (s~ [Res] = 3) Traoa

3 4x? ax 43 d
x -— —_— —
-z T4ux 1+ui )




564 Ramanujan’s Notebooks, Part V

2([ _ u4x2)
1 -
DN AT +u“x)(1 Fu'x)
4x? 4x axt d
3 +
Xk +1—u“x2+l+u4x ]+u4x3) "
= o(1), (23.3)

as x tends to | —. Seiting x' = u also in the first integral on the right side of (23.2)
and using (23.3), we find that, as x tends to 1—,

ad _ox(=x) Y WP - utxd)
Y fmy=- e b Trmd T aande oo

n=1

1 uZ(l _ud)
= Jé a1 duto. (239
Using Mathematica, we find that
' u2() — w4 1 /2 {22\ V2 /2 + 2\
Ty due= ;- —tan” - Ztan™!
o (1+u%)? 4 8 V2 8 J2
\/6_10g(2 V2) + £log(2+~/_)
1 V27 V23n V2
=-— == 3 logdl
283 8 Tty e+ V)
1 T
= - —=log(1 + v2). (23.5)
PR f B

Using (23.5) in (23.4) and combining the result with (23.1), we complele the proof
of Ramanujan’s asymptotic formula.

39

Miscellaneous Results in the First
Notebook

In this last chapter we collect together some miscellane 1
unorganized portions of the first notebook. Most are fro analysns wnlh some
pertaining to hypergeometric functions.

We use the familiar notation associated with hypergeometric functions; e.g., see
Part I [2, p. 8]. In particular, for each nonnegative integer n,

I'(a+n)
T'(a)

Page numbers after entries refer to the pagination of the Tata Institute’s publi-
cation of the first notebook [9].

(a)n =

Entry 1(p. 72). If
fO) =Y plnx), (.1
=l

then

Zw(n x) = Z(—l)“‘"’f(nx), (1.2)

n=1|

J 271

where Q(1) =0and, forn > nies ine toial number of prime factors

— VvV &AG, jorn >

of n counting multiplicities.

1 P
1

O o)
, 3e{nja

Proof. By (i.1),

i(—l)"‘"’f(nx) Z( l)”""Zw(mnx) f(z(—n“‘“)w(m
n=1

n=1 r=1 dir
(1.3)
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It is easy to see that (—1)*™ is completely multiplicative. Hence, )_,,, (—1)%
is multiplicative. For each prime p and positive integer n,

z( 1)o@ _ 1, if n is even,
&~ 0, ifnisodd.
Hence, by multiplicativity,

Z( 1) — l 1, if r is a perfect square,
0

ar , otherwise.

Using the equality above in (1.3), we deduce (1.2).

Entry 2 (p. 94). Ifn is a positive integer,

£ sin" x (1) Wn2D/2) .
—dr =t ) (=ak(r—20"",
jl) xh X 2n r(n) kéa ( n)k(n )

where the plus sign is taken if n is even, and the minus sign is chosen if n is odd.

In fact, Ramanujan claimed different values for the integral and crossed out the
entry. The evaluation above appears to have been given first by O. Schlomilch [1]
in 1860, as pointed out by M. L. Glasser. In the book by D. S. Mitrinovié and J. D.
Kecki¢ {1], the integral of Entry 2 is evaluated by contour integration. In 1980, E.
T. H. Wang [1] submitted Entry 2 as a problem,; solutions by R. L. Young and T.
M. Apostol and several references to the problem’s appearances in the literature
were given.

Entry 3(p.9%4). For0 <x < 1,
3 3
L2, (VT+x+v3)"" +(VT+x - V7))
2 Fy (§,§;5§—1)= 3.1
21 +x
and
1/3 1/3
bl 2.3 VTtV - (VT+x— V) N
i\, X =0 2% . )

Proof. From Entry 35(iii) of Chapter 11 (Part I [2, p. 99]) with x? replaced by
—x,

cos (3 sin™' (i/x))

N 3.3)

2Fi (3% 5 —x) =
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Now,

I

cos (3 sin”} (iv/x)) = cos (-;— iog {vl +x - ¢ft_})
(
\

1 (ViFE-vE) (- vE)
S (VTFEvE) e b (VT - ve)
(3.4)

Using (3.4) in (3.3), we deduce (3.1).

Next, Entry 35(ii) of Chapter 11 (Part II [2, p. 99)), with x? replaced by —x,
states that

3
Fi (3,22 —x) = —sin(Lsin™' (i/X)).
2 (3 302 ) ivx (3 ( \/~))
The remainder of the proof of (3.2) is similar to that for (3.1).
Entry 4 (p. 104). Let x and y be complex numbers such that x/y is not purely
imaginary. Let ¢(2) be an entire function such that
f@) = i sec (3nxz) sech (3myz) (p(xyz) — p(=xy2))

tends to 0 as z tends to 00. Then

1 sec(3mx) sech (37y) {p(xy) — p(—xy)}

" /1[(2_);4—\\\)\
w (=1)"sech (-———)

=x§ @n+ 17 -

(p(@n+ 1)y)—@(—=2n+ Dy)}

(—1)" sech (———”(2" - 1)

. 2y ) ix) — o(— ~
_,y§ PR {9 (2n + Dix) — p( (2n+l)tx()4}..l)

Proof. Observe that f(z) has simple polesatz = (2n+1)/xandz = 2n+1)i/y

faraanh i The poles do not coalesce because x /v is not purely imaginary,
1or &acn Illtvévl 7. 18 pO«CS GO NG CoaiCsCe oeCaust x /y 1S DO purdiy imagiary.

Letting R, denote the residue of f(z) at a pole a, we easily find that

. R £ D ST
Kanylyx = — 2 sccn\ o }W\\l-ﬂ'fl)y} g(—n+ 1)yl

and

—n" T2+ )x
R(2n+l)i/_v = i sech

2y ) {9 ((2n + Dix) — ¢ (~=(2n + Dix)}.
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We thus find that the sum of the principal parts arising from the poles +(2n+1)/x,
n>0,1is

(—=1)"xzsech (”—(E%-—l—)z)
S {0 (@n + 1)y) = o(—=@n + DY)},
\¥24 s — X°Z

+
while the sum of the principal parts arising from the poles +(2n + 1)i/y,n = 0,
equals
2 1
(—1)"yzi sech (”(—"Zj—f-

- 2n + D2 + y222 ) {¢ (@n + Dix) — 9 (=2n + Dix)}.

Cinca Fla\ ¢t
DUV ()

theorem that

Ay,
s

ch {w\
T 2x )
f(z)—xzz RN

o (=1)" sech (M

B D ey 232 )w((2n+1)ix>—¢>(—(2n+1)ix>}.

,—\
:_.
e

X
2

lp(@2n+Dy)—o(-@2n+ )

Letting z = 1, we deduce (4.1) to complete the proof.

Entry 5 (p. 108). Ifx is not an integer and 0 < 8 < 2w, then

00  (anf..0)
w . 1 COSiiv )
T (cot(mrx) cos(6x) + sin(Bx)} = pri 2; Rl (CH))]
Proof. By Entry 34(i) in Chapter 13 (Part I {2, p. 237)), for |8| < =,
7 cos(0x) 1 X (—1)""! cos(nf)
- =42y —— " 5.2
x sin(rx)  x2 + z n? — x? G2

n=|

Replacing @ by 6 — & in (5.2), we readily deduce (5.1) to complete the proof.

. 2 he ,mnnmum \'Ill’llp ofa® ’/ F(_Y_ 4- l) lS equal to

ue oy o

a-1/2 1 (6 ])
ra+r P (1152a3 n 323.2a) '
“very nearly.’
This entry is the same as Example (i) in Section 25 of Chapter 13 in the scc-

ond notebook. However, after proving a slightly weaker version of the result in
Part 11 [2, p. 228), we unfortunately claimed that the appearance of “323.2a” in
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Ramanujan’s expression (6.1) is erroneous. We are very grateful to Richard Brent
for pointing out to us that Ramanujan, indeed, is correct. Moreover, he kindly

provided the proof below.

Proof. We shall prove more precisely that the maximum value equals

a®=\12 1 101 1
- -)). 6.2
Fat+h P (nsza3 aar200s T © (w)) ©2)

as a tends to co. Since

1 101 +0(|_ 1 (1 101+01
11522 4147204 a’) 115243 360a2 at

1

101 1
3 — —
1152a (1 + 3505 + © (84))

1
= 1152a° + 323.2a + 0(1/a)’

this would confirm Ramanujan’s claim.
Let f(a) := logI'(a + %). By Corollary 1 in Section 6 of Chapter 8 in the
second notebook (Part I [1, p. 184]),

1 7 1
1 — — ). 6.3
fla) = 028 + o = Seomt +0(06) (6.3)
Further differentiations of the asymptotic expansion of f’(a) are valid by a general
theorem on the differentiation of asymptotic expansions (F. W. J. Olver (1, p. 21]),

and we have
anG we nave

1 1 1
7 - - 6.4
f (@) T T2 + 0 (a5> (6.4)
and
" l 1
fflay=-—=+0 (a“) 6.5)
Now,
x au—l/Z
S = R(a),
re+D @+ @
where
s\ aél—‘(a+ %) 2L LN
n -, .
T ratite 10:0)

and where (see Part II [2, p. 228)), if the maximum is obtained at x = x(a),

1 3 1
€:=X(a)+%_a—_2z+6403+0(5)' 6.7)
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as a tends to oo.
Using (6.3)—(6.5), we find from (6.6) that, as a tends to co,

log R(a) = ¢loga + f(a) — f(a +¢€)
=eloga —ef'(a) — e’ f"(a) — L€’ f"(a) -

_ € €? N Te +e2+e3)+0(1)
=\ 24 960a°* | 24a° | 6a2
(6.8)
From (6.7),

1 1 I
z P S —— [
€ = Si6as ~ 256047 T © (06)

and

m
|

3 — _ 0/;\
(24a) \a’)"

as a tends to co. Using these expansions and (6.7) in (6.8), we conclude that

log R(a) : o, o( ! )
o = - —=).
B8R = 524 ~ 414720a° a’

which is the required result in (6.2).

Entry 7 (p. 138). Letn > m > 0 and let p be real. Put f;(x) = cosx, sinx, for
J = 1,2, respectively. Then, for j = 1,2,

L 0 enu'fj(px)
= /.oo Trey

C(m)T(n — m) ) oP }
T(n) (kz{ n—m+k Iy

- P p @D
\/Q,I”(n—mwﬂ””(mw)z}

Proof. It is not difficult to identify /; in terms of beta functions. More precisely
(A. P. Prudnikov, Yu. A. Brychkov, and O. 1. Marichev [1, p. 450, eq. 11}),

L= mRC[r(m +ip)F(n —m —ip)) 12

and

1 . R
L = FE"—-)Im {Cn +ip)T(n —m—ip)}. (7.3)
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Now, by Euler’s product formula for I'(z),
C'(m +ip)T(n —m —ip)

- lim NP N N7 mHP N
TN mAipmtipt D mAip+ NY(n—m—ip)-—(n—m—ip+N)

\

N N

N=N! N® ™ Niexp —zZ‘mn"—p _H.zm_,___p p

lim \ k=0 mtk 4= ”_’"+}
N’w\/mz‘f‘l’"'\/(m+N)Z+p2\/(ll—-m)2+p2...\/(n_m+N)2+p2

R -1 P _ a_ P
F(m)F(n—m)cxp(:Z{tan n————m+k tan m————+k)

= . (7.4)

2
P
n‘/ +k)z\/ +(n*m+k)2

Using (7.4) in (7.2) and (7.3), we readily deduce (7.1).

We consider the next resuit as a formai identity.
Entry 8 (p. 158). If

h
f ¢(x)cos(2nx) dx = gl]l(n),
0

then
h 2 o N
f e~ p(x)dx =/ e Y(x)dx.
0 0

Proof. We have

oo 00 h
[ -« v(x)dx = —2,= / e~ dx [ @(u) cos(2xu) du
Jo V7 Jo

J—,/ ) duf e~ cos(2xu) dx
v f v(u)—e-“’du.

upon using a familiar integral evaluation (Gradshteyn and Ryzhik [1, p. 515,

o a 220K na AN This saomnlatas rha nranf
formula 3. 029, BG. 4. 11118 COMP1ICICs uil proai.

The next entry is somewhat obliquely stated by Ramanujan, who used anotation

n €l
seculiar to him (see, e.g. Part Il » 1281
pecusiar WO mim (888, &.8., ralt 2 11, P. 1335,

Entry 9 (p. 184). [fRe 8 > Rea, then

®Tx+a+1) _TFe+D
1) — — 7
fo r(x+p+1)w'( x+B+1)—y¥(x+a+)}dx “TET D
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where Y (x) = I'"(x)/ T (x).

o]
I
-
ot
2

{yx+B+1)—yY(&x+a+1))dx

[ d {F(x+a+l)‘dx_l“(a+l)
- fo dx [Tc+B+1) T+

[‘(x+ﬂ+1)

Entry 10 (p. 194). For each nonnegative integer n,

L1 JaT 4+ 1) & (OF
2‘ . " = —2_'
3F2[ i ] T D) o W

Proof. This result follows in a straightforward manner from Entries 29(b), (c),
(d) of Chapter 10 of Ramanujan’s second notebook (Part I (2, pp. 39-40)).

We are grateful to R. A. Askey for providing the proof of Entry 11 given below.

Entry 11 (p. 206). If0 < Ren < inf(Rea + 1,Re 8 + 1), then

o0 xn—l
[ 2Fi(a, Bya+ B; —x)dx
0

1+x
_T@a@-n+DrB-n+1) i (@) (B)s
h e+ p—n) — (@ + B —n+ )+ Bk!
_Me—nt DI (n) S"—"x (}x)k(n)k» ann
F(a) = (@ + k)@ + PHk!
Proof. Let / denote the integral on the 1_f_ side of (11.1). Using Pfaff’s transfor-
mation (Part II (2, p. 36, Entry 19]), we find that

* 1 1 d d
= n= —1-a . i —— ) dx.
1_/0 1+ 07 R a,a,a+ﬂ,x+])

Making the change of variable t = x/(x + 1), we deduce that
1
1= f "N =T R (e + B ) de

00

1
Z (a)k / tn+k—l(] _ t)—n+udr
(o + B)uk!

=0
_ (01),c Frn+k)F(-=n+a+1)
_g(awnk! Fa+k+1)
_Tr(=n+a+l) i @)u(n)s
(@) Lo (a + k) (o + Buk!’
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which proves the second equality in (11.1).

To prove the first equality in (11.1), we firstestablish a general transformation for
1Fy(a, b, c;d, e; 1). Suppose that Re(d+e—a—b—c) > 0and0 < Rec < Ree.

b £ ¥

Then, by invemng the order of integration and summation, we find that

1
I = [ 7' = x)*77! 3 Fy(a, by d; x) dx

(1]
_ i @ ()i T{c + k)T (e — ©)
T @)k Fle + &)
- T@re-q d e
= r'© 3Fa, b,c;d, e 1). (11.2)

On the other hand, by a fundamental transformation for hypergcometric functions
(W. N. Batiey {1, p. Z]) and by the same argument as given above,

1
J= [ 27N = x)dreeb=-l  F(d —a,d — b: d; x) dx

o
v

_i(d—a)k(d—b)k Fec+k)'d+e—a—b—c)

s (d)ik! Fd+e—a—b+k)
_TF@rd+e—a-b-c) [d—a,d—b,c]
Fd+e—a-b) *ldd+e—a-bl" )3
Combining (11.2) and (11.3), we deduce that
a,b,c Feyrd+e—a—->b-c) d—a,d-b,c
123 A 3P ’ ’ . (114
’ z[de] FNe—c)Fld+e—a—-b) [d.d+e—a~b] (1.4
Nowstia=a,b=n,c=a,d=a + B, ande =& + 1 in (11.4). Then
_Tle-n+1 o n ]
f‘(a+l) e+ B a+l

_l"(n)l"(a—n+1)[‘(a+l)l‘(/3——n+l) F Bat+p—na

T T Te+) TWl@+tf-nt1’ 2[a+ﬂ,a+ﬁ—n+l]

F)Mea—n+ 1B —n+1) F[ a,Bat+p—n ]
Fe+p—n+1) le+Ba+p-n+l1

which establishes the first equality in (11.1).

One might surmise that Entry 11 can be found in integral tables. However, we
are unable to find these evaluations in the tables of Gradshteyn and Ryzhik [1] or
Prudnikov, Brychkov, and Marichev [2], although on page 315 of the latter tables,
some similar evaiuations are given.

Entry 12 (p. 208). Define F™ (x),n = 2™, where m is a nonnegative integer, by
2

Wpy — @ppy — __*
F(x) =x, F (x)_(z—x)2’
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and F@ (x) = F"(F®(x)). Then

n
F ) = 4x . (12.1)

|(1+~/l—x)"+(1—~/1—x)”|l

Proof. It is easily checked that (i2.1) is valid for 0, 1. Proceeding by induc-
tion, we find that
2
(2n) (n)
e = F(axﬁ
a2
(2—x)*
= ; f—_—z_-\ n / !—_——x-’"__\ ny2
x
- 1-— /11— ——
4x%
= F)
I(Z—x+2~/1 X)) +(2-x-21 -x)"l
4x2
= 2n m)2’
{(1 +/T=x)"+(1-+1-x) l
which completes the induction.
Entry 13 (p. 265). If go(x) is any polynomial, then formally
) \1) / 2nm 41\ I
Z(Vzwm L(n e(-——2) (13.1)

Proof. Let
P(x) = Pm(x) ;= x(x — D(x =2)-- - (x —m + 1),

where m is any nonnegative integer. Since {¢m (x)},0 <m < j, form a basis for
the vector space of all polynomials of degree < J, it suffices to prove (13.1) for
@(x) = @n(x). With this choice of ¢(x), the proposed identity becomes

e ( ) S G (L) (132)
L( )" = (- n)m—z_d\ [y o \ 3 /m
First,
n+m %‘ 1J@Ti(_j—m)
Z:( 1) ( —n)y = L_,(_ ) (m+])| m
—(MZ(M“W+Q- (133)
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Second,

S qym @Dn (2 H1Y S y+ om 3 (Dmm + 3
zor (5). o5 |

1
n=0 : m n! (i)n

Comparing (13.3) and (13.4), we see that we have established (13.2), as desired.

1A A

{(i3.9

Observe that the series in Entry 13 do not converge.

Entry 14 (p. 265). Lera, 8 > O withaf = n?. Then
1) —1)"
+2e12n+l -1 } \/_l +Z (2nH } (141)

Proof. Let
e
Ls)=) _(-D"@n+1)",  Res>0.
n=0

It is well known that this Dirichlet L-function can be analytically continued to an
entire function.

We apply Entry 21(iii) of Chapter 14 (Part II [2, p. 277]) in the case n = 0 to
find that

(=Db
f| L(0)+Z (mm_]} ‘/_Zcosh(ﬂn)+ 1B, aap

where @, 8 > 0 and @8 = n2. From the functional equation (H. Davenport {1, p.
)

L(s) = cos(3ms) (%n)sﬂ' I -s)L( —s)

and the value L (1) = n/4, found as (32.7) in Chapter 37, we easily deduce that
L(0) = ;. Thus, (14.2) may be rewritten in the form

=N
fl +Ze(2n+l)a_]= \/_[ e,,,,+e_ﬁn} (143)

But
= 1 ol el
e -Bn — 1) 280
eﬁ" +e—ﬁ" Z z( ]) e
n=| n=1 j=0

o (—1)

o0
(=1’ Le_m+lwn = Z e+ _ 1°
j=0 -

n=|

I
e

1]
=]

J
Using (14.4) in (14.3), we deduce (14.1).

(14.4)

We consider the next result in a formal sense only.
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Entry 15 (p. 265). If

re , PPN
Y(n) = j @(x) cos(nx) dx, {i5.1)
0
then, if r is an even nonnegative integer,
o0
¥ (n) = cos (%nr)f x"p(x) cos(nx) dx (6))
0
and
o ..
Z ¢ (n) = cos (%nr)/ x"y(x)cos(nx) dx. (ii)
0

Ramanujan put no restrictions on r. He also wrote ¥* (1) and ¢" (r) for v (n)
and ¢'"(n), respectively.

Proof. Formally differentiating (15.1) » times, we deduce (i).
By Fourier’s inversion theorem (Titchmarsh (2, pp. 16-17], Part [{1, p. 333)),

E(p(n) = / ¥ (x)cos(nx) dx.
0

Formally differentiating r times, we deduce (ii).

Entry 16 (p. 267). Leta, > O withaf = n/4. Then

o0
@Y (<17 @n + De O = B2 Y (1)@ + D 16D

n=0 n=0

Proof. We apply Poisson’s summation formula for Fourier sine transforms (Titch-
marsh (2, p. 66}, Part 11 [2, p. 236]) to the function x exp (—x?) . Thus, if &, B > 0
and of = n/2, then

2):(-1)"(2n F e~ @t }:(—1)"[ xe ™ sin{(2n + 1)Bx}dx.

n=0 n=0

(16.2)
But (Gradshteyn and Ryzhik (1, p. 529, formula 3.952, no. 1])
b —~(2n 252
f xe ™ sin{(2n + 1)Bx}dx = /T 2n + 1)Be QP74
0
Replace B by 28 and use the evaluation above in (16.2). Thus, for &, 8 > 0 with
ap =n/4,

8

S —{<n g2
oY (1@ + e = @Zo(—n"(zw 1)e- D8’

n=0
Since /& = //(2+/B), we find that the proof of (16.1} is complete.
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Entry 17 (p. 339). If I, denotes the Bessel function of imaginary argument of
order v, then, if n is an integer,

I(2x)—1I_,(2x) =0. 7.1

Raulauu_]an 3 recc-“'"ﬁg of Enuy 171is iﬁCGlTlplCte He writes the difference of

two series on the left side but does not indicate what this difference equals. The
series are Bessel functions of imaginary argument, as we have indicated (Watson
(15, p. 77]), and (17.1) is a well-known, easily proved equality (Watson [15, p.
790).

Entry 18 (p. 350).
R 1 7/ 1 1/ 1 1 1 VN
e—m%%(1+mil+W(l+§|]+91_0+ﬁ})l)'

Most of Ramanujan’s approximations for exp(—ar) arise from modular equa-
tions or class invariants. However, it appears that this approximation to exp(—2rm)
was empirically derived by some method of successive approximations.

Proof. Using Mathematica, we find that

1 1 I 1 1 1
14+ — _ — —_—
540( T 120 1+100(l+ 5[]+90+90-25}>})

= 0.001867442731726....
On the other hand,

2 = 0.001867442731707 . . ..

Thus, Ramanujan’s approximation agrees to 13 decimal places.

We conclude by briefly mentioning two claims made by Ramanujan on page
112 that apparently have no precise meanings.

Entry 19,

o 00 0O
¢(logn) f € (my
"§=| Y/ w(x)dx+"§=0n!¢> (0).

Since Ramanujan does not specify the function ¢ or the constants ¢,, we are
unable to offer a definite interpretation of this formula. Possibly, Ramanujan ap

1ADIC 1O OXICT a ot ciaiion Oof ih Uid. FOSSIoY, samanujan ap-

plicd the Euler-Maclaurin summation formula to the function @(log x)/x on the
interval (1, 0¢). A simple change of variable then gives the integral on the right
side above. The constants ¢, are therefore those that appear in the Euler—Maclaurin
summation formula, and the series on the right side should probably be interpreted
as an asymptotic series.
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Entry 20.
oo k" kn
P i R
—_— — — — [ P
4n+k2=2 G-k n wcot(nn) +

Since the series on the left side diverges and since the meaning of the “dots” on
the right side is not divulged by Ramanujan, we are unable to offer a meaningful
interpretation of this formula. We think that it pertains to material in the first part
of Chapter 7 of the second notebook. In particular, see Part I 1, p. 161].

Location of Entries in the Unorganized
Portions of Ramanujan’s First Notebook

In Part IV [4] we provided the locations in the sccond and third notebooks of all
entries in the 16 organized chapters of the first notebook. A small minority of these
entries cannot be found in the second or third notebooks, and so we provided proofs
for these results in [4). Like the second notebook, the first notebook contains much
unorganized material, in fact, considerably more than in the second notebook.
The unorganized pages also contain a higher proportion of entries not found in
the second notebook than the organized part of the first notebook. In the sequel,
we indicate where proofs can be found for each correct result in the unorganized
portions of the first notebook. Page numbers of the first notebook are given in
boldface at the left margin. We assign numbers, in order, to each formula on each
page. If the result appears in the second or third notebooks, we indicate where in
these notebooks, and where in Parts I-V, it can be located. if an eniry cannot be
found in the second or third notebooks, we inform readers where a proof can be
found in the present volume.

20

1. This is a version of Entry | of Chapter 3 {1, p. 45].

2.,3. These are Corollaries 1 and 2, respectively, in Section 2 of Chapter 3 [1,
p- 46].

26
1. This is contained in Entry 10 of Chapter 3 (1, pp. 57-59].

6
1. Entry 11(i) of Chapter 18 [3, p. 162].
2.,3. The two radical expressions are equivalent to the formulas for G225 and

G 41, respectively, given in the table of class invariants in Section 2 of Chapter
34,

48
1.,2. Entries 24 and 24(i), respectively, of Chapter 14 {2, pp. 291-292).
3. Entry 36, Chapter 13 [2, p. 238).
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50
1.,3. These are equivalent to Entries 36(i) and (ii), respectively, of Chapter 11

M ~ 1001
L&, P- 1VV).

2.,4. Entries 36(iii) and (iv), respectively, of Chapter 11 (2, pp. 100-101].

52
1. Entry 49, Chapter 12 (2, p. 184).
2. Corollary 2, Section 44, Chapter 12 (2, p. 170].

54
1.,2. Entries 2(i), (ii), Chapter 13 (2, p. 188].
3. Entry 3, Chapter 13 (2, p. 188].
4.S. Entry 4, Chapter 13 [2, p. 189).
6. Entry 5, Chapter 13 [2, p. 190].

56
1. Part (i) is the same as Entry 20, Chapter 5 [1, p. 123].
e B + PRSI N | S J - UL IV VL SRV EL N o SN g£61 ___ 1141 14212 PR
£, rart (i) 1I010wSs ITom cnuics 17(1), (i}, Lhnapier o [ 1, pp. 144—143). 1IC WOTH

“multiple” on page 56 should be replaced by “factor.”

58

1. Although this formula is not in the second notebook, it is formula 14 of Table
1 in Ramanujan’s paper [7], [10, p. 141].

2. The value of the Bernoulli number B3; can be found in Ramanujan’s paper
[1), (10, p. 5] and on page 53 of his second notebook [9].

3. This deleted entry is a partial version of formula 15 in Table 1 mentioned
above.

60

1.-3.,5.-9. The values of the Bernoulli numbers B,, n = 22, 24, 26, 28, 30, 32,
34, 36 can be found in Ramanujan’s paper (1], [10, p. 5] and second notebook [9,
p. 531

4. This is formula 12 in Table 1, mentioned in our commentary on page S8.

62

1. This is a trivial statement about the factorization of polynomials.

2.-4. These three formulas are renditions of the same result. The first two contain
uncxplained asterisks and are deleted by Ramanujan. The third version is imprecise
and contains an error term that is not completely specified. See Entry 27(ii) of
Chapter 7 [1, p. 178] for a correct version of these three formulas.

64
1.,2. Entry 11, Chapter 11 (2, p. 54].
3. This geometrical figure can be found in Section 19 of Chapter 18 [3, p. 190].
4.,5. Entries 19(iv), (iii), respectively, of Chapter 18 [3, pp. 184, 181].

66

1. See Section 24 of Chapter 18 [3, p. 211].
2. See Section 19 of Chapter 18 [3, p. 194].
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3. Part of the corollary in Section 3 of Chapter 18 (3, p. 151].
4. Part of Entry 3, Chapter 18 (3, p. 146].
68
1.,2, Corollaries (i), (ii), Section 19 of Chapter 18 3, pp. 185, 190).

70

1. Entry 14, Chapter 4 (1, p. 107]. This is also a special case of Entry 27 of
Chapter 13 [2, p. 230].

2.,3. Both drawings appear to be versions of a figure of Chapter 18 [3, p. 194).
72
1. Entry 29, Chapter S [1, p. 130].
2. Entry 1 of Chapter 39.
3. Entry 6, Chapter 12 (2, p. 111].

74
tries 21(1), (iii), (iv), Chapter 18 (3, pp. 200-201].
78

1. Entry 4(i), Chapter 6 [1, p. 136).

2.,3. Examples 1, 2 in Section 4 of Chapter 6 [1, p. 137).

4. See Section 4 of Chapter 6 [1, p. 137).
80

1.-3. These three singular moduli are given in Theorem 9.9 of Chapter 34.
82

1.-4. Examples 9.4 of Chapter 34.

5.-7. Examples 9.7 of Chapter 34,

8.-10. Theorems 9.6, 9.3, and 9.5, respectively, in Chapter 34.
84

1. Entry 14, Chapter 15 2, p. 332].

86

1. Entry 11(xv), Chapter 20 [3, p- 385).

2.~10. Entries 45, 42, 43, 44, 46, 48, 49, 47, 50, respectively, of Chapter 36.
88

1. Special case of Entry 11, Chapter 6 [1, p. 143).

23 Two elementary abelian theorems for power series with no hypotheses.
See Titchmarsh’s treatise [1, pp. 229-231) for general abelian theorems.

4.,5. Entries 52 and 51, respectively, of Chapter 36.
9

1. Entry 5(xii), Chapter 19 3, p. 231).

2. Entry 13(xiv), Chapter 19 [3, p. 282).

3. Entry 19(ix), Chapter 19 [3, p. 315).

4.-7. Entry 41, Chapter 36.
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92
1. Entry 5(xiii), Chapter 19 [3, p. 231].
2. Entry 13(xv), Chapter 19 [3, p. 282].
3. Entry 19(x), Chapter 19 (3, p. 315].

9%

1.,2. See Entry 2 of Chapter 39 for comments on these deleted formulas.

3. This is a special case of Entry 35(iii), Chapter 11 [2, p. 99).

4.,6. See Entry 3 of Chapter 39.

5. This is a special instance of Entry 35(ii), Chapter 11 {2, p. 99].

At the bottom of the page, Ramanujan apparently indicates that he has found the
generalizations given in Entries 35(i)-(iii) of Chapter 11 of his second notebook
(Part I1 [2, p. 99)).

96
1. Theorem 2.12 of Chapter 33.
2.-5. These are contained in Theorem 8.7 of Chapter 33.
6. All of Section 12 of Chapter 33 is devoted to an examination of this claim.
7.-9. See Theorem 8.1 of Chapter 33,

98
1.,2. Entries 9(iv), (iii), respectively, of Chapter 19 [3, p. 258].

100
1. Entry 35, Chapter 9 [1, p. 294].
2. Entry 11(iii), Chapter 13 (2, p. 217].
3. Entry 22(ii), Chapter 14 [2, p. 278).
4. Corollary, Section 22, Chapter 14 [2, p. 279).

102

1. Entry 18, Chapter 14 [2, pp. 267-268].

2. Ramanugjan, in essence, states a general formula for the multiplication of two
Laurent series.

3. Special case of Corollary 1, Section 18, Chapter 14 [2, p. 268].

104
1. Entry 19(iv), Chapter 14 {2, p. 273].
2. See Entry 4 of Chapter 39.

106

1. Eniry 20(), Chapier 14 {2, p. 274j.

2. Entry 19(i), Chapter 14 [2, p. 271].

3. Corollary, Section 20, Chapter 14 [2, p. 274).

4. Eniry 20(iv), Chapter 14 {2, p. 275].

5. Corollary of Entry 20(iv), Chapter 14 [2, p. 275].

6. Special case of Entries 29(i), (ii), Chapter 13 [2, p. 231].
8

1.

10
Entry 35, Chapter 12 (2, pp. 156-157].
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2. See Entry 5 of Chapter 39.
3. Entry 34(ii), Chapter 13 [2, p- 237).

110
1. Entry 40, Chapter 12 [2, p. 163).

_—
-t

-
bt
W~ w-—u

2. Entries 19 and 20, respectively, in Chapter 39,
5. Entry 14, Corollaries 1, 2, Chapter 7 [1, pp. 166-168).

*y

- Entry 6, Chapter 13 [2, p. 193].
ntry 10, Chapter 13 (2, p. 207].

.En
- A more precise version of this entry can be found in Entry 9 of Chapter 11
2, p. 5il. )

118
1. The entry is deleted and is a forerunner of Entry 7 of Chapter 13 (2, p. 195).

120
1. The first statement

a* 1 xd
T+ ./z—ne""(f; ")
is incorrect.

2. The second claim is a version of Example (i), Section 25, Chapter 13 2, o

228]. See also Entry 6 of Chapter 39 for a correction to our claim made muPla.;t 71
[2).
122

1. Entry 26(ii), Chapter 13 (2, p. 229].

2.,3. Entries 17(iii), (iv), respectively, in Chapter 18 [3, p. 176).
124

1.,2. Entries 11 and 12, respectively, in Chapter 16 [3, pp. 21, 24).
126

1. Entry 31, Chapter 10 [2, p. 41).

2. Entry 7, Chapter 16 [3, p. 16).
128

1. Eniry 8, Chapier 16 (3, p. 17].

2. Entry 4, Chapter 16 [3, p. 14].
130

1. Version of the corollary in Section 36 of Chapter 13 (2, p. 239).
2. Entry 5, Chapter 16 [3, p. 14).
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132
1. Entry 6(vi), Chapter 9 1, p. 247).
2. Entry 6, Chapter 16 (3, p. 15].
3. Entry 8, Chapter 13 [2, p. 202].
4. Corollary of Entry 48, Chapter 12 [2, p. 181].

24

N

1. Entry 9, Chapter 16 (3, p. 18].

2. Entry 15, Chapter 16 3, p. 30].

3. This entry is very vague. It is possibly a less specific version of Entry 16,
Chapter 16 [3, p. 31].

136
1. Corollary (i) in Section 9, Chapter 16 [3, p. 18].
2. Entry 17, Chapter 16 3, p. 32].

138
1. Entry 21, Chapter 13 {2,

£1, 0

2. See Entry 7 of Chapter 3

140
1.,2. Both entries are versions of Entry 21 of Chapter 13 [2, p. 224).

1
1

224),

P
9 for a proof.

142
1. Version of Entry 17, Chapter 13 [2, pp. 220-221].
2. Deleted by Ramanujan.
3. Entry 20, Chapter 13 2, p. 224).
4.,5. Entry 16 (Second Part) (iii), (i), respectively, of Chapter 18 [3, p. 174].

-
3
TN

e

1. Deleted by Ramanujan.

2.,3. Entries 17(ii), (i), Chapter 18 [3, p. 176).

4.,5. Entry 16 (Second Part) (iv), (ii), respectively, of Chapter 18 [3, p. 174}.
146

1. Entry 24, Chapter 12 (2, p. 139).

2.,3. Entries 45(i), (ii), Chapter 12 [2, p. 171).
4. Entry 16, Chapter 16 [3, p. 31].

5. Entry 7(vii), Chapter 17 (3, p. 106].

. Entry 6(viii), Chapter 9 (1, p. 247).
~11. Entry 14, Chapter 18 [3, pp. 168-169].
2. Entry 18(iv), Chapter 18 [3, p. 179).

[ol QA N WS | - 4 a8 2

148
1
2
1

150
1. Corollary, Section 12, Chapter 18 (3, p. 164).
2. Special case of Entry 14, Chapter 12 [2, p. 121).
3. Corollary, Section 34, Chapter 12 [2, p. 156].
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152
,2. En
.E
E

1. 47, Chapter 12 (2, p. 179).
3 (i)

~ A\t

4,

5.

try
niry 13(i), Chapter 18 {3, p. 165].
ntry 22(iii), Chapter 18 [3, p. 207).
Deleted by Ramanujan.
154
1. Example (iv), Section 2, Chapter 15 [2, p. 305).
2. Entry 9, Chapter 13 (2, p- 205).
3. Entry 48, Chapter 12 [2, p. 181).
4. Entry 7, Chapter 13 (2, pp. 195-196].

156

1. Entry 12(ii), Chapter 18 [3, p. 163].

2. Entry 22(ii), Chapter 18 [3, p. 207).

3.,4. Entries 13(ii), (iii), Chapter 18 (3, p. 165).
158

1. Entry 39(i), Chapter 16 [3, p. 83].

2. Entry 38(iv), Chapter 16 [3, p. 80].

3. Entry 11(iii), Chapter 19 [3, pp. 265-266).

4. See Entry 8 of Chapter 39,

160
1. See Part 11 2, p. 147] for comments.
2. Corollary, Section 15, Chapter 16 (3, p. 30].
3. Entry 3, Chapter 16 [3, p. 14].
4.,5. Entries 38(i), (ii), Chapter 16 3, p. 77].

162

1. Entry 7(iii), Chapter 17 3, p. 105).
2. Corollary 3.4 of Chapter 33.

3. Theorem 9.9 of Chapter 33.

4. Theorem 11.6 of Chapter 33.

5. Theorem 9.10 of Chapter 33,

6. Corollary 3.5 of Chapter 33.

7. Theorem 4.4 of Chapter 33.

8. Theorem 4.5 of Chapter 33.

164
1.-3. See Section 21, Chapter 13 [2, p. 225].
4. Entry 13, Chapter 16 [3, p. 27].
5. See Section 13, Chapter 16 3, p. 28]

166
1.,2. Entries 31(i), (ii), Chapter 13 [2, pp. 233-234).

168
1. Entry 23, Chapter 12 [2, pp. 137-138].
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2. Entry 7(viii), parts (a), (c), and (d), Chapter 17 [3, p. 107).
170

7(it), Chapter 17 3, p. 105].
ntry 7(ix), Chapter 17 (3, p. 108).
ntry 7(x), Chapter 17 (3, p. 110).

. BNty u.u), \,lldplcr i8 [3 pP- loaj.
5. Entry 22(i), Chapter 18 3, p. 206].

6. Entry 7(i), Chapter 17 [3, p. 104].

172
1. Entry 7(xii), Chapter 17 [3, p. 112].
2.,3. See Entries 79 and 80, respectively, of Chapter 36.
4. Entry 7(xiii), Chapter 17 3, p. 113].
5. Entry 7(iv), Chapter 17 [3, p. 105].

174

»
]

LN -
1mm§p
=
*<

176
1.,2. Deleted by Ramanujan.
3. Entry 7(vi), Chapter 17 [3, p. 106].
4. See Entry 1 of Chapter 36.

178
1. Entry 14, Chapter 13 [2, p. 219].
2. Quarterly Reports 1, p. 331].
3. Special case of Entry 32(i), Chapter 13 [2, p. 235).

4. Entry 16, Chapter 15 (2, p. 338].

180
1. Entry 15, Chapter 13 [2, p.220).
2. Entry 22(i), Chapter 13 (2, p. 225].
3. Entry 13, Chapter 13 (2, p. 219).
4. Corollary of Entry 13, Chapter 13 [2, p. 219).
5. Corollary of Entry 21, Chapter 13 (2, p. 224).

182
1. Quarterly Reports (1, p. 298].
2. Entry 23, Chapter 13 (2, p. 226).
3. Entry 14, Chapter 16 [3, p. 29].
4. Entry 22(ii), Chapter 13 [2, p. 225).

184
1. See Entry 9 of Chapter 39.
2. Sec Part 11 {2, eq. (17.3), p. 265].

3.-5. Examples (i), (ii), (iii), Section 30, Chapter 13 (2, p. 233].
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186
1.,2. Entries 36(i), (ii), Chapter 16 [3, pp. 65-66].

188
1. Entry 34, Chapter 12 [2, p. 156].
2. Entry 39, Chapter 12 [2, p. 159).
3.,4. Entry 38, Chapter 12 [2 p. 158].

190
1. Entry 20, Chapter 10 (2, pp. 36-37).
2. Part of second part of Entry 35, Chapter 12 [2, pp. 156-157).
3. Entry 27, Chapter 12 [2, p. 146).

192
L. First part of Entry 35, Chapter 12 (2, pp. 156-157).
2.,3. Entries 36 and 37, Chapter 12 (2, p. 158).

194
1. See Entry 10 of Chapter 39.
2. Entry 29(c), Chapter 10 [2, p. 40].
3. Entry 32, Chapter 10 (2, p. 41].

196
1. Entry 8, Chapter 11 {2, p. 51).
2. Entry 22, Chapter 11 [2, pp. 64-65).
3. Corollary, Section 22, Chapter 11 [2, p. 68).
4. Example, Section 17, Chapter 12 (2, p. 131).

198

For the meaning of the geometrical figure, see Section 7 of Chapter 19 [3, PP-
244-245).

1. Entry 22, Chapter 12 {2, p. 136].

200

For the significance of the geometrical figure, see Section 7 of Chapter 19 (3,
p. 243).

1. Entry 17, Chapter 12 [2, pp. 124-125).

2.3. Corollaries (i), (ii), Section 17, Chapter 12 [2, pp. 130-131].

e ‘) " "'\I‘I
sence, Euuy 1.8, Chapu:l 10 14, 401]).

s p.
.—6. See Section 24 of Chapter ] (2, pp. 226-227).
ntry 20(iii), Chapter 18 [3, p. 197].

204
1. Entry 21, Chapter 11 (2, p. 64].
2. See Theorem 7.3 of Chapter 33.

206
1.,2. See Entry 11 of Chapter 39.
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3. Example 2, Section 12, Chapter 11 [2, p. 58].

208
Except for one example, which we establish in Entry 12 of Chapter 39, all results

on this page are found in Section 15 of Chapter 15 (2, pp. 335-337].

(3]

10
1. The first five lines on the page continue material from page 208 and can be
found in Section 15 of Chapter 15.
2. Theorem 11.5 of Chapter 33.
3.,4. Theorems 4.2 and 4.3 of Chapter 33.
5.,6. Theorems 9.5 and 9.6 of Chapter 33.

212
1.,2. Entries 23(i), (ii), Chapter 18 (3, p. 208].
3. See Example (iii) in Section 17 of Chapter 9 [2, p. 266).
4, See Theorem 6.4 of Chapter 33.

214
1. This is a definition.
2.,3.,5. These are, respectively, Theorems 10.1, 10.3, and 10.2 of Chapter 33.
4. Theorem 9.11 of Chapter 33
6.,7. Part of Theorem 9.2 of Chapter 34.
8. Corollary 2.4 of Chapter 33.
9. Theorem 10.4 of Chapter 33.

216
1. Theorem 11.4 of Chapter 33.
2. Theorem 11.1 of Chapter 3.

3. Theorem 5.6 of Chapter 33.

218
1. Theorem 6.1 of Chapter 33,
2.-6. Theorem 7.1 of Chapter 33.
7.,8. Theorems 7.6 and 7.8 of Chapter 33.
9. Deleted by Ramanujan.

220
1. This follows from (2.6) and Theorem 2.10 in Chapter 33.
2. This is an incorrect version of part of Entry 3(i) of Chapter 21 [3, p. 460].

3. This is a misstatement of the first part of Entry 5(i) of Chapter 21 (3, p. 467].

4.,5. Theorem 2.13 of Chapter 33.

-n
74

-t

—4. Entries 8(i)—(iv), Chapter 19 [3, p. 249].
5. See Entry 14 of Chapter 36.

224
1.-3. Corollary, Section 37, Chapter 16 [3, p. 74].

Location of Entries in the Unorganized Portions of Ramanujan’s First Notcbook 589

4.,5. Entries 4(i), (ii) Chapter 19 [3, p. 226).

226
1.,3. Deleted by Ramanujan.
2. Part of Entry 34(jii), Chapter 11 (2, p. 97).
1]

4. Entry 7(xi), Chapter 17 [3, p. 111]

228

1. This result is essentially equivalent to the example in Section 37 of Chapter
16 and can be found explicitly in (37.7) on page 76 of Part III [3].

2. Entry 37(iii), Chapter 16 [3, p- 731.

3. This result follows from Entries 37(9), (ii), Chapter 16 3, p. 73).

4. Entry 32(v), Chapter 11 [2, p- 93].

230
1.-3. Entries 3(iii), (iv), (i), Chapter 19 [3, p. 223).
4.,8. Entries 17(i), (ii), Chapter 19 3, p. 302].
5. Entry 9(i), Chapter 20 (3, p. 377).
6. See Entry 2 of Chapter 36.
7. Entry 29 of Chapter 36.

232

1. An incomplete version of Entry 28, Chapter 11 [2, p. 83].
2. Deleted by Ramanujan.

234
1. A deleted version of Entry 30, Chapter 11 [2, p. 87).
2. See the table in Section 2 of Chapter 34.

236
1. Corollary, Section 28, Chapter 11 [2, p- 85).
2. Special case of Entry 30, Chapter 11 [2, p. 87).

3. Entry 31(ii), Chapter 11 (2, p. 88].

238
1. Entry 30, Chapter 11 [2, p- 87].
2. Entry 14, Chapter 11 (2, p. 59).

240

1. Part of Corollary (ii), Section 31, Chapter 16 [3, p. 49).

2. Trivial algebraic identity.

3. Example (i), Section 31, Chapter 16 [3, p. 50).

4..5. Corollary, Section 28, Chapter 16 [3. p. 44).

6. With the use of Entry 22(ii) and (22.4) in Chapter 16, it can easily be shown
that this entry is equivalent to Example (v), Section 31, Chapter 16 3, p. 51).

242
1. See Theorem 9.3 of Chapter 33.
2. Entry 9(v), Chapter 19 (3, p. 258].
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3. Entry 31, Chapter 16 {3, p. 48].
4. Corollary, Section 30, Chapter 16 [3, p. 47].

244

1. This result is easily seen to be equivalent to the first part of Example (iv)
in Section 31 of Chapter 16, although Ramanujan, in the numerator, neglected to
write the factors (x7; x)o0 (x%; x%)0o (x%; x8) o [3, p. 51].

2. Anincomplete version of the second part of Example (iv), Section 31, Chapter
16 [3, p. 51].

3. See Entry 81 of Chapter 36.

4. This is equivalent to the example in Section 9 of Chapter 17 [3, p. 122).

5. See Entry 82 of Chapter 36.

6.,7. Example (ii), Section 31, Chapter 16 [3, p. 50].

246
1.,2. See Entry 22 of Chapter 36.
3.~11. Entry 10, Chapter 17 (3, p. 122].
12.-17. Entries 11(i), (iii), (iv), (v), (vi), (viii), Chapter 17 [3, p. 123].

248
1. Example (i), Section 6, Chapter 17 [3, p. 103].
3. Example (iii), Section 6, Chapter 17 [3, p. 104].
1.-16. See Entry 1 of Chapter 35.

250
1.-9. Sec Entry 2 of Chapter 35.
10. Entry 27, Chapter 11 (2, p. 80].
11. Deleted by Ramanujan.,

252
1. Entry 7, Chapter 15 [2, p. 313].
2. Special case of Theorem 6.1 of Chapter 15 [2, p. 310].

254
1.,2. See Entries 3 and 4 of Chapter 36.
3.-5. Entries 13(ii)—(iv), Chapter 15 [2, p. 330].

256
1.-3. Entries 12(ji)—(iv), Chapter 15 [2, p. 326].
4. Entry 13(i), Chapter 15 [2, p. 330].

258
1.—4. Entries 12(v)—(viii), Chapter 15 [2, p. 326).

260
1.,2. Entries 35(it), (i), Chapter 16 [3, p. 63, 61].
3. Entry 33(i), Chapter 16 [3, p. 52].

262
1. Entry 34(i), Chapter 16 [3, p. 54).
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2. Entry 33(ii), Chapter 16 [3, p. 53).
3. Corollary (i), Section 34, Chapter 16 [3, pp. 57-58).

4. Corollary (ii), Section 34, Chapter 16 (3, pp. 59-60].

264
1.-3. Entries 32(i)-(iii), Chapter 16 3, pp. 51-52).
4. Entry 12(ix), Chapter 15 (2, p. 326].
5.,6. See Entries 38 and 39 of Chapter 36.

265

We use the numbering given by Ramanujan,

1. Entry 31, Chapter 12 {2, p. 150].

2. See Entry 13 of Chapter 39,

3.,4. Entries 8(i), ii), Chapter 17 3, p. 114].

5. See Entry 14 of Chapter 39,

6. Entry 12(i), Chapter 4; Quarterly Reports [1, pp. 107, 321].

7(i). Special case of the preceding entry.

7(ii). Entry 12(ii), Chapter 4 [1, p. 107}; special case of the corollary of Entry
21 of Chapter 13 [2, p. 224].

8. See Entry 15 of Chapter 39.

266
1.-4. Entries 8(ix), (xi), (xii), (x), Chapter 17 [3, pp. 114-115].
5. See Entry 31 of Chapter 36.
6. Special case of Entry 18(i), Chapter 13 [2, p. 221).
7. We have found no meaningful interpretation of this equality.
8. See Entry 5 of Chapter 36.
9. Entry 9, Chapter 19 [3, p. 257).

267
The numbering is continued from page 265.
9.,10. Eniries 8(iii), (iv), Chapter 17 3, p. 114].
11. See Entry 32 of Chapter 36.
12. Entry 24(ii), Chapter 16 [3, p. 39).
13. See Entry 16 of Chapter 39.
14. Special case of Entry 31(j), Chapter 13 (2, p. 233].
15.-17. Entries 16(i)-(iii), Chapter 13 (2, p. 220].
18. Special case of Theorem 11 in Ramanu jan’s Quarterly Reports [1, p. 313).

2£0
LU0

1. Entry 9(i), Chapter 17 (3, p. 120].
2. This is an incorrect version of Entry 9(iv) in Chapter 17 (3, p. 120].
3.,4. Entries 13(iii), (iv), Chapter 17 [3, p. 127).
5. Principle of duplication, Chapter 17 (3, p. 125].
269
1.,2. Entries 13(i), (ii), Chapter 17 [3, p. 126].
3.-6. Entries 14(i)-(iv), Chapter 17 [3, pp. 129-130).
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7. Entry 13(viii), Chapter 17 [3, p. 127].

270
1.-5. Entries 17(i}-(v), Chapter 17 [3, p. 138]
6. Entry 11, Chapter 14 {2, p. 258)

271

1.-4. Entries 17(vi)—(ix), Chapter 17 3, p. 138].
5. See Entry 40 of Chapter 36.
6. See Entry 83 of Chapter 36.

272
1.-4. Entries 14(v)—(viii), Chapter 17 [3, p. 130].
5.-8. Entries 15(i)—(iv), Chapter 17 3, p. 132].
273
1.-4.,8.,9. Entrics 13(viii), (x), (xi), (ix), (v), (vi), Chapter 17 [3, p. 127].
5.-7. Entries 14(ix)-(xi), Chapter 17 [3, p. 130}.

274
L. Entry 21(iii), Chapter 14 [2, p. 277].
2. Eniry 344ii), Chapter 16 (3, p. 56].
3. See Entry 33 of Chapter 36.

278
1. Entry 33(iii), Chapter 16 3, p. 53].
2.-6. Entries 16(i)—(v), Chapter 17 [3, p. 134].

276
1. Entry 14, Chapter 14 [2, p. 262).
2. Corollary, Section 12, Chapter 14 (2, p. 260).
3. Entry 12, Chapter 14 {2, p. 260).

77

/

1.,2. Entry 15, Chapter 14 [2, p. 262].
3. Entry 16(vii), Chapter 17 (3, p. 134].
4. Entry 12(iii), Chapter 17 [3, p. 124].
5. Entry 9(iv), Chapter 17 (3, p. 120].

278
1.-4. Entries 15(ix)—(xii), Chapter 17 [3, pp. 132-133).
5.-7. Entries 8(viii), (vi), (vii), Chapter 17 [3, p. 114).

279
1. Entry 11, Chapter 15 [2, p. 323).

2, Entry 21(ii), Chapter 14 (2, p. 276].
280

1. Entry 6, Chapter 18 (3, p. 153].
2.,3. See Entries 77 and 78 of Chapter 36.

-
&
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4. Entry 7, Chapter 18 (3, pp. 154-155].

281

1. Example, Section 7, Chapter 18 [3, p. 156).

2. See Entry 76 of Chapter 36.

3. This is a formal application of the “change of sign” process.

4. The principal of “change of sign,” as described in Section 13 of Chapter 17
(3, p. 126).

282

1. Entry 8(i), Chapter 17 [3, p. 114].

2.,3. Entries 4(iii), (iv), Chapter 19 [3, pp. 226-227).

4. This is equivalent to the second part of Entry 5(iii) of Chapter 19 [3, p. 230].
In particular, see the first equality in the proof of (iii) [3, p. 232).

5. This is equivalent to the first part of Entry 5(i) of Chapter 19 (3, p. 230]. In
particular, see the equality at the top of page 232 [3], where ¢ (—¢®) should be
replaced by ¢(—g°).

6. This is equivalent to the formula for G in the table in Section 2 of Chapter
34,

7.-9. Entries 5(i), (iv), Chapter 19 |3, p. 230].

10. Sec Entry 6 of Chapter 36.

283

1.,2. See Entry 7 of Chapter 36.

3. This is equivalent to Entry 5(vi) of Chapter 19 3, p. 230), with « replaced
by 1 — B and B replaced by 1 — a.

4. In essence, this is contained in Entry 5(vi) of Chapter 19 (3, p. 230]; in
particular, see (5.4) on page 233 [3].

5.,6. See Entries 8, 9 of Chapter 36.

284
1. Equivalent to the formula for Gy in the table in Section 2 of Chapter 34.
2. See Entry 4 of Chapter 35.
3. Deleted by Ramanujan.
4.-6. See Entries 34-36 of Chapter 36.
7. See Entry 15 of Chapter 36.
8. Second part of Entry 5(i), Chapter 19 3, p. 230].

285

1. Corollary, Section 23, Chapter 18 [3, p. 209).

2.,4. Examples, Section 23, Chapter 18 (3, pp. 209-210].

3. Ramanujan gives the value 1/¢*(e~") = 0.71777. which is correct and can
be verified using the evaluation of p(e~") given in Example (i) of Section 6 in
Chapter 17 (3, p. 103].

5. See Entry 37 of Chapter 36.

6. See Entry 16 of Chapter 36.

7. Entry 13(iii), Chapter 19 [3, p. 280].
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286
L. Entry 13(ii), Chapter 19 [3, p. 280).
2. See Entry 27 of Chapter 36.
3. See Entry 17 of Chapter 36.

287

1. Multiply the two equalities of Entry 5(iii), Chapter 19 3, p. 230].

2. Multiply the two equalities of Entry 13(iv), Chapter 19 (3, p. 281].

3.-35. Equivalent to formulas for Gy, G1s, and G's given in the table in Section
2 of Chapter 34.

6. The value of a7 is found in Theorem 9.9 of Chapter 34.

7. Entry 14(v), Chapter 19 [3, p. 289).

8. Entry 5 of Chapter 35.

Eotem: 1A\ hvnsa 10T . AOM
9. Entry 14(iv), Chapier 1Y 9, p. 289].

o PRpags I T arsaeia o
1.—4. Deleted by Ramanujari.

5. See Theorem 9.2 in Chapter 34.

289

1. We have not been able to discern the meaning of this entry.

2. Deleted by Ramanujan.

3. Equivalent to the formula for G s in the table in Section 2 of Chapter 34.

4.,5. See Theorem 9.2 of Chapter 34,

6. Definition of a modular equation of degree 7.

7. Entry 19(i), Chapter 19 (3, p. 314].

8. Entry 5(ii), Chapter 19 [3, p. 230).

9. This modular equation of degree 1 is trivial since &« = B.

10. Ramanujan evidently intended to write a modular equation here, but there
is no equality sign. Furthermore, the degree is not given. The proposed modular
equation has the unusual feature that, in the first term, & and 8 appear with no
radical signs about them.

290

1. Part of Entry 5(viii), Chapter 19 (3, p. 231].

2. Part of Entry 5(v), Chapter 19 [3, p. 230].

3. Entry 19(i1), Chapter 19 [3, p. 314].

4. Entry 13(v), Chapter 19 [3, p. 281].

5.,7. See Entry 10 of Chapter 36.

6. This modular equation of degree 7 follows from Entry 19(iii) of Chapter 19
(3, p- 314] by dividing the first part of Entry 19(iii) by the second part of the same
theorem.

8. This modular equation of degree 7 follows from Entry 19(ii) of Chapter 19
(3, p. 314] by dividing the first part of Entry 19(ii) by the second part of the same
theorem.
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291
1. This modular equation of degree 3 follows from Entry 5(v) of Chapter 19

(3, p- 230} by dividing the first part of Entry 5(v) by the second part of the same
theorem.
2. Entry 7(i), Chapter 20 [3, p. 363].
3. Entry 15(i), Chapter 20 (3, p. 411).
4. Entry 13(i), Chapter 19 [3, P. 280).
5. Part of Entry 5(vii), Chapter 19 [3, p. 230].
6. Part of Entry 13(xii), Chapter 19 [3, p. 281].
7. Entry 3(x), Chapter 20 |3, p. 352).
8. Entry 15(i), Chapter 19 [3, p- 291].
9. Entry 8(iii), Chapter 20 [3, p. 376).
10. Part of Entry 19(v), Chapter 19 (3, p.
11. Entry 11(vi), Chapter 20 (3, p. 384].

292
1. Entry 5(viti), Chapter 19 [3, p. 231].
2. Part of Entry 13(vii), Chapter 19 (3, p. 281].
3. Entry 22(i), Chapter 20 [3, p. 439).
4. Equivalent to a formula for G, given in the table in Section 2 of Chapter 34.
5. Theorem 9.14 of Chapter 34.
6. Entry 3(i), Chapter 20 (3, p. 352].
7. Part of Entry 5(ix), Chapter 19 [3, p. 231].
8. Part of Entry 13(x), Chapter 19 [3, p. 281).
9. Entry 5(xiv), Chapter 19 (3, p. 231).
10. Entry 14(i), Chapter 19 3, p. 288).
11. This entry,

114
Si5y.

sin(2u) = 4sin(%v) cos(2v) + 3 sinz(%v).

is ciitl;Sc:.it to read. Although not apparent, by using elementary trigonometry, it
can be shown that this modular equation of degree 7 is equivalent to E 1 Xi
of Chapter 19 (3, p. 315]. . o120

293
1.-3. Equivalent, respecti iven i
e ;:gction o Chﬁg:i{, to formulas for G;,, G4, and G215 given in the
t_t. Em o{ Entry 11(ii), Chapter 20 [3, p. 383].
>. Entry 2(1), Chapter 20 [3, p. 249).
6.-10. Entries 3(iv), (vi), (v), (), (iii), Chapter 20 (3, p. 353).
294
1.,3. Entries 2(it), (iii), Chapter 20 (3, p. 349).
2.,4. Entries 9(v), (vi), Chapter 20 (3, p. 3771.
5.,6. Equivalent to Entry 9(vii), Chapter 20 (3, p. 377).

7. Equivale‘m to the formula for G g9 in the table in Section 2 of Chapter 34;
for more details, see Watson’s paper (7, p. 195) ,
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8. Equivalent to the formula for G 7, in the table of Chapter 34; for more details,
see Watson’s paper [7, p. 190).

9. This entry is difficult to read and is evidently incomplete. We offer some
comments on it at the end of Section 8 of Chapter 34.

295

1.-3. See Entries 18, 19, and 11, respectively, of Chapter 36.

4. Deleted by Ramanujan.

5.-8. Equivalent, respectively, to formulas for G4s, G11, G23, and G in the
table in Section 2 of Chapter 34.

296
1. Equivalent to the formula for G3; in the table of Chapter 34.
2. Entry 12(3i1), Chapter 20 (3, p. 397].
3. Equivalent to the formula for G5 in the table of Chapter 34,
4. Deleted by Ramanujan.
5.,6. Entries 28 and 26, respectively, of Chapter 36.
7. Deleted by Ramanujan,

297
1.-4. See Entries 12, 20, 13, and 25, respectively, of Chapter 36.
5. See Entry 7 of Chapter 35.
6. Entry 9(iii), Chapter 20 [3, p. 377).
7.-11. Entries 11(i)}—(v), Chapter 20 [3, pp. 383-384).
12. Part of Entry 19(iv), Chapter 19 [3, p. 314].

298

1. Entry 18(i), Chapter 20 [3, p. 423).

2. This is equivalent to Entry 12(jii) of Chapter 20 [3, p. 397]; the right-hand
side, K, in the formulation given on page 298 is /m, in the customary notation

for the multiplier m.

Antor 2L
3 SW Euuy 19 UfCllﬂP:Ul IV

4. Entry 13(viii) of Chapter 19 [3, p. 281].
5. See Entry 30 of Chapter 36.
6. Part of Entry 19(vii), Chapter 19 (3, p. 314).

299
Entry 18(ii), Chapter 20 3, p. 423).
ntry 4(iv), Chapter 20 (3, p. 359]

,,,,,, A‘I

4. Entries 17(1), (ii), Chapter 203, p. 41
~7. Entries 19(i), (iii), (i1), Chapter 20 [3, p 426].
9. Entries 17(iii), (iv), Chapter 20 [3, p. 417]).

2]

Part of Entry 5(ix), Chapter 19 (3, p. 231}.
Part of Entry 13(x), Chapter 19 [3, p. 281).
,4. Part of Entry 5(x), Chapter 19 3, p. 231).

1.
2.
3.
5.
8.
300
1.
2.
3.
5.,6.,10. Entry 24(ii), Chapter 18 (3, p. 214].
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7..8.,11. Entry 24(iii), Chapter 18 [3, pp. 214-215].
9.,12. See Entries 23 and 24 of Chapter 36.

131 S. See, respectively. Theorems 7 ’) 7.7.and 7.5

BT, IUSPRLLIVRL Y, 2 BSOS s €Ak

301
1.-6. See Theorems 10.5-10.10, respectively, of Chapter 33.
7. Theorem 9.4 of Chapter 33.
8. Theorem 9.15 of Chapter 33.
9. This is an incorrect version of Entry 3(iii), Chapter 21 (3, p. 460).
10. This is an incorrect version of Entry 5(iii), Chapter 21 (3, p. 468].

302

1. Entry 19(i), Chapter 19 (3, p. 314].

2. Entry 15(i), Chapter 20 (3, p. 411].

3.,4. Deleted by Ramanujan.

5.-9.,12-14. Sec Entries 56, 53, 54, 55, 57, 58, 60, and 59, respectively, in
Chapter 36.

10. Entry 5(ii) of Chapter 19 (3, p. 230].

1. Another version of Entry 7(i) of Chapter 20 [3, p. 363).

303
A discussion of the material on this page is given in the last part of Section 7
of Chapter 36.

304

1. The top left comer of the page in the original notebook has been tom away,
and so the degree of the first modular equation is unknown. However, the form of
the equation is exactly that of the modular equation of degree 23 in Entry 15(i) of
Nhacean IN 2 0 A1
AIapEr v 13, P. 451 .

2.-6. Entries 62, 63, 64, 65, and 61, respectively, of Chapter 36.

305

L. Incomplete version of Entry 4(ii) of Chapter 21 (3, p. 464), and is deleted by
Ramanujan.

2.-5.,7. Equivalent to formulas for G37, G37, G39, Gz, and Gy, respectively,
in the table in Section 2 of Chapter 34.

6. Deleted by Ramanujan.

306
1.-3. Deleted by Ramanujan.
4. Part of Entry 19(vi), Chapter 19 (3, p. 314].
5. Entry 7(iv), Chapter 20 [3, p. 363).
6. Part of Entry 5(xi), Chapter 19 [3, p. 231].
7. Part of Entry 13(xiii), Chapter 19 (3, p. 282).
8. Entry 19(viii), Chapter 19 (3, p. 315).
9. Entry 7(ii), Chapter 20 {3, p. 363].
10. Entry 19(xi), Chapter 19 [3, p. 315].
11. Part of Entry 19(i), Chapter 19 [3, p. 314).
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307
1.-3. Entries 11(ix), (viii), (xiv), Chapter 20 {3, pp. 384-385}.
4. Entry 15(v), Chapter 19 (3, p. 291].
5.,6. Entry 19(iv), Chapter 20 [3, p. 426).
7.,8. Entries 3(xii), (xiii), Chapter 20 (3, pp. 352-353).
30
-2. Entries 13(i), (ii), Chapter 20 [3, p. 401].
. Entry 5(i1), Chapter 20 (3, p. 360).
. Deleted by Ramanujan,
. Entry 15(iv), Chapter 19 (3, p. 291].
. Deleted by Ramanujan.

AL s W o— Qb

309

. Entry 15(i1), Chapter 19 (3, p. 29i].

. Entry 5(i), Chapter 20 (3, p. 360].

.,4. Entries 69 and 68, respectively, of Chapter 36.

Entry 73 of Chapter 36.

Entry 13(iii) of Chapter 20 (3, p. 401].

Entry 14(i) of Chapter 20 (3, p. 408).

. Entry 11(x) of Chapter 20 [3, p. 384].

- Entry 13(i) of Chapter 20 [3, p. 401). (There is a sign error; replace —4 by

T o NN W -

>

10.-13. Entries 72, 74, 71, and 70, respectively, of Chapter 36.

310
1. See Entry 66 of Chapter 36.
2.,3. See Theorems 7.10 and 7.9, respectively, of Chapter 33.
4.~11. These singular moduli are given in Theorem 9.2 of Chapter 34.
12.,13. Theorem 9.16 in Chapter 34.

n
1. Equivalent to the formula for G133 given in the table in Section 2 of Chapter
34.

2.,3. Sce Entry 8.1 of Chapter 34,

4.5. Entry 9.14 of Chapter 34.

6.-9. Entries 7-10, respectively, of Chapter 32.

1. Equivalent to the formula for G73 in the table in Section 2 of Chapter 34.
2. Deleted by Ramanujan.
3. Equivalent to the formula for Gg; in the table of Chapter 34.
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4. Entry 7(iii), Chapter 21 [3, p. 475].
5.-7. Part of Theorem 9.2 of Chapter 34.

314
1.-9. Equivalent to formulas for Gey, G117, G333, Gs1, G, G363, Giz, Gaos,
and G5, respectively, in the table of Chapter 34,

315
1.-15. A table of values for G,,, n = 57,93, 177, 85, 133, 55, 65, 253, 145, 117,
333, 153, 77, 69, 213. Sce the table of Chapter 34.

316

1. This is the definition of g,,.

2.-13. These twelve values for g,, n = 2, 6, 10, 16, 18, 22, 30, 58, 70, 46, 142,
82, are found in the table of Chapter 34,

14.,15. See Entry 8.2 of Chapter 34.

16. Deleted by Ramanujan.

17.-22. These six values for g,, n = 42, 78, 102, 130, 190, 34, are found in the
table of Chapter 34.

317
1.-9. The nine values of G,,, n = 289, 121, 169, 105, 165, 345, 385, 273, 357,
are given in the table of Chapter 34.

318

1.-3.,5.,6.,8.-10. These eight values for g,, n = 98, 90, 198, 522, 630, 50, 126,
26, can be found in the table of Chapter 34.

4. See Entry 3.2 of Chapter 34.

7. This formula for g7 has been deleted by Ramanujan.

319

1,,2.5.,8.,9. Five values for g,, n = 66, 138, 238, 154, 310, are given. These
can be found in the table of Chapter 34.

3. This formula for g;54 has been deleted by Ramanujan, but it is correct, except
for one misprint; see the table of Chapter 34.

4. This formula for g, 4 is incorrect; see the table of Chapter 34 for a correct
version.

6.,7.,10. These three values for g,, n = 62, 94, 158, are also given in the table
of Chapter 34, but the formulations are somewhat different.

i1.,12.,13. Three vaiues for G,, n = 465, 777, 1353, are given. Some calcula-
tions are needed to show that the formula for G353 given here is equivalent to that
in the table of Chapter 34.

320

1.-6. The values for G, n = 1645, 897, 1677, 141, 445, 553, are given in the
table of Chapter 34.

7.,8. The values for g,, n = 210, 330, arc given in the table of Chapter 34.

9. See Theorem 9.1 of Chapter 34.
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10. See the introduction to Section 9 of Chapter 34.

2
1.,2. Entry 11iii), Chapter 19 [3, pp. 265-266).
3.-6. Parts of Entries 1(iv), (v), (ii), (iii), Chapter 20 (3, pp. 345-346).
7. Entry 1, Chapter 18 [3, p. 144].
8. Entry 2, Chapter 18 (3, p. 145].
9. Entry 8(i), Chapter 18 [3, p. 157).
10. Entry 9, Chapter 18 [3, p. 159].

322
1. Entry 18(vi), Chapter 19 [3, p. 306].
2.,3. Part of Entry 3(i), Chapter 21 [3, p. 460).
4.,5. Entry 3(ii), Chapter 21 3, p. 460).
6.,7. Entry 4(i), Chapter 21 (3, p. 463).
8. Entry 4(ii), Chapter 21 [3, p. 464).
9. Part of Entry 5(i), Chapter 21 (3, p. 467].

323
1. Entry 5(ii), Chapter 21 [3, p. 468].
2. Part of Entry 7(j), Chapter 21 [3, p. 475).
3. Entry 7(ii), Chapter 21 (3, p. 475).
4.-6. Entries 2(vii), (v), (viti), Chapter 20 [3, p- 349).
7.-9. Entries 8(i), (it), (iii), Chapter 21 [3, p. 480].
10. Entry 9(i), Chapter 21 (3, p. 481].

324
,2. Entries 9(ii), (iii), Chapter 21 [3, p. 481].
,4. Entry 4(iii), Chapter 21 [3, p. 464].
—7. Entry 1(i), Chapter 20 [3, p. 345).
10. Entry 1(ii), Chapter 19 (3, p. 221).

32

,3.,6.,7. Entries 10(i)~(iv) of Chapter 20 [3, p. 379].
,5. Entry 21 of Chapter 36.

Entry 1, Chapter 19 [3, p. 221].

Entry 18(i), Chapter 19 [3, p. 305].

10. Entry 6(iii), Chapter 20 [3, p. 363).

1.
3.
5.
8.-
5
1. The formula for G139, can be found in the table of Chapter 34.
2.
4.
8.
9.

326

1.-4. Entry 18(i), Chapter 19 [3, p. 305]. Note that the definitions of «, v, and
w are different in the first notebook.

5.-10. Entry 8(ii), Chapter 20 (3, pp. 372-373)
327

1.—4. Entry 12(i), Chapter 20 [3, p. 397).
5. Entry 5(iv), Chapter 20 [3, p. 360).
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6.,7. Entry 18(v), Chapter 20 3, p. 423).

328
1. Theorem 7.11 of Chapter 33.
2.-4. Entries 8-10, Chapter 30 [4, pp. 374-377].

329
1.-3. Entries 62, 69, and 63, respectively, of Chapter 25 [4, pp. 221, 236, 223).
4.,5. Entries 25 and 26 of Chapter 32.

330
1.-4. Entries 51, 49, 52, and 50, respectively, of Chapter 32.

1.E 3 . 309].
2.-6. Entrics 48, 14, 19, 20, and 21, respectively, of Chapter 32.
2

1. Entry 23 of Chapter 32.
2. Deleted by Ramanujan.

333
1.,2. Entries 6 and 7 of Chapter 30 (4, pp. 364, 370).

334
1. Entry 5 of Chapter 30 [4, p. 363].
2. An incomplete version of Entry 34 of Chapter 37.
3. Deleted by Ramanujan but proved in Entry 31 of Chapter 37.
4. Entry 20, Chapter 28 (4, p. 309].
5. See Entry 32 of Chapter 37.

335
i. See Entry 33 of Chapter 37.
2.,3. Entries 6 and 4, respectively, of Chapter 29 [4, pp. 338, 336].

336
1.,2. Entries S and 3, respectively, of Chapter 29 (4, pp. 337, 336].
3. Entry 18, Chapter 28 [4, p. 307).
4. See Entry 27 of Chapter 37.

QN

>.w-—--l

2. Entry 29 of Chapter 37.
- Entry 30 of Chapter 37.
o

ntry 17, Chapter 28 [4, p. 306].

5. Deleted by Ramanujan; for a correct version see the tables of Gradshteyn and
Ryzhik {1, p. 546, formula 4.113, no. 4}.

338
The results on this page comprise the contents of Section 3 of Chapter 35.

*y

=,
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339

1.-3. These results are also contained in Section 3 of Chapter 35.

4. A definition.

5. A triviality.

6.-8. These results are essentially Entries 4, 3, and 7, respectively, of Chapter
3.

9.-11. Entries 23, 24, and 22, respectively, of Chapter 25 [4, pp. 154, 155, 153].

12. See Entry 17 of Chapter 39.

340
1. Entry 12 of Chapter 35.
2. Entry 3, Chapter 30 (4, p. 359).
3.-8. Entries 1-6, Chapter 26 [4, pp. 245-255].

-3. Entries 7-9, Chapter 26 [4, pp. 255-257].

r 2074 n 2601
vvJg.

ntry 4, Chapter 30 [4,p. 2

1.-3. Deleted by Ramanujan.

4. Entry 23 of Chapter 37.

5. Entry 10, Chapter 26 [4, p. 258].
6. Entry 1, Chapter 29 {4, p. 335].

343

1.-3. Entries 24-26, respectively, of Chapter 37.

4. Entry 22 of Chapter 37.

5. An incomplete entry. We offer some comments on it at the end of Section §
of Chapter 34.

6. The value for Gs is given in the table in Section 2 of Chapter 34.

34

1. Entry 6 of Chapter 32.

2. The value of Gsos is given in the table of Chapter 34.

3.-5. Monic irreducible cubic polynomials satisfied by g,, n = 38, 26, and 50.
See the table in Section 2 of Chapter 34.

6. Entry 13 of Chapter 32.

345

1.~7. Monic irreducible cubic polynomials satisfied by G, n = 23, 31, 11, 19,
27, 43, and 67. See the table in Section 2 of Chapter 34.

8.—16. Factors of singular moduli /o, n = 3,5,7,9, 13, 15, 17, 21, and 25.
However, for n = 21, Ramanujan fails 10 record any factors. See Theorem 9.9 of
Chapter 34.
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346
1.-4. Factors of singular moduli /&, n = 7, 15, 39, and 55, but for n = 39,
amaiiujan ieft a biank space. See Theorem 9.9 of Chapter 34.
347-349

All the results on these three pages are found in Ramanujan’s paper on Bernoulli
numbers [1], [10, pp. 1-14].

350

For comments on Ramanujan’s notes at the top of the page, see Berndt and
Rankin's book [1, p. 10].

1. See Entry 18 of Chapter 39.

351

i. Ramanujan gives the first 22 digits of /2.

2.-10. These are irreducible polynomials for the reciprocals of the invariants
G,,n=3,7,11,19,23,27,31, 43, and 67. See the table of Chapter 34. Ramanujan
had evidently intended to calculate several further polynomials, as indicated by
vacant spaces beside certain other values of n.
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From about 1903 to 1914, Ramanujan recorded without proofs over 3000
of his mathematical discoveries in notebooks. This volume is the fifth and
final volume dedicated to proving all of the results in Ramanujan’s three
notebooks. Since the second notebook is a revised, enlarged edition of
the first, most of our efforts have concentrated on the second notebook.

mao i 2 sl iom dlaa O
In the first three volumes, we examined all of the results in the 21 orga-

nized chapters of the second notebook. In the fourth book, theorems
from the 100 unorganized pages in the second notebook and the short,
33-page third notebook were our focus. In this last volume, we continue
to explore these 133 pages, but we also investigate the claims made by
Ramanujan in the unorganized parts of the first notebook that were not

recorded by him in the second or third notebooks.

Topics examined in this volume include continued fractions, Ramanujan’s
theories of elliptic functions to alternative bases, class invariants, singu-
lar moduli, explicit values of theta-functions, modular equations, infinite

series, asymptotic expansions, and approximations.

These five volumes should not be regarded as a closing chapter on
Ramanujan’s notebooks. For most of Ramanujan’s discoveries, we have
not ascertained his proofs or how Ramanujan was led to his theorems.
Continued efforts should be made to discern Ramanujan’s thinking.
Moreover, many of Ramanujan’s beautiful theorems will undoubtedly lead
to further research.
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