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To the author's knowledge, only three photographs of Ramanujan are extant. Vari- 
ations of his passport photo appear in our books, Pans I and IV. A group photo 
with Ramanujan appearing in cap and gown can be found as the frontispiece of the 
publication of Ramanujan's lost notebook 11 11, and has been excised in several 
cropped versions, often with Rammujan standing alone. The photograph above is 
also one of several renditions, the mast frequent being one with Ramanujan sitting 
alone. 



Preface 

During the years 1903-1 91 4 Ramanujan recorded most of his mathematical dis- . . ,- -0oks. Although many of his results had already 
been published by others, most had not. Almost a decade after Ramanujan's death 
in 1920, G. N. Watson and B. M. Wilson began to edit Ramanujan's notebooks. 

F a r s  to this project, they never completed their task. 
An uncdited photostat edition of the notebooks was published by the Tata Institute 
of Fundamend Research in Bombay in 1957. 

-d final volume m d  to the editing of Ramanujan's 
notebooks. Parts 1-111, published, respectively, in 1985, 1989, and 1991, contain 
accounts of Chapters 1-21 in the second notebook, a revised enlarged edition of 
-led in rW4, contains results from the 100 unorganized 
pages in the second notebook and . . 
notebook. Also examined in P a t t 4 e  mrrd first 
notebook, which contain very little that is not found in the second notebook. In 
this fifth volume, we examine the . . 
pages in the second and third n o t e 4 e d  ea 
pages of the first notebook that cannot be found in the succeeding notebooks. In 
conmst to the organized m e  ' . - nal C 
~n the first notebook contains several results, particularly about - class invariants, 
singular moduli, and values of theta-functions, which are not recorded in the 
second and third notebooks. 

As in the first four volumes, either proofs are provided for claims not previously 
established in the literature, or citations are given for results already proved in the 
literature, 

71-, . . 
" I  

September, 1997 
Bruce C. Berndt 
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Introduction 

I Knowledge comes, but wisdom lingers. 

errors made by the author arising from misinterpretations of Ramanujan's claims, 
which are occasionally fuzzy. 

The second notebook is arevised, enlarged edition of the first, and, as with G. N. 
Watson and B. M. Wilson, who made the f i s t  attempts at editing Ramanujan's 
notebooks, the second was our ~ n ~ t ~ a l  tocus. It was therefore quite surprising for us 
to discover that the unorganized pages of the first notebook contain many beautiful 

~ - 

results, especially in the areas of class invariants, singular moduli, and explicit 
values of theta-functions, that Kamanujan fa~led to record in his second notebook. 
The material examined in this volume arises from the unorganized pages in all 
three notebooks. and we provide now brief descriptions of the contents of each of 
me e l g n r s .  
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Ramanujan loved continued fractions, and many of his most beautiful results 
involve continued fractions. chapter 32 contains about 70 results on continued 
fractions scattered among the unorganized pages in his second and third note- 
books, and four evaluations of the Rogers-Ramanujan continued fraction from his 
first notebook. several~odular  equations for the Rogers-Ramanujan continued 
fraction R ( q )  can be found; in less technical language these are functional equa- 
tions relating R(q)  at two different arguments. Other q-continued fractions were 
also exammed by Kamanujan in these unorganized pages. Several results arise 
From Ramanujan's beautiful continued fractions for quotients of gamma functions 
found in Chapter 12 of his second notebook. The present chapter primarily con- 
stitutes a reorgan~zed and partiany rewritten version of the memoir published by 
G. E. Andrews, the author, L. Jacobsen, and R. L. Lamphere 121; a preview and 
discussion of some of the results was published by the four of us in [I]. The four 
evaluations of the Rogers-Ramanujan continued fraction from the first notebook 

H. H, * 
In the classical theory of elliptic functions, the ordinary hypergeometric func- 

tion 2Fl(1,  1; 1; X) plays a very important role. In his famous paper [3], in the 

to Ramanujan's explicit values of theta-functions found in his first notebook. 
Most of this chapter previously appeared in papers with Chan [2] and Chan and 
n a n g  [dl. 

Chapters 19-2 1 in Ramanujan's second notebook contain several hundred mod- 
ular equations. Surprisingly, some of his deepest results on modular equations in 
the forms of Russell, Schlafli, or Weber appear only in the first notebook. In Chap- 
ter 36 we establish all the results on modular equations found in the first notebook 
but not in the second. Some are easy variations of results in the second notebook 
that we proved in our third volume [3]. 

We return in Chapter 37 to the second notebook. All the results in this chapter 
pertain to infinite series. Many were very difficult for us to prove, and we owe 
our thanks to R. A. Askey, G. Bachman, P. Bialek, D. Bradley, R. J. Evans, J. L. 
Hafner, and A. Hildebrand for important contributions. Although it is impossible 
to summarize in one brief paragraph the contents of this long and varied chapter, 

voted to interesting variants of the Abel-Plana summation formula and examples 
thereof. In Section 21, we examine Ramanujan's surprising transformation for- - - 

Ramanujan remarked that several of his series arose from alternative theories of In Section 22, an intriguing formula for the logarithmic derivative of the gamma 
elliptic functions wherein the aforementioned hypergeometric function is replaced 

, G ( l  2. 1 .  r l  - F J I  3 .  1 .  Y )  - r - 6  ( 1  5 .  1 .  -3 
I / L 1 \ 4 9  $ 9  2 .  1 \ 6 ?  $ 3  L ? A / .  

never developed, but the first six pages in the unorgan~zed section at the end of his 
second notebook are devoted to these theories. This is the content of Chapter 33, 

function is derived. l n ~ e c t i o n  42, ~amanujan-offers some very remarkable the- 

series. 
In previous volumes we marveled about Ramanujan's insights into asymptotic 

[ 1 I. A few results from the first notebook have been added to this presentation. The gather all of ~ a & n u j a n ' s  approximations and asymptotic expansions found in 
first of the three alternative theories is the most interesting and the most important, the unorganized pages of his second and third notebooks. We are very grateful 
and we feel that a large body of work remains to be discovered here. to Askey, R. P. Brent, Evans, and M. L. Glasser for their valuable contributions 

Like Chapter 33, it took several years for us to satisfactorily examine all of the to this chapter. Again it is difficult to succinctly summarize this work. The first 
material in Chapter 34, which is devoted to class invariants and singular moduli. several sections are devoted to the asymptotic analysis of series which are hybrids 
Most of this work has appeared in papers with Chan and L.-C. Zhang [ 11-131. [5] 
and with Chan (31. [4]. A summary, written with Chan and Zhang appears in [6L 
and several results were established in Chan's Ph.D, thesis (21. Ramanujan did a 
prodigious amount of work in calculating over 100 class invariants. For reasons 
that are unclear to us, he failed to record many of these values in his second 
notebook. To establish most of Ramanujan's hitherto unproved class invariants, 
we had to develop methods that were completely unknown to Ramanujan. Thus, 
Ramanujan's methods and insights into class invariants remain largely a mystery 
to us. It is also puzzling to us that, except for four values, Ramanujan did not record 

of the Riemann zeta-function and hypergeometric series. 
Last, in Chapter 39 we collect together results from the unoreanized pages of 

the first notebook which do not fall under the purviews of Chapters 32-36. Most 
are from analysis, but some are elementary. 

In Part IV we provided a chapter doc- in the 16 orPanlzed 
chapters of the first notebook. The vast majority of these results can be found in 
the second and third notebooks, but for those that are not we gave proofs. At the 
end of this volume, we provide a similar account for all the claims made in the 198 
unorganized pages of the first notebook. Thus, for each entry we indicate where a 
pwn can be found in rarts I-V. 

in his first notebook. For even n, Ramanujan left us a beautiful formula to aid in Except for the massive amount of material in Chapters 33 and 34 related to 
the calculation of singular moduli, although we are uncertain how he found it, but Ramanujan's paper on modular equations and approximations to rr (31, [lo, pp. 
E ' 3  

- - SI lo the nrst rour volumes, very tew clalms in this volume pertam 
~ ; " = ; " = 0 0 e e 2 n k z f i  are beautiful al- to Ramanujan's published papers and problems. The following table summarizes 
gebraic numbers when n is a pos~tive rational number. Chapter 35 is devoted these connections: 
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The following table gives the number of results in each of the eight chapters in the University of Wisconsin in the Fall of 1964. Here I learned about the Hardy- 
this volume: Ramanujan asymptotic formula for the partition function u(n) and Ramanuian's 

The next table summarizes our reckonings of the results examined in each of 
the five volumes. 

I Volume I Number of Results ( 

I could prove with my methods. Fortunately, the library at Princeton University 
possesses a copy of the Tata Institute's publication 191. I found a few more formulas 

others whfcch I could not 
prove. My papers [6] and [7] contain proofs of my initial findings and several 



6 Introduction 
I. 

This work could not have been completed without the help of several people 
First, C. Adiga, G. E. Andrews, S. Bhargava, A. J. Biagioli, P. Bialek, H. H. Chan 
R. J. Evans, F. G. Garvan, J. L. Hafner, P. To Joshi, R. L. Lamphere, L. Lorentzen 
J. M. Purtilo. and L.-C. Zhang collaborated with me in writing papers on chapten 
or sets of formulas from the notebooks, and I extend to them my sincere gratitude - 
for their collaborations. 

Others have made contributions in papers that they have individually written. 
or in work that appeared only in our accounts. Thus. I wish to thank the following 
mathematicians without whose proofs these volumes could not have been com- 
pleted: G. E. Andrews, R. A. Askey, G. Bachman, J. M. Borwein. P. B. Borwein, 
D. Bradley. H. Cohen, M. L. Glasser, A. Hildebrand, L. Lorentzen, R. McIntosh, 
K. S. Williams, and D. Zagier. Some names appear in each of the past two para- 
graphs, because these mathematicians also made contributions independent of any 
collaboration with me. 

i y  mmee people. For several years, 
when I became stymied for months or perhaps years over one of Ramanujan's 
enigmatic formulas, I turned to Ron Evans. On each occasion, he was able to 
o n  proofs in these five volumes are due 

Nancy Anderson, Mathematics Librarian at the University of Illinois, for helping 
me 

One day in the early 1980s Heini Halberstam called me to his office here at 
Illinois to meet Springer-Verlag's Mathematics Editor, Walter Kaufmann-Biihler, 
who suggested that I compile my work on Ramanujan's notebooks into volumes 
for Springer-Verlag. Thus, I express my sincere thanks to the late Kaufmann- 

- 

buhier a n m M a t h e m a t i c s  Editor, Ina Lindemann, for their support of 
my work. 

In the early years devoted to Ramanujan's notebooks, I received support from 
the Vaughn Foundation, and I express my deep gratitude to James Vaughn for 
his financial support. In more recent years, the National Science Foundation, the 
Sloan Foundation, and the National Security Agency have provided grants, and 

ese agenclesor their support. I also am pleased to thank The Center 



Continued Fractions 

and 

denote the famous Rogers-Rarnanujm ' 

beautiful equations relating R ( q )  with ex- 
R(&. In both his first and second letters to Hardy, Ramanujan [lo.  pp. xxvii, 
xxviii] communicated theorems about Rh! . . 
letter, he asserted that 
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and We e m ~ l o v  the notation 

for the co- 
The evaluation (0.1) follows easily from a reciprocity theorem for R(q),  which 
Ramanujan gave in his second letter, and which was first proved by G. N. Watson 
[2]. The evaluation (0.2) follows from a similar reciprocity theorem for S(q) ,  

which apparently Ramanujan did not communicate to~ard ; ,  but which is fo&d 113 
b2 + - 

in his notebooks [9, p. 2041; see also Part 111 [3, p. 831. The latter theorem was b3 +. . .  
first proved by K. G. Ramanathan [2 ] ,  but (0.2) was first established by Watson Occasionally, for brevity, we shall use the notation K(an/bn)  instead of (0.4). We 
[I] in a different manner. In his second letter, Ramanujan also claimed that let A, and B, denote the nth numerator and denominator, respectively, for (0.4). 

43 
Thus, for n L 1, 

R ( e - 2 ~ &  = -- & + I  
, (0.3) ai a2 a3 an A. - . .  - - - - 

JS-1 6 + & + & + . . .  + b, En '  
1 + k3f4 (+ - I )  " 

where 

which was also first proved in print by Watson [2] ;  Ramanathan [2] also estab- A, = b,An-~  + anA,-2 (0.5) 

lished (0.3). Entries 7-10 offer four particular evaluations of R(q)  from page 
?,I 

and - .  
J11 n(q) ana ~ ( q )  
were recorded by Ramanujan in his "lost notebook" [I I], and these have been 4, = bnBn-l + atlBn-2, (0.6) 
proved by the author, H. H. Chan, and L.-C. Zhang (31. Entry 1 I is a fascinating . . where A _ ,  = 1 = Bo and A. = 0 = B - ,  (H. S. Wall [ I ,  p. 151). 
s e  divergent Rogers-Ramanujan The set of natural numbers is denote  by N, while the set of complex numbers continued cactlon c - some m. T& -r: 
fractions, with the most interesting results being Entries 13 and 14 involving mod- denoted by R, and we set = W U {w). The set of integers is denoted by Z. 
est generalizations of the Rogers-Ramanujan continued fraction. In each case, If aN = 0 for some N E N, we say that the continued fraction (0.4) terminates, 0 
(11 has discovered the proper interpretations for these fascinating results, and we 
briefly describe his work. Some elegant continued fractions, for example. Entry f := a1 - 0 2  % - I  - A N - I  

b l + & + . . ' + b N - l  B N - ~ '  15, are instances of more general continued k t j o n s  f o u d t a m ~ b y  kmam@~ 
and recorded in his "lost notebook" 11 11. if a, # 0 for n < N. If a, # 0 ,  1 5 n 2 oo, then the continued fraction 

Some q-continued fractions give representations for certain q-products. A few (0.4) converges if lim,,, AJB, exists in @. Its value is then given by f = 
of these results were estiiblished by k 1 - 11.1 h l9M W li- A IR 1 .wwrn  "n* 
particularly call attention to Entry 19. Toprove this, we employ a continued fraction 
found by G .  E. Andrews 111 which may be the unidentified continued fraction to f = %  2 a3 

bl + bZ + & f a . . '  

(0.7) 
which Ramanujan alludes in his first letter to Hardy [9, p. xxviii]. 

Ramanujan had a tremendous facility for extracting interesting. important, and pate that (0.7) includes the case "oo = 00.") If limn,, An/Bn does not exist in - - 
elegant special cases trom h ~ s  theorems:l'he unorgan~zed matenal contans numer- L (and a, f 0, 1 + n < wj, we say that (0.4) diverges. 
ous corollaries arising from his amazing work on continued fractions for products Many of Ramanujan's continued fractions arise from equivalence transforma- 
of gamma functions in Chapter 12. Two of the most curious results in this vein are tions or from the "even parts" of continued fractions. In contrast to many contern- - . - . . -  
EntneS 41 ana 4.. po gaathors, we txnprop equality signs when invoking these ideas. 

Before commencing our examination of Ramanujan's continued fractions, we Several results depend upon continued fractions from Chapter 12, and so we 
must offer several remarks about notation. All "chapter" references refer lo chap- frequently make reference to our account [2] of this chapter. Our convergence 
L t  S opm a 
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theorem of L. Jacobsen [4, Theorem 2.31, which is a consequence of the parabola - I - n  2 I + n  
theorems (W. B. Jones and W. J. Thron [ I ] ) .  (111) = n '-' - - , then V = n'- 

(1 + n )  I -n'  Several entries below concern theta-functions, and we employ the notation 
Ramanujan introduced in Chapter 16 [9] (Part 111 [3]) .  For lab] < 1, put - - Yroof of (I). In Part m 13, p. 8u, eq. ( j Y .  1 )I, we showed that 

b) := an(n+l)nbn(n-~j~ (0.8) 1 
- - u - ] =  f ( - 9 ' 9  1 

n=-rn and - - v - l =  f ( - q 2 / 5 )  '-, ,LO\. (1.1) u a4/5  41 A\ 
Also set 

Y I \  Y J J \  Y I 

In order to derive a relation involving u and v ,  we need to rely on Ramanujan's 
(P(q) := f (9, q ) ,  $(q)  := f (q ,  q 3 ) ,  and f (-q) := f ( - q ,  -q2) .  work on modular equations. 

7 7 

(D.9 Let Ja and JB be the moduIi associated with the variables q1'' andq'. respec- 
For each nonnegative integer n, let tively. (Ordinarily, of course, these variables would be designated by q and q2j,  

(a; q)ll := ( 1  - a)( l  - aq) . . . (1 - a@-'),  (0.10) 
respectively.) Let m denote the multiplier associated with a and I). Furthermore. 
set 

and. if !ql < 1, set 

(a; q ) ,  := lim (a;  q), .  
n+w 

used by Ramanujan in his notebooks. Thus, the Bernoulli numbers B,, n 1 0, are 
here defined bv 

It will be easier to first derive a relation involvin_p 0 and R. b will then be an 
matter to deduce a formula connecting P and Q. 

From Entries 12(i), (iii) of Chapter 17 (Part I11 13, p. 1241). we easily deduce 

We always employ the principal branch of each multivalued relation such as 
,-I12 - I ,  

It follows that 
- ,  &. 

Lastly, as customary, set = - and m1I2 = - R2 
Q ' 

(1.2) 

- I-, 

1. The Rogers-Ramanujan Continued Fraction 

Entry I (p. 326). Let Ig < 1 ,  

and 

Then 

forms 

and 

These two equalities are, in fact, modular equations of degree 25. Multiplying the 
former equality by (a(1 - cz))'ln and the latter by (8(1 - I)))'/" we see that we 
can combine the resulting two modular equations to obtain the single equation 
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we write this equality in the form 

Clearing denominators and rearranging, we find that 

But since u2v4 = n2,  we deduce that 

which proves the formula for V .  Now, 

R3 + ~ R * Q  - 2 R Q 2  - Q" 5 Q R  - Q'R'. ,, nS [ I  - n )  2 " -  -,, - 
We now replacc q'/' by - q ' / s .  Then R  is replaced by - P, and Q remains unaf- V 2  \ l + n )  ' 
fected. So, which completes the proof. 

rJ - q n d  - q p  

Next, set PI = 1 + P  and QI = 1 + Q. After some elementary tedious algebra, 
we deduce, from (I .3), that 

( P :  + 2 ) ( ~ :  +2)  - P: - Q: + P I Q I  - 4 P 1 - 4 Q 1  = 0. 

By (1.1),  this last equality may be rewritten in the form 

P m f  of (ii). From part (iii), we obtain the two cubic equations in n, 

n " n z + ~ n - ~ - O  (1.4 

and 

By subtraction, 

which can be written in the shape We now obtain three equations, in addition to (1.4) and (1.5), by multiplying (1 -4) 
.5) by n and n2 .  Thus, we obtain five homogeneous equations in the 
I , ,  , 3 1 

9 L 1 I l . I )  9 1 1  , 
- ( u h 2  + u 2 v 3 )  + (u2 - v)(v2 - u )  = 0 .  determinant of the coefficients is equal to 0, i.e.. 

Upon factorization, we arrive at 

(uv2(u2 + v )  + u 2  - v ) ( u 2 v ( v 2 + u )  + v2 - U )  = 0. 

From the definitionsof u and v ,  it is clear that u = O ( q l f ! )  and v  = 0 (q2 Is )  as q 
tends to 0. Hence, the first factor (and not the second)va~ishes for q sufficiently 

(9. 

It will be convenient to prove (iii) before (ii). We shal' alter Ramanujan's for- 
mulation of (iii) by defining n by u v 2 .  We shall then estrblish the two proffered 
formulas for U  and V. 

Proof of (iii). From part (i), 

Solving for u2,  wc find that 
v(1 - n) - - 

I + n  ' 

u + 3  2 U + V - 1  U - V  0 
O 1 

I 0  0 U + 3  2 U + V - 1  U - V I  

= 4 ( 1 0 u 2 v 2  - 1 0 u 2 v  + 1 0 u v 2  + uv + u2 + u3v2 + uv3 - V ) .  

(n). 
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Entry 2 (p. 321). Let Jql < 1. If 
all5 Q q2  a3 

then 

uu(u - u14 - u2v2(u - v ) ~  + 2u3v3 = (u - u)(1 + usus).  (2.1) 

P m f .  Let 

s21S qZ y4 Y(, w := - 
1 + 1 + 1 + 1 +. . . '  

By a direct application of Entry 1 (i), we find that 

W - v 2  * 

The determinant of the 3 x 3 matrix on the left side- 
this is equivalent to (2.1). This completes the proof. 

Entry 3 (p. 321). Let lq I < 1. if 

then 

3 (v - u ) ( l  + uu3) = 3u2v2. 

Enlry 3 was established by Rogers 14, p. 392, eq. (6.2)].  (In fact, (6.2) should 
be designated by (6.3). as apparently there is a misprint.) 

Entry 4 (p. 326). Let, for Iq 1 < 1, 
Replacing q by -q in Entry l(i), we also find that 

+ u 2  . 

These two equalities yield, respectively, 

115 2 u:=4 4 Q 3 - 
L 1 I 1  I... 

U W ' + V ~ W ~ - W + U ~ = O  .- - J / 5  f (-q49 - q y  

and = f (-4'9 -q8)  " '  
3 3 2  and 

uw + u w  + w - u 2 = 0 .  r , w - - 
n := q2/5 4' 4 ) Multiply the first of the last two equalities by u2 and the second by v2 and then 

add the resulting two equalities. Second, multiply the first equality by u and the f (-q2. -49 u. -. 
in each case, we find that, respectively, 

I hen 

and 

Next, divide (2.2) by (2.3) and cancel the nonvanishing factor u + v to obtain the 
quadratic equatlon 

Proof. Simple algebra shows that mn = m 2 / ( 1  + m) if and only if m - n = mn 
and that mn = n2/(1 - n )  if and only if m - n = mn. 

By  Entry 38(iii) of Chapter 16 (Part 111 [3, p. 79]), mn = uu3 if and only if 
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By applying the Jacobi triple product identity, Entry 19 of Chapter 16 (Part 111 [3, 
p. 351). to each of the eight theta-functions in (4.1). we, indeed, verify that (4.1) 
is valid. Thus, we have shown that mn = uv3. 

It remains to prove that m - n = mn. Using Entry 38(iii) of Chapter 16 as 
before, we find that the proposed identity is equivalent to the identity 

then 

Proof. Let 

To prove (4.2), we shall apply the quintuple product identity three times. Referring 
to Part 111 [3,  p. 80, eq. (38.2)], we replace q by q ' 5 / 2  and set, in turn, B = -q '3 /2 ,  
-q7I2, and -q?d2. Accordingly, we find that 

. ,  . w"fram a . . . . 

factor uv + 1, we find that 

f (-q27, - p )  - q13 f (-q-12, 4 ' )  = f ( -4  1s 1 f ( -q2,  - 4 9  u(uv - 1)w2 - v2w + U Y  = 0. (5.1) 
141 ' 

J f (  Y *  r" , 
f ( - s 7 ,  -qal  

We now take this pair of cubic equations in w and eliminate the "constant" terms 
f (-q27, - q l X )  - 4' f ( 4 ,  -q49  = f ( - 4 9  from the pair. Afier dividing out the nonvanishing factor w(uv + I ) ,  we deduce 

f ( -q4 .  - q l l ) '  tM 

and 
uvw2 + u2w + v(uv - 1) = 0. (5.2) 

eliminate the terms auadratic in w from (5.1 ) and (5.2). We then obtain the pair . . . . 
I nus, ( 4 3  is equivalent to Ine identity of equations 

However, from a basic property oftheta-functions (Part 111 [3, p. 34, Entry 18(iv)]), We thus can derive two formulas for w 2 ,  namely, 

and 

q f f ( - q - ' ,  -4") = -q 

Substituting these facts into (4.3), we see that (4.3) reduces to a tautology. This 
then completes the proof of the equality m - n = mn. 

Entry 5 (p. 326). If lq 1 < 1, 

(u )  + V*(UU - I M V ~  + U ~ ( U U  - 1) )  + U V ( U ~ U ~  - ~ U U  + = 0. 

The desired result now follows after some elementary algebra. 

and and 
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- .  
Then 

32. Continued Fractions 2 1 

Following Ramanujan [ 3 ] ,  [lo, p. 231, we define the two class invariants 

. . 
where n > 0 and q = e-"&. At the b e g i ~ i n g  of Section 2 of Chapter 34 we 

This result was communicated by Ramanujan [lo, p. xxvii] in his first letter establish two simple relations for these invariants, 

to Hardy. The first proof of Entry 6 is due to  Rogers [4, p. 392, eq. (7.1)]. A gon = 21'4gn~n 
second p r o d  hadmx~ 3 (7.6) 

Rammathan [2] .  Entry 6 is connected with modular equations of degree 5. and 
Rogers [4] also derived a modular equation relating R(q) and R(q I ) .  

We now e w q s  ( g , ~ , , ) " ~ f f  - d )  = j. (7.7) 
- - 

first notebook. Each of our proofs employs an eta-function identity from the unor- 
ganized portions of the second notebook [9] (Part IV (4, Chap. 251). Ramanathan 
[3] gave a different proof of Entry 7 ,  but proofs of Theorems 8, 9, and 10 were 
first given by the author and Chan [I]. In order to state the first four theorems, we 
set 

First Proof of Entry 7. Recall that (Part 111, [3, p. 84, eq. (39.1)]) 

where a > 0 and f is defined by (0.9). After some elementary algebraic manipu- 
lation. we find that (7.2) is eauivalent to the identity 

where a and b are certain real numbers to be specified below. -- 1 R(e-") = 2c, 
R(e-) (7.9) 

with CY = 4n. Thus, from (7.8). (7.9). and (7.1), we must prove that 
~ ( e - ~ ~ )  = Jc2 + 1 - C.  (7.2) e4.,5 f (-e-4nrs) =a?&, (7.101 

f - ) a - b 
Entry 8. k t  a = 3 + f i  - a, b = (2O)If4, and c be given by (7.1). Then 

~ ( e - " )  = JF-G - C. 
wm.c u - 7 .  

(8.1) We shall employ Entry 58 of Chapter 25 of Part 1V [4, pp. 212-2131. Let 

- - + d5+ d3 - ~ " ~ ( 3  - J 2  + J 5  - JlO), 
and c he given by (7.1). Then 

Entry 10. Let a = (60)'fd,  b = 2 - f i  + a, and c be given by (7.1). Then 

1 
Before proving Entries 7-10, we offer some needed notation and preliminary 

results. Recall that f ( -9 )  is defined in (0.9). We shall need two rdadmns 
formation formulas for f (Part 111 [3, p. 43, Entry 27(iii), (iv)]). If a, /3 > 0 and 
crp = n2, then 

f 1 1 5 )  f ( - a 2 / 5 )  
- - and Q - - 

( ~ ' ~ ~ f  ( -q5 )  q 2 / S  f ( -q  10) ' 

Then 

Let q = eS2". Then, b m  

P = JJ. 
Using (7.12) in (7.1 I), we find that 

5n2, sJw - - ,a/, - 7,/- L 
r. , -. -.,= - .  - ."= -. d5Q2 , c3. 

It will be convenient to set Q = &T, so that (7.13) takes the form 
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Solving this quadratic equation, we find that 

T =  
3 + & f J W f i  

2 

where B has degree 5 over a. Then 

If we took the minus sign above, we would find that Q = &T < 1. But clearly 
Q r 1, and so we deduce that 

Recalling the definition of G ,  in (7.5). recalling that (Part 111 [3, p. 371) x ( q )  := 
(-4; q2)00 ,  and using Entry 12(v) of Chapter 17 of Ramanujan's second notebook 

- 
~y ( I . I U J  and (7.14). it remains to show rhar 

reasoning as above, 

G I  = 2-'/12{a(l = 1. 

7 - - - L3 

= 3 + 4 5  + 5'14( 4 5  + 1) 
- L3 

Therefore, by (7.16), if x = Gzs, 
- 
- (3 + 5'14 + JJ + 5 ' / 4 ) ( ~ l / ~  - 1) 

\ 3 \ 

2(5114 + 1) - - 
5114-1 ' 

and thus (7.15) has been shown to complete the proof. 

Ramanathan [3] gave a more difficult proof of Entry 7 in which class invariants 
were employed. We have also discovered a proof of Entry 7 that utilizes class 
invariants. Since our proof 1s s~mpler than that ot Kamanathan and much dlnerent 
from our proof above, we give it below. Like Rammathan's proof, our proof 
requires the value of GZ5, and so we give a simple derivation of this evaluation 

= 0. 

Since x + l /x  # 0 and x > 0, we conclude that 
next. 

Lemma 7.1. 
and so the proof is complete. 

L 
We remark that the value of Gzs is given without proof in Ramanujan's paper . . .  

P r d  We employ a modular equation of degree 5 found in Entry 13(xiv) of Dl, 110, P. 261. 

Chapter 19 of Ramanujan's second notebook (Part 111 [3, p. 2821). k t  
Second Proof of Entry 7. Recall from our first proof that it suffices to prove 

P = 21/3{cr@(1 - ~ ) ( i  - p ) ~ ' / ~ ~  (7.10). 

and Set a = 2n/5 in (7.3). so that B = 5n/2. After some simplification, we find 
that 

(80 - @)y'8 = -  1; -7 j 4 ~  r ,  -5n\ - - \ a ( ~  - a)) V T e  
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Thus, 
- 

Thus, (7.10) is established, and the proof is complete,. 

(7.17) Proof of Entry 8. We will again employ Entry 58 of Chapter 25 in Part IV [4, p. 
212-2131. but now with 

a. 

Smce 
= e4n/S f (-e-4nis) f (-e-~n~5) 

(q; 9)oo -- I (-e-20" and Q = 2"" ( a. 4L - (9; q2 )dq2 ;  q 4 L  1 f (-e-mn) ' 

we deduce from (7.17) that By the same reasoning as that used in the first proof of (7.2). in order to prove 
(8.1). it suffices to prove that 

where 8, is defined in (7.5). We thus must determine g25 and glw. Since G2=j was 
computed in Lemma 7.1, we see from (7.6) and (7.7) that Q can be calculated. 

For brevity, set x = $, and a = G ; ~ .  Thus, from (7.7), 

* 
a - b  

where a and b are given in the statement of Entry 8. 
Write (7.1 I) in the form 

(7.19) 

Since x z 0. from (7.19), we deduce that (8.3) 

. A- . . 
2a Q = &T, we find that 

1 - - - . (GL + G& J G ~ :  - c;") ' ' + 1 ,  f 5 1 / 4 + 1 \ 2  1 R5 ' /4+1  5114 - 1 -7 - LI 

L \ / _ -  - -  
5114- lVJ' t V J  \51/4 - T L51/4 - 1 L1 ' 5114 + 1 ' '2)'4) 

(7.20) By an elementary verification, it is easily checked that T = 1 is a root of (8.4). 
/ F p  . . I , y 2 V J ,  -..- .--. .- -..- I-.- WNL >ILL-A. v 1-ne 

By Lemma 7.1, Gg, = (2 + = 9 + 4&. and so G;: = 9 - 4&. Hence. form a3T3 + a2T2 + a1 T + ao = 0, and dividing by T - 1, we find that 
by (7.20) and Lemma 7.1, (5IJ4- 1)*~~-2(1+5'/~+&+5~/~)~-(9+6~5~/~+3&+2.5~~) = 0. (8.5) 

Now set 

Thus, from (7.18), (7.2 I), and Lemma 7.1, 

a - b  
%8.5) to deduce, wich the help of Marhematica, that 

-(5 + 3&)a2 + (6 , 5'14 + 2 . 5314)ab + (3 - 3&)b2 = 0. 

Q = &2'/42af,~25 Solving for a,  we find that 

We now set b = s ' / ~ & ?  and choose the plus sign above, because if we had chosen 
the minus sign, we would find that T i 0, which is impossible. Hence. 
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Hence, Solving for 6, we find that 

nd so (8.2) has been shown to complete the proof. 

2(1 - Ji - &)d * 2 ~ i J ( 1 1 6  + 8 3 J i  - 52& - 3 7 m ) d 2  
b = . (9.5) 

Since 

Proof of Entry 9. We again employ Entry 58 of Chapter 25 in Part IV, but now ( 1  -Avo && 
we set 

By the same argument that we used in the proofs of Entries 7 and 8, to prove (9. I), 
it suffices to prove that 

- r W , .  r - a + b  
- - 4 , / A  - re, a = 3'174 - 4 ~ )  a - b T d '  in agreement 

with what Ramanujan claimed. Thus, by (9.9,  
where a and b are prescribed in the statement of Entry ?. 

- - - - - (M, 114 A q  in 1 LC)@& 12565 &&&j 

Thus, by Entry 8 and (8.3), we know that 4+6&-2&-3- 

A + B  I /T ( A + B ) ' I  ,,A+B , T I  (9.6) 
J 1  I V J - 

A - B *  \ A - B )  T L ~ - ~  

-1 

Let 6 - 5 ~ z - d ~ j + r n  

4 + 6 a  - 2& - 741% 
(9.7) 

We next wish to write 

in (9.3). Clearing fractions and simplifying with the help of Mathernatico, we find 4(283 + 190& - 125& - 8 6 f i )  = ( W  + x h  + y& + ~ f i ) ~ ,  
that 

for certain rational inte~ers w , a ,  y , 9nd 
(- 10 - 7 h  + 4& + 2 f i ) n "  s5'I4(8 + 9 h  - 2& - 2 f i ) a 2 b  

w2 + 2x2 + sy2 + 10z2 = 1132, + (-20- 1 5 f i + 6 & +  4 f i ) a b z  (9.8) 
- - - - + 51'4(10 + 15d2 - 445 - 6d10)6" = 0. 

WY + ~ X Z  = -250, 
Let a = 5'I4d, cancel 53/4&, and simplify to deduce tlat 

wz + x y  = -172. 
(-7 - 5 4 2  + 245 + 2 J10)d3 + (9 + 442 -2d5 - d10)bd2 

David Bradley kindly wrote a program to determine the 24 positive solutions + (4 + 3 4 3  - 3 h  - 2 f i ) b 2 d  to (9.8). We then found the unique solution of the system of four diophantine 
+ ( - 6 - 2 h + 3 & + f i ) b 3 = 0 .  (9.4) equations to be 

Observe that d = b is a root ot (9.4). It t h ~ s  were the roo1 that we are seelclng, men w = LU, x = 5 ,  y = -8, and z = -5. 
Q would equal (5'14 + 1)J5/(5 ' l4 - 1). Thus, with Pand Q interchanged, we Thus, 
have the same solutions to (8.3) that we had in the prod of Entry 8. Clearly, this 
is not the solutlon that we want. Hence, dividing (9.8 by (d - b j ,  we find that 24283 + 19042 - 125J5 - 86m 20 + 9 f i  - 8& - sm - - 

(4 + 6& - 2& - 3&)b2 + 2(-1 + *5 + &)bd 4 + 6 & - 2 & - 3 a  4 + 6 & - 2 f i - 3 n  
- - -- - (9.9 
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@.?I and (9.9) in (9.62 we 6nd that by (7.5). Recalling the value G25 = (1 + &)/2 from Lemma 7.1 and the value 

T c t w h i c h  J 

is impossible. Thus, we conclude that from Ramanujan's paper [3], [ l o ,  p. 281, or from the table of Section 2 of Chapter 
34, but apparently first proved in print by Watson [71, we find that, from (10.4), 

b = 1 + + - 2'14(3 - & + & - fi), 

which is what Ramanujan asserted. Thus, (9.2) is proved, and the proof of Entry 
9 is complete. 

Our proof of Entry 9 heavily relies on computation in the later stages. Although 
Ramanujan possibly used Entry 58 of Chapter 25, he undoubtedly found a less 
computational proof. 

Proof of Entry 10. By the same reasoning in the proofs of Entries 7-9, to prove 
(10.1), it suffices to prove that Now 

- a + b  -- 
a - b  

where a and b are specified in the statement ot Enhy 10. 
r 

Apply the transformation formula (7.3) with a = 3n/5 and /? = 5x13. After 
= 494 + 2 4 4 1 s  = ~ 2 , / $ ( 6 &  + 4 4 3 2  

some simplification, 1 
= 4 6 & +  4). 

- -6xJ5, - Jp-4nJ45 f(-e- Ion/') 
Jf( P - v 3 

Thus, 
G ( - ~ - ' " )  = - (2 - m 3  - JS) 

645 + 4 8  + \%6fHQ(3 + 4%) (10.3) 

- - - (2 - &)(3 - &)(6& + 4& - 3(60)'j4 - f i ( 60 ) ' J4 )  
Q I0 =rrp.lentoRaman - . -  uian's cubic continued fraction 8 

00.3) 
q l / 3  

G (q )  := - 
q + q 2  q 2 + q 4  q'+q6 191 < 1. Now Chan [ I ,  Theorem I] has shown that G ( q )  satisfies the modular equation 

1 +  1 + 1 + 1 +.. .*  
G2(q)  + 2G4(qf )G(q)  - G ( q f )  = 0. 

From Part I11 [3, p. 345, Entry l(i)l,  

113 ~ ( q )  
Replacing q by -q and solving for G(q2) ,  we find that 

G(-q) = -9 
x"q3)' G @ ~ )  = 1 - J 1  - 8G3(-g) 

f laa 
where 4 i3 -q )  

In particular, 

Set q = e-'", as above, and v = G(e-'On). Recall the definition of A from 

[3, p. 3451) can be written in the form 
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Thus, by (10.7) and (10.6). with w := G(-e-'") given by (10.5). Then by a result of Ramanujan (Part I11 [3. p. 31, Entrv IQ). 

4w - 3 = -  (w + 1)2(2w - 1) 
~ ' = 4  + cn(a; 4 )  = (1 1.4) 

Dn(aq; q )  

1 -  J- w2 &+I (a;  9 )  ' 
(10.8) where 

by a somewhat lengthy, but straightforward, calculation. 
Hence, by (10.2), (10.3), and (10.Q it remains to show that . d  I - p - j L  U Y .  . I  

' I 3  a + b  o s k n  1 j J 
(w + U2(1 - 2 4  - Jj, ) a - b  

(10.9) We will need two further results of Ramanujan (Part 111 [3, p. 77, Entries 38(i), 
(ll)J), VIZ., 

where a and b are specified in the scaternen1 of Entry 10. We used Mathematics 
to verify (10.9) and complete the proof. w q n 2  - G(q) := C - - 1 

(1 1.5) 
(4; 4)" (9; q5)w(q4; qS)m 

Another proof of Entry 10 has been given by the author, Chan, and Zhang in 
PI. and 

The next entry is actually recorded twice by Ramanujan in his notebooks. We qril+n 
quote Ramarmjan. ~ ( 4 )  := y - - - 1 

(9; 4)" ( q L ;  q3)oo(q.'; q5)m. 
( 1 1 4  

Entry 11 (pp. 374,382). u q  > 1. These are the famous Rogers-Ramanujan identities first established by Rogers 
. . . .  

:~ogea n atson 1 I I 1, 
[I 41 independently: 

From the general theory of continued fractions, if all the elements of a divergent 
continued fraction are positive, then the even and odd approximants approach 

its odd approximants tend to (1 1.2) while its even approximants approach (I 1.3). 
In fact, we shall prove Entry 11 for Iql > 1. 

and 

First Proof. Recall the definition of the Gaussian binomial coefficient It will be convenient to replace q by 1 f q  in Entry 11. Letting c(q) denote 
the mtinite continued fraction limn,, ~ " ( 1 ;  q), we may rephrase Entry 11 in the 

[i] := [:] := 
(q; q ) n  following way. For 0 < q < 1, 

+, (q;q)k(q;q)n-k' 
thn - 

c w  J o m  m rrct-q), 
where 101 < 1 and n and k are integers with 0 I k I n. Define (11.10 

while 

the even approximants of c ( q - ' )  tend to qc(q4). (11.12) 
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We first examine the odd approximants. Using (I  l.4), replacing j by n - j, and 
utilizing the fact 

where we used (1 IS), (1 1.6). and the Rogers-Ramanujan continued fraction. 
Thus, (1 1.12) is proved. 

- B ( A - B ) [ A ~  
= 4 n 7 (1 1.13) F-. 

LDJr, 
Ramanujan continued fraction reappears in determining the limits of both the 

we find that even and odd approximants of the divergent Rogers-Ramanujan continued frac- 
n 1 1  1 I\ & l l l  ? \  -Y 

D ( ~ - ~ - )  ,kO1 "near" each other in the sense of Entry 13 below. More precisely, if we set x = 1 
c z ( l ;  g- I )  = - 

D2n+1(l; 9 - I )  + r in (13.1) and (13.2), we obtain ( I  1.2) and(1 1.3). respectively, but with q replaced 
bv 1 .b. 

n 
I-, 

i =o 

Hence, by (1 1.8) and (1 1.9), 

-, - , 7 .  

We will now give a second proof of Entrv 1 I. This uroof shows that Entrv 11 
arises from infinitely many ~ a u e r - ~ u i r  trarkformatiotk. 

o;, q ~ ' + j  
E- - 9- '  9-I 9-I 9- '  -- 

, - J=O (q,q)2i G ( -9 )  ." I )  - - -- 1 f q - 1  - 1 + q l  + q 3  - 1 + q - l  +q-" 1 + + - I  + q T 7  - ...' 
7 I n-roo 2 qi'+i H ( - q )  c(-9)' (11.14) 

The latter continued fraction is a limit I-periodic continued fraction for Iq I > 1. 
j=o (4 ;  9)2j+1 Since the linear fractional transformation 

where in the last step we employed (1 1.5), (1 1.6). and the Rogers-Ramanujan 
A\ 
1 ( W )  - - 9- '  

We next examine the even approximants. Employing (1 1.4), reversing the order I + q - ' + w  
of summation in both the numerator and denominator. and applying (1 1.13), we 

has the two fixed points -q-I and - 1 ,  it follows that (1 1.l4)converges for Iq I > 1 .  
Moreover, the modified approximants 

., - . [ h - ; - ~ ] q - , q - ~ ' - j  

,, -1, - 1 q -  9 1=o - P - 9-' 9 - '  - - L 2 n - l \ l 3  q I 
9-I 1 

9-'1 2 [ 2 n , ; ~ ] ~ - , ~ - j 2  I + q-'q-2"+1 + W ,  

j=O also converge to the same value if {w, ]  does not have a limit point at - I .  (For in- 

n r1 - [ n + j  ] q - , q - ( n - ~ - j ) 2 - ( n - l - ~ )  5 2 [;21]q,2+2j 21+1 
j=o 

to the second continued fraction in ( 1 1.14). with wo = 0 and w,, = - I /q ,  n 2 1 ,  
- j =O 
- = 4  " we obtain the continued fraction 

Thus, by ( I  1.7) and ( I  1.10). 
which converges to the same value for 141 > 1. Again, this is a limit periodic 
cormrmed fraction. I ne attractive fixed pan t  ot 

J ~ O  (4; q)21+1 
lim C Z ~ - I ( Q - ' ) = ~  = q- 

n-roo 

i l ( w )  = - - 9 -3 
j=o (4.4/2j ' + q - ' t w  
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is -q-3. Hence, with wo = wl = 0 and w ,  = - q - 3  for n 2 2, the Bauer-Muir 
transformation of (I 1.15) is given by 

which converges to the same value. Repeating this process k times with 

K. Alladi [l]  has given another proof of Entry 1 1 that is similar toour first proof. 
However, he related his proof to the continued fraction 

TO be more precise, let P,,(q) and Q,(g) denote the nth numerator and denomi- 
nator, respectively, of the nth convergent of r (q ) .  Let T (9) : = @-Ir5 R(q). Then 
Alladi [ I ,  pp. 225-2291 proved that, for Iql < 1, 

which converges to the same value as (1 1.14). Repeating this process infinitely 
1 1  2\ w ~ f l l  17\r LO 

k by the uniform parabola theorem (Jones and Thron [ I ,  p. 99]), and since (1 1.3) 
converges, we conclude that (1 1.3) converges to the same value as ( 1  1.14). We 

(1  1 ?) fnr 

that the odd parl (Jones and Thron [I,  p. 43, eq. (2.4.29)], where the first minus 
sign is misplaced) of (1 1. I)  equals 

Moreover, in the sense of modified convergence, Alladi proved that r(q)  tends to 
T ( q ) .  1.e.. 

For the definition, importance, and historical background of modified conver- 
gence, see Jacobsen's paper 121. 

For the last entry on continued fractions found in the third notebook, we quate 
Ramanujan. 

Entry 12 (p. 383). If 
- 'I q5 qY ,115 , -2  ,3  

1 + q  + q 2  - 1 + q ' + q 4  - 1 + q ' + q O  - ... u : = L  
1 + i + -i- + T + . . . '  

4-' 9-I 9-I = 1 -  
I , - 1  , -2 - I -I +,,-4 - 140-1 +a-6  - ... then u2 + u - 1 = 0 when qn = I ,  where n is any positive integer except multiples 1 q  I q  4 ' 1  

of 5 in which case u is nor definite. 
- - I - -  9-I - 4 P  9-' 4-' 

] + q - 2  + 1 +q-4 - 1  fq -3+9-6  - 1 + q 4 + r 8  - . . .  
T h i ~ q ~ i i  rq 

- 5  
4-'  Q 4 -9 4 -$ established the following theorem. 

= I - -  , + q - 2  + 1 - q-" 9-4 + 1 + 9-6 - 1 + 9-5 + 9-8 

The last continued fraction is the even part of (1 1.2). Since ( 1  1.2) converges for 
Iq I > 1, the second proof of knuy 1 1 is 1 

Theorem 12.1. Let 

where q  is a primitive nth root of unity. If n is a multiple of 5 ,  K (q)  diverges. 
When n is not o multiple of 5 ,  ler A = (:), the Legendre symbol. Furthermore, let 
p denote the least positive residue o fn  modulo 5. Then, for n f 0 (mod 5) ,  



otary that K(1) = (&+ 1)/2and K ( - 1 )  = (& - 1) /2 .  
We provide a short table of further values of K (9 ) .  

n I K(a)  I 

Let f (x ;  q )  and g(x; q ) ,  respectively.e cooftheed 
in (13.1) and (13.2). We shall then prove that both f (x; q )  and g(x; q )  satisfy the 
same functional equation 

- for 0 < Iq 1 < 1 .  Furthermore, we shall prove that / ( q ~ u )  - gb; q L  It then 
follows from (13.3) that 

Entry 13 (Formula (41, P. 289). 
-. . . . 

F(a, b ,  h ,  q )  = b'a' b' A ' q )  
G @ q ,  b, h q , q ) '  

(13.5) 
qx 2 g3* q4 9 2  

2 2 1  - . -. 
12 

- - z $ q R L  nearly 

- - - 0- 9 2,  - 
conventrona on y a xly. 

(13.1). 

x + *  + x  + x  +...  The continued fraction on the right side of Entry 13 is equivalent to 

* 4 4 / X l @  ql ' /x  
Both fractions converge to rneromorphic functions of x  in @ - (0) I + 1 + 1 + 1 +. . - '  ~ [2 

L J ?  P. 
~0 ( - ~ ) ~ q ~ l  301). This corolla9' also appears in Ramanujan's [ l o ,  p. xxviii] second letter to x75- n=o (4 34 )n 

Hardy . 
q x  q2 9)x q4 - - 

1 - T + T - 1 + 1 - . . . ~c (-X)td9n2+2n ' Iql < 1, (13.1) To prove (13.3) for F ( x ;  q )  = f (x ;  q ) ,  we shall use the Bauer-Muir transfor- 

r , &  4, mation found in Penon's book [I,  p. 471. Briefly, a Bauer-Muir -sfomation of 
n = ~  I Y  . Y h a continued traction ~ I J  + K(a,,/b,) is a (new) continued fraction whose approxi- 

mane have the values 
and 

X-2n 4ft(n+l) &(a). .- - b+ 2 a2 ar - 
bl + G + . . .  + b k + W ) 7  

k - O , 1 * Z . . .  . 
qs q'z - qn$, (q4;q4)n 9 d - - Iql < 1. (13.2) + x +;+ x + . . -  x o" x - ~ ~ ~ ~  ' Such a transformation exists if - 

n Z o  (4'; 9'Jn 
- 

Ak := ak - Wk-l(Bk + W X )  # 0, k 2 1, (13.6) 
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TO prove (13.3) for F(x;  q )  = g ( x ;  q ) ,  we just observe that replacing x  by q2x 
and ~t IS glven W in (1 3.2) yields 

A1 ~ I ~ / A I  &A3 112 
60 + wo + - 
-Mwl ablefftl.L' -- + h, &w* - W l A l / ) c 2  + . . '  

(13.7) - 

Suppose t h a t 3  + K(an jb,) conveQes to a value f E e. Let to # f be Milrsnly 
x + x + x  + x  +. . -  

-. k > 1. m e n  SThen(wr) tends to f as well, 
- - I/q = 1 

- r J  Id , . .  

unless the chordal distance d ( w k ,  q) has a limit point at 0. Hence, the Bauer- * ' qb \ - "q )  qi ~-9q) 

Muir transformation (13.7) converges to f as well, if limk,, inf d(wk, r k )  > 0 which is what we wanted to show. 
(-. 

- 
We shall apply this to the odd part 

q2  

4 3x q7x p x  ( q )  1-  - ? !L4 g 1 + I - 1 + 1 -... (13.10) 

2(1 - a)+ + + 4 ( 1  - Q X )  + 1 + q6(1 - q x )  4- . . . a d  

).k = ak - W L - 1  ( b ~  + wk) = 42t-2 # O? where the last equality is obtained from an application of the Jacobi aiple product 
identity. The identity (13.12) wwas p r d  h *P in m. 7 s  - 371 i., 

so that (he Bauer-Muir transformation exists, converges to f (xi q ) ,  and is given mentioned by him in his Introduclion to the lost notebook [I 1, p. xxi, eq. (10.6)]. 

by Zagier [ l ]  independently also established ( 1  3.12). From (13.12), it is obvious that 
F(g2"+I; 9 )  = 0 for each nonnegative integer n. We thus have obtained a second 

1 qSx q9x 
f(x9 B)+' 

I * / r  -7 C . . . proof of (13.4). Of course, the second proof is shorter than the first, but the first . - -  
I - q ' ~  + 1 + q L 0  - 4  x ) - + r \ l  y d  

(13.9) to prove. 
enrmman me second, because ( 1  3.12) is somewhat difficult 

comparing (1 3.8) and (1 3 . 9 ,  we find that If x is not an odd Power of 4 ,  in what sense are f ( x ;  q )  and g ( x ;  q )  near each 

1 
. . -d extensive calculations to answer this question, and 

Zagier [I1 established Cohen's conjectures as well as much more. we give a brief f ( x ; q )  = -qx  + ~ ( ~ 2 ~ ; ~ ) .  
summary of some of Zagier's results. We always assume here that 0 c q < 1 and 

which proves (13.3) for F ( x ;  4 )  = f ( x ;  4 ) -  
n 7 8. 
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/ n 2 / 5 \  Entry 14 (Formula (2). p. 290). 

In particular, as q tends to I - ,  

f(1; 4 )  - d l ;  4) - (5 - d'%"5~ + w e 2 ) .  (13.13) 

- .  - - - - 5  - 
x + x +  x + x + . . .  nearly. 

The analysis for Entry 14 is very similar to that for Entry 13. Both continued 
fractions converge to meromorphic functions of x in @ - 10) for Iq I < 1. We shall 

Pme rmt 

qx 4'x q2x q6x 4% 4 9x 1 -  - - - - - 
l + q + l + q Z - I + q 3 + 1 + q 4 - l + q s +  I + q 6 - . . .  

(-x)nq(n'+n)/~ 

f ( x ;  4) - g o ;  q)  = 0 (13.14) - - n=n (4'; q2),, (14.1) 
a0 ,- - z*.,nr,7 9 141 < 1. 

,, - 
Note that the asymptotic behaviors for x = I and x near 0 are different. 

A ) T  

In general, Zagier [ I ]  has shown that 
n=o (q2; q2)n 

and 

a s q  tends to I - ,  where B = ( n  logx)/(2 logq) and 
L 
n=o (4'; q2)n 

Let f (x; q)  and g(x; q) ,  respectively, denote the continued fractions on the left 

+ log2 (,/-4 + +/2) - logx log (dl + x2/4 tx12) nonnegative integer n ,  by invoking the same theorem from Rarnanujan's lost note- 
2 

book that we used in Section 13. Thus, we shall easily see that the "closeness" of H(x; q )  CC h e  

a3 analysis of Section 13. 
LiZ(t) = C t n / n 2 ,  Ill 5 1. 

define 

since L~, ( I )  = r 2 / 6  and ~ i 2  ((3 - &)/2) = "'/IS - log2 ( ( I  + &/2) 

(Lewin [I ,  p. 71). we find that c(0) = n 2 / 4  and d l )  = n2/5, in agreement with 
(IW) and (13.14). 

Zagier's analysis shows that, for instance, f (x; 0.99) and g(x; U.W) agree to 
about 85 decimal places if x is near I, about 96 places if x is near i, and about 
107 paces i fx  is close to 0. The function c(x) becomes negative for x larger than 

about 6.177. Thus, forx larger than this, f (x; q )  - g(x; q )  becomes exponentiaUg 
large as q tends to 1 -. 

We do not know the meaning of the words "conventional only" in Entry 13. 
For Entry 14, we again quote Ramanujan. 

and 
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Hence, the first continued fraction in Entry 14 converges for Iql < I to the value 

- wnere we nave employea (13.n) wlm q' replaced by q and x replaced by x ~ q .  
It follows that f (qn; g )  = g(qn; q),  for each nonnegative integer n. We also see 
that Zagier's analysis can be applied mutaris mutandi, after the aforementioned 
changes of variables are made. 

It is interesting to note that the continued fractions in (13.1) and (14.1) are 
connected to the basic hypergeometric functions 

00 
(a; q M b ;  q h  

?(PI (a, b; c; q;  z )  = zn, Izl < 1. 
,,=O (c; 4)n(q; q)n 

00 (-rlnn(n2+n)/2 For example, we shall show that the continued fraction in (14.1) can be derived 

oc (-X)"q("2+n)/2(1 + q n )  
C q k ( l  -aqk) (b  - cqk) 

(2.3) -. ,. , and a a =  - qk-I( I - bqk)(a - cqk) 
a2k+l = .. 

n =O IV , Y  I n  (1  - Cq")(I - CqL-) 
w .. - 

(1 - cq-- ' ) ( I  - cq'") = - 1  + 
k t  a = 0, c = - 1 ,  and z = xq lb ,  and let b approach m. We then find that 

& + I  3k 

-azt+lz = - 4 x  9 x  
(1 + q2k)(1 + q2"f') 

and - aaz = 
which immediately proves (14.1). ( 1  + q2k-1)(1 + q2k) ' 

By the corollary of Entry 15 in Chapter 16 (Part 111 (3, p. 301). Thus, the continued fraction in ( 1  4.4) reduces to the one in (14.3). Likewise, since 

lim (b; q),b-" = (-l)nq'n2-"'12 and 

the left side of ( 1  4.4) reduces to the left side of (1 4.3). The identity ( 1  4.3) follows 
then, since the continued fraction (14.4) converges uniformly with respect to b in 

From (14.1) and (14.2). 

Proof, In (13.5). let a = 0, replace b by -b, and set 1 = a. Upon observing that 
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e the second equalities of (16.1) and 

Entry 16 (p. 373). For Iql < I ,  

and 

and 

These last two identities have been proved by L. J. Rogers [ I ,  pp. 330,33 I]. Hence, 
the proof of Entry 16 is complete. 

Entry 17 (p. 374). Let a, b, and q be complex numbers with Iql < 1 .  Dejine 

Entry 18 (p. 373). For Iq 1 < I ,  

( -q4;  q10)m(-q6; qlO)oo(-q; q l O ) ~ ( - - q g ;  qio)m Beneath this continued fraction, Ramanujan writes - - 
(-q2; qZ),(q; qS)m(-q;  q5)rn(q4; qS)m(-q4; qs)w 

d - q 3 )  Nurn? = - and Den? = - w3) 
/M A\ - I f ( -q )  f ( -a21  ' 

- 
( -q2;  q2),(q; q5),(q4; qS)oc In fact, he has incorrectly inverted the identifications of the "numeratorw and 

"denominator" on the left side of Entry 18. 

5 1 I), 
9 PP. -5b, 
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where r ( q )  = ( -q;  qZ)m.  On the other hand, by Entry 22 of Chapter 16 (Part 111 By Andrew' paper [ I ,  eq. (1.1)], 

Furthemore, by [ I, eq. (1. I)], 

Hence, we have shown that Ramanujan has mistakenly confused the roles of the lim C ~ , l ( w x q ,  w- 'xq;  x ;  q )  
1-0 

"numerator" and l e n o m i a ~ r ,  we now k. 
(- l)nq3n(n-1)/2 

written in the more transparent form 
= 2 

& 2 )  
,a ( 9 ;  q ) n ( ~ - ' ;  q ln(w;  q)n 

G ( q )  := * - - - -  (18.1) 
( q 3 ; q 6 ) 5 1 +  1 + 1 f . - . -  - I (1 - cu-lqn)(l  - oqn)(-1)n93n(n-liP 

- 
(1 - o - ' ) ( l  - W )  n=O (Q'; q3)n 

The first proofs of ( I  8.1) in print are due to Watson 121 in 1929 and Selberg [1, 
p. 191 in 1936. B. Gordon [ I ]  and Andrews [ I ]  found proofs in 1965 and 1968, 

(19.4) 
-. . 

respectively, wh~le Hirschhom 131 has shown that (T8. l )  can be deduced from 
Ramanujan's continued fraction (1 3.5). Ramanathan 121, [3 ]  has briefly discussed 
(18.1). L.-C. Zhang [I] has examined (18.1) when q is a root of unity. 

A deta~led study ot G ( q )  has been made by H. ti. Chan [ l ] .  He has derived 
modular equations relating G ( q )  with each of G ( - q ) ,  C ( q 2 ) ,  and C(q3) .  Using 
these and other modular equations, he has determined values for ~ ( f  e - " A )  for 

1 
(O+ (9 ;  q3)m + (9'; q3)m), - 

several positive rahonal numbers n .  The author, Chan, and L.X. Lhang (11 have 
found general formulas that enable one to evaluate ~ ( f  e P n f i )  in terms of class where we have employed an identity of Euler (Andrews [4, p. 191). By a similar 
invariants. argument, 

by another application of Euler's identity. 

2 2 a = - l / ( x  q ), and b = l / ( x q ) ,  where w = exp(2ni/3).  Thus, I / ( a l a 2 )  = -a 
and 1 / a l  + I  /a2 = -b, as required in Theorem 6. Accordingly, by the same 

lirn 
1 

argurnern as rn me "'O & . I  (wxq,w- 'xq;  x ;  q )  
uniform parabola theorem (Jones and Thron [ I ,  p. 991). we find that - 1 

H2,1(0xq, w- lxq;  xq; q )  

where the identification of will be made shortly. Comparing Entry 19 and 
(19.1). we see that it remains to show that 

- - 1 - (q2; 93)w -- (a. Q3& 

(q2; 99.m 
This completes the proof of (19.2) and hence also of Entry 19. 

The functions Ck,i studied by Andrews in [ l ]  also appear prominently in his 
paper [3, Sect. 2). These functions play a crucial role in the full three parameter 

(An-s lLJ1. 
- 
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In Ramanujan's [lo, p. xxviii] first letter to Hardy, he states the Rogers- It follows more generally from Entry 12 of Chapter 16 that 
Ramanujan continued fraction and some identities involving it. Ramanujan con- 
tinues by claiming "The above theorem is a particular case of a theorem on the 

@q3; q4), I bq - hq"qs 
(bq;q4)a, 1 - I + q 2  - 1 f q 4  - I + q 6  > 141 -= 1. 

continued fraction 

1 a x  ax2 ax3 ax4  ax5 Now let Iql > 1 and set q = I/a,  SO that la1 < I. Then, as in (20.1). 
T + T + T + T + T + T + . . . '  

which is a particular case ot -tract~on 

1 ax ax2 ax3 

which is a particular case of a general theorem on continued fractions." It seems 
possible that Andrews' Theorem 6 of [I] giving an evaluation of 

Although the continued fraction above is symmetric in q and l /q ,  the product 
(bq3; q4),/(bq; q4), does not share this invariance. However, if b = -1, then 

ry 21 (Formula (S), p. 290). For Iq 1 < 1. 

(--q2; q2)w - - 1 q q2 + q  q3 q 4  + q 2  qs 

(-9;q2), i + i +  I + I + 1 + 1 +..: (21.1i 

9 3 5 Entry 21 was - -  - - - - 
(q ;&,  1 - 1 + q 2  - 1 +q4 - 1 + q 6  - . ' . '  been given by Ramanathan [4]. We provide yet another proof based on Entry 15. 

This result is simply the case a = 1 ,  b = 0 of Entry 12 of Chapter 16 (Part 111 

for 141 > 1. In fact, set q = I/a,  so that la1 c 1. Then 

Proof. Applying Entry 15 with a = I and b = - I ,  we find that 

(Alternatively, this can also be proved by using (13.5) in Chapter 16 of Part 111 
n - -  

once again, we find that the numerator and denominator on the left side above are, 
respectively, (-q; q2), and (-q2; q2),. The desired result now follows. 
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Entry 22 (Formula (61, p. 290). For Iq 1 < 1, Entry 24 (p. 281). lfRe x > 0, 

1 
*(x + 1) - qf ( i x  + 1 )  + - X - log 3 

,? -3 -. r l  4 l r - 2  -. - - - .' - - - - - - - -  
x 2 +  6 + 3x2 + 6 + 5x2 +. . .  (24.3) 

The first published proof known to us is by Selberg [I ,  eq. (53)]. Other proofs 
have been given by Andrews 151 and Ramanathan [4]. Entry 22 also appears in (3k - 1)" (3k - 1) (3k + 1)" (3k + 1) 

pp 

Ramanujan's "lost notebook" [ l  11. Another continued fraction for the left side of + 6 + (2k+I)x*  +. . . '  
Entry 22 has been found by Andrews [I]  and Gordon [I ] .  Chan and Huang 111 
have developed an extensive elegant theory for these continued fractions, including 
modular equations and explicit evaluations. 

Entry 23 (p. 373). For Iql < 1 ,  

*roof. If L, m, or n 1s an Integer or lt Ke x > U, men by Entry 33 ot Chapter 12 - 
(Part 11 [2, pp. 156, 1571, Jacobsen [4]). 

I - P  -- - 
2Crnn 

1 + P  x 2 - C 2 - m 2 - n 2 + 1  

i? 4(e2 - j2)(m2 - j2)(n2 - j 2 )  

+ j=1 ( 2 j + 1 ) ( x 2 - e 2 - m 2 - n 2 + 2 j 2 + 2 j +  I ) '  (24.4) 

By the Jacob1 triple product ~dentlty, we may rewnte Entry 23 in the form 
where 

Hence, Entry 23 is equivalent to Entry 22. Dividing both sides of (24.4) by m and letting m tend to 0, we find, upon an 
application of L'Hospital's rule, that 

i { d ( ! b & p  - n + l l  +,I,( - I ,  ,. - p + a - c l ) \  
L P -  - " - ' - ' I  

Functions - I t ( i [ x + t + n + l } ) - @ ( f ( x - ! - n + ! ) ) )  (24.5) 

2eu M - 4,Z(pZ - i 2 ~ 2  - ;2) 

For the first result, we quote Ramanujan [9. vol. 2, p. 2811. We have , v J I - - K 
x2 - e2 - n2 + 1 + j = l  ( 2 j  + 1)(x2 - C2 - n2 + 2 j 2  + 2 j  + 1)' 

The symbol I/x denotes Eke, I /  k. However, (24.1) is clearly incorrect with 
this interpretation, because the kft side is discontinuous for positive, integral x. 
while the right side is continuous for such x. Now if x is a nonnegative integer. 
then (M. Abramowitz and I. A. Stegun [I,  p. 2591) 

- - 
I [ I ,  p. 138]), we shall then take the left side of (24.2) as our interpretation of 

I /x for all positive numbers x .  

We must justify the limiting procedure. Let e ,  n, and x be fixed with Rex > 0. 
Of course, if the continued fraction terminates, no justification is necessary. So 
assume that t and n are not integral and that Iml < 1. Let K(ak(m)/bk(m)) 
denote the continued fraction in (24.4), but with the first partial numerator divided 
by rn, and let fk(~n) and f (m) denote the continued fraction's kth approxirnant 
and value, respectively. Without loss of generality, we assume that f (m) # oo 
in a neighborhood of m = 0. (Otherwise, consider 1/(1 + K(ak(m)/bk(m))).) 
Furthermore, let gk denote the kth approximant of the continued fraction in (24.5). 

>I",gk = ! ~ ~ f ( r n )  =: f(0). (24.6) 

Suppose that the convergence of fk(m) to f (m) is uniform with respect to m 
in a neighborhood of rn = 0, i.e., for some .s > 0 and Im I -= 6 ,  
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where lk tends to 0 as k tends to 00. Also suppose that fk (m)  tends to gk as m 
tends to 0, uniformly with respect to k in a neighborhood ot k = oo, i.e., there 
exists an integer ko such that fork ko,  

where r(m) approaches 0 as rn tends to 0. Now, 

- I J ~  - E ~ I  < I ~ W  4( il + ~ f (  - m m) - fk(mji + ifk(mi - gki. 

Thus, (24.6) follows provided that (24.7) and (24.8) hold. Indeed, these two state- 

Thron 121). 
Next, the even part (see (64.1) below) of the continued fraction in (24.3) is given 

where y denotes Euler's constant, we find that 

$(f(. + 1)) + * ( f ( x + 2 ) )  - * ( + +  1) - q ( fx)  

= 3+(x + 1) - 3@ + + 3 lim (log N - log 3N) 
X N+ca 

Using the foregoing calculation in (24.9), we complete the proof. 

Hence. by (24.5). with e = i ,  n = f ,  and x replaced by 2x/3. 
Entry 23 W'ormula (5), p. ZVZ). m e  x > 0, then 

CFE(x)= $ 1  { + ( i ( x +  l ) ) + $ ( f ( x + 2 ) ) - $ ( f x + 1 )  - * ( f x ) ] .  
(24.9) 1 e 1  

Since (Abramowltz ana Xegun 11, p. 
e- 
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Proof. Replacing x by 2x in Entry 30 of Chapter 12 (Part I1 12, p. 1491) we find 
that 

Entry 26 is, in fact, due to T. J. Stielties 111.13. pp. 378-391 1. It is also . . 
Wall's book [I,  p. 371, where 4z2 should be replaced by 42'. 

where 

After some elementary algebra, we find that 

Proof. From the corollary to Entry 30 of Chapter 12 of the second notebook (Part 
11 [2, p. 150]), we find that, forx = 2n + I and Rex = Re(2n + 1) > 0, 

lu I ,  I i4 
a T 

24 
1/(2x) and -( l ,x)  #O,wefindthat 1 ( 4 n 2 + 4 n + I ) + ~ + 5 ( 4 n 2 + 4 n + 1 ) + ? + . - .  . 

an 

" 1 
(27.2) - 

I - 2x?(n, x) We shall use the Bauer-Muir transformation (13.7) to prove that this continued 
an fraction converges to the same value as the one presented in this entry. lim F ( n ,  x )  = lim 

n+ l n+l - a T 
I - n) - h, r) Choose cwu = 0 and -+I = -(2k + for each nonnegative integer k. From 

an (13.61, 

we see that the proof is completed after a little algebraic manipulation and 
-. ''a 

? A  

Entry 26 (Formula (6), p. 293). If Rex > 0. then 

A = 1, k2k = 4k2(2k - 112, and Ax+, = 16k4, 

for each positive integer k. Moreover, 

and 

Hence, the continued fraction in (27.2) is transformed by (13.7) into the continued 
fraction 

Since the even approximants of the two continued fractions coincide and since both 
continued fractions converge for Ken r - i ,  the proof of Entry 27 is complete. 
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In the foregoing proof we have seen that the even approxirnants of the continued for each positive integer k. Furthermore, 
fractions in (27.1 ) and (27.2) are identical. ~ h u s ,  an alternative proof can be derived 
by showing that rhe even parts of (27.1) and (27.2) agree. Such a proof would be a2kk2t+l /AZP = k(2k - 1). 

shorter and simpler but not as instructive as the constructive approach via the ax+l).zk+z/).ur+~ = (k + 1)(2k + I), 
Bauer-Muir transformation. b2k + Yli - ~ k - 2 k 2 k / h - l  = 1, 

If we let n = 1 in Entry 27, we find that 
and 

. I 2  P.92 f 2 . F  
- = C(2) = I + - 2 + 3 + 1 0 + 7 + 1 8 + . - .  +*+I - @.?k-lA2k+1/h2k = 2n2 2n. 

Thus. the Baua-Muir transformation transforms the continued fraction in (28.1) 
mm- 

Letting n = 1 in Entry 28 below, we deduce that I 1 . 1  1 . 1  2 . 3  2 . 3  

2 n 2 + 2 n +  1 + 2 n 2 + 2 n  + 1 + 2n2+2n +... '  
Since the even approximants of the two continued fractions coincide and since 

I .I - - oom c a ~ a c n o n s - c u n v e r g e f o r f t e  n r 2 ,  1-. 

Entry 28 (p .  325). Let n be a complex number such that Re n > - f . Then 
Alternatively, the even part of the last continued fraction in (28.1) is precisely . . . . 

[ - I ) ~ + '  1 1 . 1  1 . 1  2 . 3  
F-iTF= ( n + ~ ) ( ~ + i + Z 7 T G + T  

me 28. Tm -. 

k = ~  Entry 29 (p.  343). Let x and n be complex numbers such that either Re x > 0 or 

1 - - 2 . 3  3.5 3.5 m k. T h  

I-* (+ + 3)) id , , n2 

notebook (Part 11 [2, p. 1491). it follows that ' (x  + 1 + 4W 

- 4 n2+12  n 2 + 3 2  n2+S2 
w - + 1 1 2  22 32 - - - - -  - + 7 v  + 3r + ... ' - - - - -  X - 

' k x + 2 k - l  x + x  + x  + x  + . . , '  

for Rex > 0. Setting x = 2n + 1 ,  we find. via equivalence transformations. that 
Proof. Replacing n by i n  in Entry 25 of Chapter 12 (Part 11 L2, p. 1401). we find 

However, from Euler's product formula for the gamma function, 
' 

1 - - .  
( ~ + 2 )  r (:(x + i n  + 1 ) )  r (!(I - in  + I ) )  = 

r2 ($ ( x  + 1 ) )  
(28.1) 

forRen > -4. 
We apply the Bauer-Muir transformation (13.7). Let w a  = 0 and y k + l  = 

-(2k + 1)/2 for each integer k 2 0. Then from (13.6). Using this formula and an analogous formula in (29.1), we complete the proof. 
(A product representation for Ir(x  + iy)12 i s  given in Gradshteyn and Ryzhik's 

A ~ = I ,  A 2 k =  - 1 ,  d k2k+l - X2, tables [ I ,  p. 945, formula 83%. no. I].  j 

1 1 2 .12 L 2 . 22 t . 32 
2 n 2 + 2 n + f +  1 + 2 n z + Z n + ; +  1 +.. .  

- 
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Entry 30 (p. 343). For all complex n , Entry 33 (p. 344). Let x and n he complex numbers such that either Rex > 0 or 
n = (2k + 1)i for some integer k. Then 

tanh(zn/4) 1 n2 + l2  n2 + 32 n2 + s2 
- 00 

n I +  2 + 2 + 2 +... '  2 J 7 ,  - I 

g U + L k f  I Y + n L  
bf. Setting x = 1 in Entry 29, we deduce that 

- 
/ n \  

- 
1 12(n2 + 1') 2'(n2 + 22) S2(n2 + 3=) 

2 - 
I X I 

9 
7 5x t / X  . . . 

I n 2 + 1 2  n 2 + 3 2  n 2 + s 2  

Proof. In Entry 30 of Chapter 12 (Part I1 12, p. 1491) merely rep- and 

\2(2k + I)  1 the desired result immediately follows. 

However, by a familiar product representation for tanh z ,  the left side above equals 
(I i n )  tanh(nn/4). 

Entry ju may also 'be found in 0. rerron's book [ l ,  p. 36, eq. @3jJ. Entry 31 
below is also in Perron's text [I, p. 331. 

4. I -.-\ . Emry 31 (p. A +a). L ~ I  x n be comp'ex d m  . . mdrtfmr eirher Rex > 8 op 
n = (2k + 1)i for some integer k. Then 

Entry 34 (p. 343). For every complex number n, 

n = 8. Inus, assume that n # 0. 
Setting x = 1 in Entry 33, we find that 

Proof. Replacing n by in in Entry 29 of Chapter 12 (Part 11 [2. pp. 147,148]), we 
find that, under the conditions given above, 

n / n n  2 1  100. 1 - ,-0th - - - - - 
2n ( 2 ) n n )  2 & (L + 1)' + n2/4 

Upon multiplying both sides by n2 and rearranging, we complete the proof. 

Entry 35 (p. 344). Let x and n be com~lex rh/rtpltkpr 1 - - 
2 

with x 4 (-$,O], or  n = ki for some integer k. Then 

w 

Entry 32 (p. 344). For all complex numbers n, ProoE In Entry 31 of Chapter 12 (Part I1 (2, p. 1 SO]), replace n by 2in and x by 

m ( - ~ ) ~ + l k  1 h2 + l 2  22 4~~ + 32 42 
2.x + 1 .  Then, under the proposed hypotheses we find that 

-- - - - 
& = I  k 2 + d  I +  1 +i+ T+i+...' I CO ( - I ) k  

~ ~ C ~ + l + k ) ~ + n Z  

Proof. Set x = 1 and replace n by 2n in Entry 31. - 1 4 + 4n2 22 42 + 4n2 42 
-- - --- 

4 x 2 + 4 x  + 1 + 4 x 2 + 4 x  + 1 + 4 ~ 2 + 4 ~  +. . . *  In the continued fraction of Entry 32, Ramanujan inadvertently wrote n2 for . . 
4n'. displayed In bntry 35. 
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Entry 36 (p. 344). Let m ,  n, and x denote complex numbers such that either 
K ~ x  > U, or m = I J  lor  an rnteger j and x # -(Lk + I) for any nonneganve 
integer k, or n = i j  for an integer j and x # -(2k + 1) for any nonnegative 
integer k .  Furthermore, let 

) and ~ = f i { l + ( ~ ~ ~ ~ ~ ~ ] .  
k=O k=O 

Then 

Proof. Putting x = 1 in Entry 36, we see that it only remains to show that 
(U - v)/(u + V )  reduces to the left side of Entry 37. 

Using a familiar product representation for sinh z, we see that, when x = 1, 
1 - n )  

- - - 
u + v ( m  + n)-I sinh ( f n ( m  + n ) )  + (m  - n)-I sinh ( i n ( m  - n ) ]  

- 
- - 

2m sinh ( i n m )  cosh ( i n n )  - 2n sinh ( i n n )  cosh ( i n m )  

- m tanh (4nn) - n tanh ( i n m )  
- 

m tanh (f n m )  - n tanh ( i n n )  ' 

and so the proof is complete. 
Proof. Assume that x, m ,  and n are positive. In Entry 33 of Chapter 12 (Part I1 
[2, p. 155]), replace m and n by im and in, respectively. Employing a product Entry 38 8.345). Let m and x be complex numbers such that either Rex > 0. 
formula for Ir(x + iy)12 (Gradshteyn and Ryzhik [ I ,  p. 945]), wc find that, under or m  = k(l + i ) / 2 ,  or m = k(l - i ) /2 .  for some integer k. Furthermore, set 
the given hypotheses, 

- 
-mn (m2 + 14)(nf + 19 (m2 + 2')(n2 + 2*) u 
- 

x + 3x + 5x + ... 
and 

- l / u - l / v  v - u  
- -- - 

I / u + l / v  v + u '  

This completes the proof for x > 0, m > 0, and n > 0. Since the continued 
fraction converges to a merornorphic function of x for Rex > 0, the entry holds in 

converges to a meromorphic function of m and of n ,  it follows that Entry 36 is 
true for all complex m and n. That the equality holds if the continued fraction 
terminates follows by straightforward computation. 

Entry 37 (p .  344). I fm and n  are complex numbers with m # n,  then 

m tanh (inn) - n tanh (trim) 

Proof. We apply Entry 33 of Chapter 12 (Part 11 [2, p. 1551) with m  and n replaced 
+ i l  
or for (1 f i )m = k for some integer k, 

L L  # . L  r 

m tanh (f n m )  - n tanh ( i n n )  
a i v  

where in the penultimate step, we used the same formula for I r ( x  + iy)12 that we 
mn (rn2 + 12)(n2 + 1') (m2 + 2')(n2 + 2') - -  - used in the proofs of Entries 29 and 36. The result is then valid for all complex m 

I + 3 + 5 . . . and an Complex x with KeX r 0 by analytic continuation. 
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Entry 39 (-p. 345). For arbitrary complex n, and thatx2-12-m2-n2+2k2-2k+1 i swans f -PX~+~X+~J~-M+~.  

- sin(nn) - 4n4 + l 4  4n4 + 24 k4 + 34 
Thus, the continued fraction that arises from Entry 35 of Chapter 12 equals 

- --- 
sinh(nn)+siJI(nn) 1 + 3 + 5 + 7 + " -  2n3 4(n6 - 16) 4(n6 - z6) 

4 x 2 + 4 x + 2  + 3(4x2+4x+6)  5 ( 4 x 2 + 4 ~ +  14) +...  . , 

- n3 n6 - l6 n6 - 26 (40.11 
proac. Seuing x = I and replacing m by R in Entry 38, we deduce that - - 

7r2  ~ 7 , .  - , .  1 + ..,(A.A U ? ~ Z  , I - I J  q w  

2n2 h4 + l 4  4n4 + 2' --- We now examine the gamma functions appearing in Entr). 35 with the para- 1 +  3 + 5 +... metric designations given above. Letting o = eZr'f3 m d  using Euler's product 
n I - representation of the gamma function, we find that, in the notation of Enhy 35 of 

t=o r ( 1  + n ) r ( l -  n) Chapter 12, 
- - 

where we have employed a familiar product representation for sinh z and the 
reflection formula for the gamma function. This completes the proof. 

Then 1 - P  1 - v / u  u - v  -=-=- 
U - U  1 + P I + v l u  u + u '  
-- n3 n6 - l6 n6 - Z6 - 
n + o  W + ' h + l  I & ? 2 r + 2 ~ t 3 )  I 3% 7 2 ~ ~ 7 )  I . - .  I "  1 1 I 7 I I .  

Entry 48 (p. 345). Let x and n be complex numbers such that either Rex > - i; 
or pn is an integer, where p is a sixth root of unity, and x is a ~ g a t i v e  integer. m 1 - (A)~ ' 

- x + l + k  
P urthennore, let 1 1  

( n t =O . I 1 

me 
1. In the notebooks, Ramanuian mistakenly indicated that this constant is equal to 

- 
\ " - u .  

2k - 1. Thus, Ramanujan wrote 5 instead bf 7 in the third denominator displayed 
above. Rarnanujan's error can be traced back to a scribal error in recording Entry 
40 of Chapter 12. For a discussion of this error, see Part 11 [2, pp. 163, 1641. Note 
that if pn is an integer, where p is a sixth root of unity, the continued fraction 
terminates. 

\ x + I + k j  , 
1 ) '  a d  u = f i ( b (  k=l 

Hence, by Entry 35 of Chapter 12, the continued fraction (40.1) equals 

Entry 41 (p. 347). Suppose that m, n, and x are complex numbers suck that 
x > 8, o r  a s s m e  that n 18 an integer o r  that im is an integer. Then 

Proof. We shall apply Entry 35 of Chapter 12 (Part 11 [2, pp. 156, 1571, Jacobsen 
[4]) with t = ezr%, m = e4"'/hn, and x replaced by 2x + 1 .  Observe that Proof. In our proof below, we will temporarily ignore the fact that tan-I z is 

multivalued. At the end of the proof, we shall show that the correct branches have 
been chosen. 
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. . m hv m m E m  33 of Chapter 12 (Part 11 12, p. 155]), we find that, On the other harul, 
for Rex z 0, or n E Z, or im E Z, 

m m 

m m 
inln ( I *  + m2)(12 - n 2 )  (2* + rn2)(2' - n 2 )  - - - + ... x + 3x + 51 ' ~ l  l r  

2mn 
Suppose first that x ,  m, and n are positive, and let 

I :  I I .m)  -. " A;  I )  ; i ) ( 2 ( x  , ? + I ) -  51 ..., . rn -k for the limit as x + m can be taken under the summation sign, since the senes 

where a and b are real. Multiplying both sides of (41.1) by -i and then taking the 
inverse tangent of each side, we see that 

converges uniformly for In1 5 x < CQ. Thus, our calculations (41.2) and (41.3) 
demonstrate that Entry 41 is correct forx sufficiently large and positive. However, 
since both sides of Entry 41 are meromorphic for Rex z 0, the equality of Entry . - 

" ?. ~ a l  ? \  m')(L' - f f )  
41 must then be valid for all x with Re r r 0. 

'+rn')(lL-n-1 (2-+ 

continuation. 

In orderto calculate T, we employ Euler's productrepresentation forthe gamma 
function. Hence, 

Entry 42 (p. 347). Let m, n, and x denote complex numbers. Suppose that either 
Rex > 0, or  m = 2ir  for some integer r ,  o r  n = (2s + 1)i for some integer s. 

Thus, formally, the proof has been completed. 
To cornplcte the proof, we first apply Stirling's formula to show easily that, for 

r ( i ( x + n + i ) + f i m ) r ( f ( x - n + O - f r m )  
lim = 1. 

x 4 m  r (&(x - n + 1) + i i m )  r ( i (x  + n + 1) - i im) 

Proof. As in the previous proof, we temporarily ignore the fact that tan-' z is 

In Entry 34of Chapter 12 (Part I1 [2, p. 1561, Jacobsen [4]) replace e by im and 
n by in .  Thus, under the given assumptions on x ,  m, and n ,  

im n Z + 1 2  m 2 + 2 2  n 2 + 3 2  mZ+42 1 - P  
- - A 9  1 

x +  x + x + x + x +...  I + P '  

where 
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- nf (42J) bv - r . . n- 

and then applying the operator tan-', we deduce that 

1 
""I (-n)2k an-u , -, j rn n2 + l 2  rn2 + 22 n2 + m2 + 4' A"=C-- ---- kt 

b .  

1 x + x + x + x + x + ... J (42,1) k=O 

Then, for each positive integer N ,  as x ten& to 0 through values such that 
= - tan-'&/a) = - Im(log a) =: -T. Re(bx2) > 0, 

Employing Euler's product formula for the gamma function, we find that 

- r ( f ( ~ + ~ + j - ) + ~ m Q r ( ; c . + l + i c m  - a))) 

1 26 4b 66 N - I  
- - - - -  - 

a +  a + a + a + . . .  
11= 1 

k=O 
r\ 
U U l  OI CPmy 44 

" ' 
" is slightly more precise than that of Ramanujan. A + ~ m l o g ( f ( x  + I + i ( m  - n ) )  + k )  proof of Entry 44 has been given by Watson [3] for the case when a > 0, b > 0, 

+ I ~ I O ~ ( ! ( X  + 3 - i ( m  - n ) ) + k ) + l r n l o g ( ~ ( x + 3  - i ( m  +n) )  + k ) ]  and x > 0. The extension to b/a2 E @ - (-w,  01 and ~ e ( b x ' )  > 0 follows . . an;rtyrircontlfmmon, since the continued fraction converges to a holomorphic 
function of (a ,  b) for b/a2 E @ - (-w,O], and the series on the left side converges 
to a holomorphic function of (a ,  b )  for ~ e ( b x ~ )  > 0. The reader should note that 

- 
- tan-' - tan-' of aamanujan, Watson, and the authors for Bernoulli numbers are 

x + 3 + 4 k  different. 
The next result was communicated by Rarnanujan [lo. p. 3521 in his second 

Hardp and is simply [he case a = 1, b = 4 of Entry 44. We precisely 
(42 .3)  quote Ramanujan below, but, u d  

Using (42.3) in (42.2), we formally complete the proof. as above. Ramanujan tacitly assumed that x z 0. However, the result holds for all 
To show that we have, indeed, chosen the correct branches inall our calculations, x E @ with ~ e ( x * )  > 0, i.e., for 1 arg xl c n/4. 

Since the details are very similar, we omit them. Corollary (Formula (3), p. 276). When x is small, 
If mil2  or (ni - l ) / 2  is an integer, the continued fraction terminates. The 1 1 2 3 4  00 

a s m  t h q ~ d ~ t D r o o f o f 4 1 .  - - - ( I  +nx) ' /2  
1 + i + i + i + i + . .  x & E ~  

Entry 43 (p. 347). Let x and n denote complex numbers. Assume either that 
R e . r > f l / w n  - j t , - ~ ~ j  Then 

. . 

Proof. Set m = n in Entry 42. 

Entry 45 (Formula (4), p. 276). The formal power series 

has the corresponding conrinuedfraction 

4. Other Continued Fractions a 
C F ( x )  := ' az 2 

x + x + x +... '  
Entry 44 (Formula (2), p. 276). Let a and b be complex numbers such that where ak > 0 for 1 5 k < 00. In particular, a ,  = a2 = 1, a, = 30. = L ~ Q .  
a $ 0 and 1 arg(b/a2)1 < n. Ler B, denore rhe nrh Bernoulli number. For each and as = 493. As before. B j ,  0 5 j < 00, denores the jth Bernoulli number. 
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Thron I I .  From the Laurent expansions of cot t and coth t about the origin (Gradshteyn 
p. 1481. Continued fractions of the form above are called S-fractions or ~tieltjes and Ry zhik [ 1, p, 421), we easily find that 

fractions. They have the property that their even and odd parts converge to analytic 
[ l ,  coth I - cot t = 

pp. 136, 3421). Moreover, they converge for all x in the cut plane 1 argxl < A if 
and only if they converge for one x in this region. It seems to be very difficult to Applying Watson's Lemma (E. T. Copson I I ,  p. 49]), we deduce that 

1qx ) Lrn e-"'(coth r - cot r )  dt  - 2 2s+s Bui2 

Proof. To see that C F(x) is an S-fraction, we observe that L(x) can be written 
k=o (4k + Z ) X ~ + ~  ' 

in the form as x tends to w with Rex > 0. Replacing x by 2Jix and by Jix, where the 
60 principal branch of the square root is chosen, we find that, for -3n/2 c arg x c 

L ( X )  = C(- I ) ~ C ' ~ / X ~ ~ + I ,  n/2, 

where 

It 1s ternptlng to conjecture that the numcfamrs of C F ( s )  ,- 

a6 = 588456/493 and a7 = 10101660478/4029289. 
Lastly, we find two functions that have the asymptotic expansion L(x) as x 

B u t 2  as x tends to oo. 
a A - 2(24k+2 - 1) - F, nnr F* * . . 

z k + l  
4 " ,,4k+I (45.1) 

a, uU+'du convergence or divergence of CF(x). 
- 
A 

n4k+2 sinh u 

where we have used a familiar integral evaluation (E. T. Whittaker and G. N. 4 . 5  2 . 3  6 . 7  4 . 5  

tends to oo. 
From (45.1), for each positive integer n, 

Watson [ I ,  p. 1261). Since sinh(nu) r 0 for u r 0, the primary assertion of Entry x c o t h x = l + - - - .  x 1  xz 
45 follows from Stieltjes' theory. pee, for instance, 'WaWsbw'~ [i, y .  %?I.) c . J 

X X I X  022 Qd ct2Q 0- - - - -  - - - - 
n n2 \ n + l  + n + 2 + n + 3  +... + n + 2 k  + n + Z + l  +. . .  

where, for k 1 1, 

x2 - - G~~ - d.cx2 - Gx2 - 
9 5 1  7 1 9  1 1 1  1 1 3 -  

azk = and a2&+l = ' 

k ( n + k - 1 )  (k + l)(n + k) '  

~g r l l r l l l a t p t h ~ .  we mav use Entry 17 of Chapter 12 in Ra- 
manujan's second notebook (Pan 11 [2, pp. 124, 1251) Alternatively. Viskovatoff's 
algorithm (A. N. Khovanskii [I, pp. 27,281) can be employed. The calculations Entry 47 (Formula (7), p. 277). For euch complex number x and each complex 

a d .  in either case, they are routine. number n f 0,-1,-2,-3,. . . , 
Hence, we omit them. x x x x - - - -  

n  + n + l  + n + 2 + n + 3 + . . .  

We first remark that the continued fraction on the left side of Entry 47 is equal 
to 

, 1 J-J; Li 
* * J l - l \ - + V a J  

- - 4 y k ~ k  xZk+I : qL) X2n+3 ' for all complex x ,  where J ,  denotes the ordinary Bessel function of order v .  See 
~r =o Wall's book [ 1, p. 3491 or Part I1 [2, p. 133, Entry 191. - - 

as tends to oo. Thus, Fl (x) has the asymptotic expansion L ( x ) .  IYCXI, IOIIOWS rrom cntry 41.  
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Proof of Entry 46. Recall that (Wall [l ,  p. 34911, for each complex number x ,  We now calculate fk, k > 1. Straightforward cak- 

x2 x2 x2 f i  = -Z 2 
(46.1) 

n 
xcothx = 1 + -  

3 +5+1+...' n2(n + 1)' f2 = -n(n+2)* and f3 = - 
2(n + I)(n + 2) (n  + 3) '  

which is due to 1. H. Lambert [ I ) .  This suggests that we let n = $ and replace x By induction, we shall show that 
by x2 /4  in Entry 47. Accordingly, we find that 

2 . .  9 .. 2 , .  2 . .  - (47.2) 
(k  + I)(n + k )  

x /4 - x-14 X /4  X / 4  

3 / 2  + 5 / 2 + 7 / 2 + 9 / 2 + - . -  and 

which is equivalent to and 

We assume that (47.2) and (47.3) hold for k = 1,2,  ..., m. Simple algebraic 
calculations show that 

I . , , . , . , 
J 

Mumplymg 00th sides by 2, adding 1 to each side, and employing (46.1). we 

4 . 5  x 2  Z x 2  6 . 7  x 2  4 . 5  ~~2 

complete the proof. 

- 
I x 2  l x 2  

- - - - - - < -  

2 3  2 9  

- 
Yrool of Entry 47. We shall employ a lemma ot Kogers 1.2, p. '141. It j I  = eoel, 
f 2 = e 1 + e z , f ~ f ~ = e z e 3 . f ~ + f 4 = e 3 + e 4 . f 4 f ~ = e 4 e s , f s + f 6 = e ~ + e 6  ..... 
then 

Entry 48 (Formala (I), p. 290). 

x2 2.3 4 . 5  4 . 5  6 . 7  - - - - 
5 +  7 + 9 + 11 + 13 + . . - '  

Zn n - l  n + l  n - 2  n + 2  + - - - - -  = 1 nearly. 
x +  l - x + l -  x  + . - .  

For the next result, we again quote Ramanujan. 

series. This means that if both continued fractions converge in a neighborhood of 
x = 0, then they converge to the same value (Jones and Thron [ l ,  p. 1811); that 
is. (47.1) expresses an identity between their values. Writing the left side of Entry 
47 as the eauivalent continued fraction 

we see that. in the notation (47. I), 

Proof. From our remark after Entry 47, it is not difficult to show that 

in the sense that the continued fraction converges to the function on the right side 
for all (n,  X )  E (C2, x # 0. It will be convenient to write the right side in terms 
of Bessel functions of imaginary argument (Watson [15, p. 771). Thus, comparing 
Entry 48 with (43. I ) ,  we must show that 

, . .  

- 2n n - I  n + I  n - 2  n + 2  (48.2) 
- 

x +  l - x + l -  x  +... nearly, 
where 1, denotes the Bessel function of imaginary argument of order v .  
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As x tends to oo (Watson [IS. p. 20311 

exf2 ( - i ) k r ( v  + k  + i) 
l,,(x/2) - - , Rex > 0 ,  

(nx)lf2 & k! rev - r + ~ ) x L  

where we have ignored the exponentially decreasing terms in the complete as- 
ymptotic expansion. Using this expansion in (48.2), we find that the left side of 
(48.2) is asymptoticany equal to the quotient 

where .I Fn(a. b; z )  denotes the (divergent) hypergeometric series 

Proof. Let x # 0. In Entry 22 of Chapter 12 (Part 11 [2, p. 136]), Ramanujan 
otters a contmued traction tor a certaln quotient of ordinary hypergeometric series. 

- - 

Settinga = v - I, 0 = 0, and y = u ,  and replacing x by u/B with lu/BI c 1, in 
that theorem, we readily deduce that 

1 
-zF l ( l  - V ,  1; 1 + U ;  -cu/p) 
U 

(49.1 ) 
- - - 

U P - a v  + u p - c u v + l ( B - a )  + u@-cuv+2(B-a)  +.- . '  
(This last result was also established by Preece Dl) We now set r - - (I + x 2)1/2 , , 
a = (r  - l)/xZ, /? = (r + 1)/x2, u -- (p r  + n)/(2r), and v = (pr - n)/(2r). 
where p will be specified shortly. Then la//?I = I(r - I)/@ + 1)l < 1, since 
Rer  = Re(1 + x2)If2 z 0, and (49.1) takes the simplified form 

From the book of Jones and Thron [I, p. 2121, it follows that By a fundamental result on hypergeometric series (Bailey 11, p. 2, eq. (2)]), 

- 
2n/x (1 - n)/x (n + I)/x (2 - n)/x (n + 2)/x -- Thus. (49.2) m a ~  be recast in the form 

in the sense of correspondence. From lacobsen's paper [4, Theorem 2.3(iii)], it 
follows that the continued fraction converges for x E @ - [0, 00). For positive X .  

it is likely to diverge. 
We are now a& to properly interpret the word "nearly" in Entry 48, or, equiv- 

alently, (48.2). Replacing the left side of (48.2) by a quotient of asymptotic series 
as x tends to oo, with Re x > 0, we see, from (48.3), that the continued fraction 

this of asymptotic series in the sense of 
correspondence of C-fractions. 

Observe that, if n is an integer, the power series and continued fraction in (48.3) 
each terminate. Thus, in such an instance, we have equality in (48.3) in the usual 
sense. 

Entrv 49 (Formula (2), p. 292). Ler x and n denore complex numbers such 
that Rex z 0, o r  such that Rex = 0 and 0 c I Im x 1 c 1. Furthermore, let 
y = [(I  + x ~ ) ' / ~  - I ) / x  and m = n ( l  + x2)-'IL. Then 

We now put p = 2, and so u + v = 2. Since y(r + 1) = x, we find from (49.4) 
that 

An elementary calculation shows mat 

(1 -u)( l  + ~ ~ ) ~ F l ( l ,  u; 1 + u ;  -y2) = (1 + y 2 ) 2 F ~ ( 2 , u ;  1 + u ;  -y2) - U. 

It follows that 
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Combining (49.5) and (49.6) and then simplifying somewhat, we complete the 
proof. 

To see that this 
side above as 

.. . - . -a 

L"l*Y JV -=I  * p - - - 
9 -  . 9 9 

either Rex z 0, or  Rex = 0 and 0 c I lm x I < 1, or p is a nonpositive integer. 
{(I + x q 1 j 2  + I P  lo { I  + t 2 y i ) ~  

Furthermore, let y = ( ( 1  + x2) ' I2  - 1}/x and let rn = n ( l  + x ' ) - '~~ .  Then - - 2"x(1 + x2)'p-')/*yp (-l)k(p)ky2k 

Y P  k !  
k =O 

which is a particular case of a corollary to a theorem on transformation of integrals 
and continued fractions." In Ramanujan's Collected Papers [lo, p. 3531, the third 
denominator above appears incorrectly as p + n + 3. 

Now C. T. Preece [3, p. 991 showed that, for n, p z 0, 

Proof. Replace n by nx in Entrv 50; thus, now m = m!l +x2) - '12  W hmfbd 
that 

(52.1) 
Now let x tend to oo. Then y tends to 1 and m approaches n. Thus, we se that 
the lett and right sides of (52.1) approach, respectively, the left and right sides of 
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I t  

( x  + Y )  
~ F I  ( i ( y  + 1 + n ) ,  i ( x  + 1 + n l :  icx + +2):  11 - 

Entry 53 (p .  342). Let x  and y  be complex numbers with Rex  > 0 a n m e  y  > 0. 
I 

Then = ~ + y +  (Y + - n2  ( x  + 1)' - n2 ( y  + 312 - n 2  
x + Y + 2  + x + y + 4  + x + y + 6  ('i? 1) 

( x + ~ ) ~ + n  ( ~ + 3 ) ~ + n  ( ~ + 5 ) ' + n  Second, we use Euler's continued fraction, Entry 22 of Chapter 12 (Part 11 12, p. 
= y +  2y + 2y + 2~ + . "  1361), when x  = 1 and a, B, and y arereplaced by - (y+ 1 + n ) / 2 ,  ( x  - 1 +n) /2 ,  

and (1 + Y ) / Z ,  respectively. Upon simplification, we deduce that 
( y  + 112 + n ( x  + 112 + n ( y  + 3)* + n  ( x  + 3)' + 

+ ... ' = x +  2F1 f!(v+ 1 +n l  - 1 + n L  x + p + 2  I x + y :  A + x + y + 6  + x + ~ + 8  
Cx+y)  1 " .  

L '  

2F1 ( ? ( Y  + 1 + n I ,  i ( x  + I + n ) ;  i ( x + y  + 2 ) ; - 1 )  

We remark that, by symmetry, each ot the continued iracrion- 
equal to 

Comparing (53.1) and (53.2) and replacing n  by i.& we 
equality of Entry 53. 



78 Ramanujan's Notebooks, Part V 32. Continued Fractions 79 

Roof. Setting n = 1 in Entry 54, we deduce that 

To show that F(x )  has Ule given continued fraction. we require the continued 
fraction 

l X l X 2 X 3  
due to E. Frank [I]  and valid for Ix I < 1. Replacing x by x/b, letting B + oo, and 

- - - 
1 + i + i +  i + i + T + i + . . . '  using the fact that the resulting continued fraction in (57.1) converges uniformly 

with respect to p in a neighborhood of @ = ao, we find that, for all x ,  
Taking the reciprocal of both sides, we complete the proof. I F I ( U  + 1; y + 1; X) 

I F I ( ~ ;  Y ; X )  
Entry 56 (p. 342). For all complex x .  

- - - Y (Y - cr)x ( y  - a  + 1)x ( y  - a + 2)x 
~ r r X 1 . X  

P L - t y + l  x + y + 2  - - . , .  
4(e2"- I )  = =  

- 
- T + $ - i + j - T + . . . '  X + Y  +' 

Putting cu = 1 and y = n + 1, we deduce that, for all x ,  

Proof. If we set n = 1 and replace x by 2x in the first continued fraction of 
1 1 

: F ( x )  = A (% + 2 b  

Corollary 1 of Entry 21 of Chapter 12 (Part I1 [2 ,  p. 1361). we find that, for all 
X n + l  - x + n + 2 - ~ + n + 3 - ~ + ~ + 4 - . . . '  

By (64.11, this last continued fraction is the even part of 

It remains to show that C F ( x )  converges to F ( x ) / x .  -- -a> -.- .= - - r  1 - 

Entry 56 also readily follows from a continued fraction for eL tound in Wall's 
book [1 ,  p. 3481. 

Entry 57 (p. 343). For all complex numbers x and n ,  

n x n x n + l  x n + 2  
x - n +  oo 

- - - - - xk ~ + i + i +  1 +i+T+...' 

which converges for all x and n .  Thus, the even and odd parts of C F ( x )  both 
converge to meromorphic functions of x and n. The even part converges to F ( x ) / x ,  

and thus the even and odd parts converge to the same values for x > 0 and n > 0. 
Therefore, by analytic continuation, they are equal for all x and n. This completes 
the proof. 

Frank's continued fraction (57.1 ) can, in fact, be derived from Euler's continued 
fraction, Entry 22 of Chapter 12 (Part 11 [2, p. 1361). 

. . .  . 
proof. By a straightforward of 

Entry 58 (p. 343). Let x be a complex number such that Re xZ - i. Then 
Entry 57 is equal to 

x I ~ 1 ( 2 ; n + 2 ; x )  sinh-' x = -  x I 2x2 - 2(1 + x2) 4x2 4(1 + x 2 )  
r ( x )  := - 

n + 1 1 4 ( 1 ; + 1 ; ~ ) '  (1 + x L ) ' P  I + 1 + 1 + T + 1 +... '  
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Proat Uslag a familiar transformation for ,F, (~a i ley  [I, p. 2, eq. 2]), we find 
that (Gradshteyn and Ryzhik [I, p. 601) 

sinh-I x = x 2 ~ l ( i .  i ;  ;; - x 2 )  = x(I + x2) ' f22~1(1,  1; i; -xZ). 

We now apply Entry 21, eq. (21.2), of Chapter 12 (Part 11 [2, p. 1341) with f l  = 0, .. . 

y = 112, andx replaced by x2. Hence, for  ex* > -;, 

due to Euler (Jones and Thron [I ,  p. 371). where bk # 0, I 5 k 5 n. To derive 
30.1) from (60.2). set 61 = l l a l  and bk = ~ p - ~ l a k ,  2 5 k 5 n. After a simple 
equivalence transformation, we deduce (60.1). 

In the following three entries, Ramanujan examines the convergence and diver- 
gence of limit k-periodic continued fractions of the form 

a1 a2 a3 - - - 
sinh-' x 

= x 2Fl ( I ,  1; 2; - x 2 )  p + p + p +-.. '  (61.1) 

(1 + x2)'J2 
where limn,, ak,,,, = a; E W, for I 5 j 5 k. The convergence behavior for the 

x/2 x - -  - special periodic case, ak,+, = a;, 0 i n < oo, has been known since the 1880s 
112 +~+1/2+1+1/2+1+ 112 +.. . '  (0. Stolz (11, Jones and Thron [ I ,  p. 461). If we think of the continued fraction 

which is easily seen to be equivalent to the proposed continued fraction. (61.1) as being generated by the linear fractional transformations 

- 2 Qz -- a,, A, + A,-IW (61.2) 
Proof. We know that (A. ErdClyi [ I ,  p. 1021) - - 

p + p +. . .  + p + w  B, + B,,-'w' 
tan-'x = x ~ F I ( ; ,  1; $; -xL). we may deduce the following information: 

We again apply Entry 21, eq. (21.2), of Chapter 12 (Part I1 [2, p. 1341) but now 
- 2 ,  I (1) For k = 1, the approximants S,, (0) of the continued fraction - -- - 

2 '  - 2 '  
9 . r  - > ,  a a a  

- - -  
La 7 ,  . 7 ? ? I . ,  . u r n 3 \  

X 
(6 1.3) 

t a n - l x = . l L  X lL 2 Y  $* P + P + P  I . . . .  
112 + 1 + 112 + 1 + 112 +*. . '  are just iterations of the linear fractional transformation sl (w) evaluated at w = 0. 

w v a b  to the ~roposed continued fraction. Hence, (61.3) converges if sl (w) has one attractive fixed point and it has no 
repulsive fixed point at 0. The fixed points of sl ( w )  are p ( f  J1 + 4alp2 - 1)/2. 
Hence, (6 1.3) converges if and only if 

Entry 60 (p. 339). For 1 5 k 5 n, assume that ak # 0. Then (2) For k > 1, we regard the periodic continued fraction as iterations of Sk(w) ,  
given by (61.2), evaluated at the points 

0,a1 = S1(0),a1/(1 + a d  = SAO), . .. , Sk-l(O). (6 1.5) 
n-. 

Hence, the k-periodic continued fraction converges if and only if Sk(w) has an 

In fact. w e d  a finite version of Ramanujan's claim, i.e., Ramanujan's 
statement is for "n = m." 

attractive fixed point and it has no repulsive fixed points at any of the points (61 3. 
at if Sk (w) has a repulsive fixed 

point at one of the points (6 1 S ) ,  then the periodic continued fraction diverees. This 
phenomenon is therefore called Thiele dscil~ation (Perron [I,  p. 871). w. OK -. 1 1 ,  p. 411. ~ n e  results 

version of an identity quoted above were probably known to Ramanujan who most likely derived them 
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Ramanujan. He then must have realized that he could generalize these results to as n tends to m, where a z a ,  and where g(n) is any positive function monoton- 
limit k-periodic continued fractions, and Entries 61 and 63 below are the results ically decreasing to 0 as n + co, for example, g(n) = ~ n - ~ ,  for some constant c 
of his investigations. His first result is on limit I-periodic continued fractions. and positive number a. 

For the next entrv. we again auote Ramanuian. 

Entry 61 (p. 339). 

is intelligible or no! according as lim,,, an < or > 1/4. 

Entry 62 (p. 340). The continuedfraction 

tends to two limits or one limit according as 1 I /Jil;; is convergent or divergent. 

Here we have precisely quoted Ramanujan. By "intelligible," Ramanujan evi- 
dently means "convergent." In the periodic case a, = a ,  Entry 61 is true, since 
the condition (61.4) then reduces to u E C - (4, m). It is also true that the limit 

, cab r d 
E. B. Van Vleck [ I ]  and is beautifully presented in Perron's book [I,  p. 931. In the 
case lirn,,, a,, = 4, the point wisely omitted by Ramanujan, the continued frac- 

Ramanujan evidently considered a,, I 5 n < co, to be positive and p to be 
real. From Stieltjes' classical work [ 2 ] ,  [3, pp. 402-5661, it follows that (62.1) 
converges if and only if 

ar d ~ v  howfl,, tendst0 i . ~ u t w h a t  happens 
if lim,,, an = a > a? It is easy to prove that if a, tends to a "fast enough," then with the natural interpretation of Entry 62, except for one matter; the condition 
the continued fraction (61.6) diverges (J. Gill [I]). That it may converge otherwise (62.2) is not equivalent to Ramanujan's condition 

a, 
In our ~ e m o i r - [ t ]  with Andrews, ~acobse", and Lamphere, we asked if there I/& = m, (62.3) 

exist convergent continued fractions (61.6) with a, > 0 and limn,, a,  = a > $. 
In . . ,= I  

. . ,n ? \  . 
3 L.3 d 

3 1 d p  the convergence of (62.1) (Perton [ I ,  p. 471). but there ) exist convergent continued 
Kalton [I, Theorem 8. I ]  had proved the following theorem. fractions (62.1) with a, > 0, p z 0, and x I /& < co. For instance, the 

Theorem 61.1. [ fa .  is real. lim,,, a, = u > $ and 

n= T 

then (61.6) diverges. 

continued fraction 
14 1 4  24 - 2 4  - - 54 - 54 - 
I +i+T+i+T+i+... 

converges since 

Moreover, if the last hypothesis above is dropped, Kalton and Lange [ I ,  Theo- 
Ramanujan was not the only person to have made this mistake; for example, see 
Khovanskii's book [ I .  p. 451. 

rems 6.1,6.2] found specific classes of sequences {a,)  for which (61.6) converges. 
For further results relevant to our question, see Theorems 2.1 and 3.2 of their pa- Entry 6 3  considers limit k-periodic continued fractions for 1 i k 5 5. We 

per [ I ] .  Lange also raised a more difficult question. If a is any real number such 
state a rather general version, although Ramanujan probably examined only real 

that a > t ,  does there exist a real sequence {a , )  such that a, -, a and (61.6) 
converges? 

D. Masson [ I  ] has communicated to us another theorem relevant to our original 
question in the Memoir [2]. Using Pincherle's theorem, he has shown that (61 6) 
diverges provided that a, is real and 

Entry 63 (p. 340). Consider 

( I )  If C F is limit 1-periodic, then C F converxes i f  lirn,,,, a, = a E @ - 
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( 2 )  If C F is limit 2-periodic with limits a and b, then C F converges if Note that part (1) follows from Entry 61 and the remarks we made following it. 

ab  
E @ - [ ~ , W ,  Proof. The corresponding periodic continued fraction is given by 

(1 - (a + b) )2  

wherea + b # I .  
( 3 )  IfC F is limir 3-periodic with limn,, al,,,, = a ,  lim,,, a,,+:! = b,  and 

lim,,+oc a),, = C ,  then C F  converges if The corresponding linear fractional transformation 

abc 
E @ - [ a ,  m ) ,  

11  - (a + b+c)12 
? I L O  ' 1  r u - r ~  j - v  . - - 

and Icl > Ibl when a = 1. 
(4) Suppose that CF  is limit 4-periodic with a&+,, ac+z, a&+?, and a h  

tending to a, b, c, andd, respectively, as n tends to oo. Then C F converges 

a bcd 
E @ - 001, (b) & - I  = 0 and 14-11 # IBkL 

( 1  - ( a + b + ~ + d ) + ( a c + b d ) ) ~  

wherea+b+c+d-ac  -bd # I,a&irlabl > icdl whenb+c= 1, 
lbcl > ladl whenc-td = 1, lcdl > lab1 w h e n a t d  = 1,andladl z lbcl 

i.e., one or more of the elements a ,  b ,  . . . are equal to 0, then Sk is a constant 
function whose value we regard as the attractive fixed point of Sk. Its "repulsive 

whena+b= 1 .  
0 Suppose that as,+^, asn+2, asn+3, asn+4, and as, approach a, b,  c ,  d ,  and we refer to Jacobsen's paper [3].) 

e, respectively, as n tends to oo. Then C F converges if 
From the work of von Pidoll [I], Szhsz [I], and, in more generality, Jacobsen 

abcde . - -  , I  , pft h l  . . -3 
(1 - ( a + b + c + d + e ) + a ( c + d ) + b ( d + e ) + c e 1 2  C L  L4'00) '  is the repulsive fixed point of Sk (Thiele oscillation), then the limit k-periodic 

where the denominator above is not equal to 0, if continued fraction converges. The results in Entry 63 arise from the application 
of these criteria when k = 1,2, 3,4,5. 

[ab(l - d)l z Ide(1 - b)l, when b + c  + d - bd = 1, As noted earlier, the case k = 1 was examined in Entry 61. 
Ibc(1 - e)l z lea[l - c ) ~ ,  when c + d  + e  - ce = I ,  Let k = 2. Then 

Icd(l a ) [  > lab(1 d ) l ,  when d + e + a  -da  = 1 ,  -a(l + W )  
S2(w) = e + n + b  - ~h - 1 - w 

For case (a) we require that BI = 1 # 0, Al + B2 = 1 - a - b # 0, and 
and 

f l  4(A& - BzAI)\I - I [, 4ab \ I  
lea(1 - c)l z cd(1  - a)l, when a + b + c - ac = 1. ( A I + B ~ ) ~  11 lq\' ( ~ - a - b ) ~ ) I ~ " '  

The "extra" conditions on the parameters a ,  b,  . . , are not given by Ramanu- 
jan. Thus, for example, in (3), Ramanujan says that C F  "is intelligible when 
( 1  - (a + b + c))' - 4abc 1s positive." I he primary conditions insure that Sk@d 
has an attractive fixed point and a repulsive fixed point. The "extra" conditions 
eliminate the cases where the corresponding k-periodic continued fraction di- 
verges by Thiele oscillat~on. 

Such limit k-periodic continued fractions were first studied by M. von Pidoll 
[ I ]  in 1912 and by 0. S z b z  [ I ]  in 1917. It is interesting to note that Ramanujan . . 
probabii made his disco-14. - 

i.e., ab/{l - (a + b))' E @ - [ a ,  m).  Note that case (b) is impossible. 
If one of the fixed points in (61.5) is the repulsive fixed point of S2(w),  then this 

fixed pointiseitheroor -a.Now wl = Oisafixedpointof&(w)ifA~ = -a = 0. 
Then 

is singular, and wl = 0 is the repulsive fixed point if and only if 1 - b = 0. But 
this contradicts the requirement 1 - a - b # 0.  Thus, 0 is not a repulsive fixed 
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nrhp.r fiwedoint of S? (w) is w2 = - 1. Now w ,  = -a is the attractive fixed point (Jones and Thron 11, p. 521). i.c., Ibl s lal. (The case 1B3 + B2wl 1 = IB3 + B2w21 
of & ( w )  (and not the repulsive one) if and only if is excluded by (63.2).) In conclusion, under the condition (63.2), if c = 1, we 

IB2 + B I W I I  > IBz + Blwzl (63.1) need to require that Ibl > la1 for the convergence of CF. 

(Jones and Thron [I ,  p. 52]), i.e., if and only if I I - a1 > 0. This is true since Next, w3 = -a is a repulsive fixed point of S3(w) if and only if w l  = 0 is a 
1 - a # 0. Thus, wl = -a also is not a repulsive fixed point, and there is no . . repulsive fixed point of 
l % e k a d h t 1 o n n  This completes the proof of (2). - 

Next, let k = 3. Then S;"(W) := 2 a 

a b c A3 + A ~ w  
1 - T - X w '  

- S 3 ( w ) = - -  - -- 
I+ I - t m  & ;  BLw So, by symmetry, we need to require that Icl > Ibl if a = 1 in order for CF to 

converge. Likewise, w3 = -a / ( l  - 6 )  is a repulsive fixed point of S3(w) ~f and 
where A j  = -a(l - c) ,  A2 = -a, B3 = 1 - b - C, and B2 = 1 - b ,  by the only if wl = 0 is a repulsive fixed point of 
recursion formulas (0.5) and (0.6). or by direct calculation. For condition (a), we . . 
require B2 = 1 - b # 0, i.e., b # 1; A2 + B3 = 1 - (a + b + c )  # 0, i.e., 

- A , ) )  
a + b + c # ~ ; a n d i a g ( l + ~ ' : ~ ~ + ~ ~ ~  < n, 1.e.. 

(2) -c a b s, ( w )  := - 
1 - T - G w '  

which yields the requirement la1 s Icl if b = 1. This concludes the proof of (3) .  

we shall provide only brief sketches of the proofs when k = 4 and k = 5. 
For case (b), we require B2 = I - b = 0, i.e.. b = 1, and IA-21 # i.eq, 

1 1  1 1  h rl Lrl I - Let k = 4. Then - -  - - 
, I .  " "1 1 9 .  

4 + A3W 
abc ac -- S4(w) = A 

- E @ - [ f , ~ )  B4 + B3w' 
(1  - (a + b + c)I2 (a + c ) ~  

w k A 2  - - e k  - ILAd a(c+d 1).8?-1 b c.md - .  - - - - -  B d  = I-b-c-d+bd. 
if and only if la1 # Icl. Hence, Sj has an attractive and a repulsive fixed point (in . . .  . . For condition (a), we require that b + c # 1, 1 - (a  + b + c + d )  + ac  + bd # 0. 

v d - .  r 1.c.t - a d  
We next need to determine the conditions that yield repulsive fixed points. If 

one of the fixed points in (61.5) is the repulsive fixed point of S3(w),  then this 
a bed 

E @ -  ( 4 , ~ ) .  (63.3) 
- hxed point is either 0, a ,  or - a171 - ij. 11 - ( a  + b + ~ + d ) + ( a c + b d ) ) ~  

First, w l  = Oisa fixedpointof S3(w)  if Sj (0)  = A3 = O,i.e.,if -a( l  -c)  = 0. In case (b), we need b + c = 1 and lab1 # Icdl. Now when b + c = 1, 

- - a 

Case 1. n = U. 1 nen 

is singular, and wl = 0 is "the repulsive fixed point" if and only if 1 - b - c = 0. 
But this is impossible by (63.2). 

Case2. c = I ,  a # 0. Then 
-a w 

S3(w) = -b+ ( 1  - b)w'  
u ( 1  - b). Hence, in 

analogy with (63.1), w l  = 0 is the attractive fixed point of S ~ ( W )  (and not the 
repulsive one) if and only if 

a bcd - a bcd p [ I  

{ I  - ( a + b + c + d ) + ( a c + b d ) ) *  -(ab'4'@ 

if and only if lab1 # Icdl. Hence, S4 has an attractive fixed point and a repulsive 

We next need to determine when the points (61.5) are repulsive fixed points. 
Now wl = 0 is a fixed point if A4 = a(c + d - 1) = 0. It is easy to see that the 
case a = 0 is impossible. If c + d = I ,  then 

has the fixed point w2 = (A,  - B4)/B3. Thus, in analogy with (63.1), wl is not a - 
repuls~ve hxed pomt ~t and only if 
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. . . >  . . 1 6 3  for the case k = 4 arise from 
the remaining three possible repulsive fixed points in (61.5) and considerations of 
symmetry. 

Lgak - 5.Thca 

AS + A4w Rarnanujan's Theories of Elliptic 
S d w )  = 

BS + B ~ w  ' 

whereA4 = a ( c + d - l ) , A s  = a ( c + d + e - c e - 1 ) , B 4 =  I - b - c - d + b d ,  
Functions to Alternative Bases 

and Bs = 1 - b - c - d - e + ce + be + bd. For condition (a), we require that 
I - ( b + c + d ) + b d  # 0 , 1 - ( a + b + c + d + e ) + a d + a c + c e + b e + b d  $ 0 .  
and 

abcde 
E @-[ f ,  03). (63.4) 

{ l  - ( a + b + ~ + d + e ) + a ( c + d ) + b ( d + e ) + c e ) ~  

Forzoing the calculations for condition (b), we conclude that SS has an attractive 
fixed point and a repulsive fixed point if (63.4) holds. 1. Introduction 

We now examine the five possible repulsive fixed points given by (61.5). NOW, 
w !  = 0 is a fixed point of SF(W)  if &(O) = As = a(c + d + e + ce - I )  = 0. Tn hififamollrnrru?rll1 23.1 - 19 
The case a = 0 is impossible, and so we assume that c + d + e + ce - 1 = 0. The representations for l /n .  He first states three formulas, one of which is 
remaining fixed point of Ss(w) is (A4 - B5)/ B4. It follows that wl isnot arepulsive 

a d  only if > I A d  i.e.. if and only if Ibc(l - e)l > lae(1 - c)l. 4 - - (6n + I)(!): 
The remaining four possible repulsive fixed points yield the additional restrictions n 2 (n!))4" ' 
listed for the case k = 5 of Entry 63. 

where (a)o = 1 and, for each positive integer n, 

It may be remarked that the "extra" conditions in Entry 63 can be eliminated if (a), = a ( a  + ])(a + 2 ) .  . . (a + n - 1) .  
we use the not~on of general convergence (Jacobsen [233 

He then remarks that "There are corresponding theories in which q is replaced by 

Entry 64 (p. 342). I fn  is  even, then one or other of the functions 
/ 

a1 a2 an - 
b, + & + - + &  

a!ba avaq b4 a4as b2b6 
9 3  -- exp ( - 2 n K i l ~ 3 ) .  

-- - where 

This is just the finite form of the even part of an infinite continued fraction, 
namely (Jones and Thron [ I ,  p. 421). the even part of 

K I =  2 F , ( $ , a ; 1 ; k 2 ) ,  K z =  Z F l ( f , $ ; l ; k Z ) ,  K 3 =  z F l ( ~ . ~ ; 1 : k 2 ) . ' '  

Here K ;  = K j ( k l ) ,  where 1 5 j 5 3, k' = m, a n d 0  < k < 1; k is 
called the modulus. In the classical theory, the hypergeometric functions above 
are replaced by 2 FI (i, i; 1; k 2 ) .  Rarnanujan then offers 16 further formulas for 
1 / ~  that arise from these alternative theories, but he provides no details for his 

In an appendix at h e  end of~amanujan's Collected Papers [lo, p. 3361, 
the editors, quoting L. J. Mordell, lament "It is unfortunate that Ramanujan has 
not developed in detail the corresponding theories referred to in ¶14!' 

I /rr were not established until EW', when they were 
tirst proved by J. M. and F! B. Borwein [ 1, pp. 177-1 881, [2], 131. To prove these 
formulas, they needed to develop only a very small portion of the "corresponding 
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work are Clausen's formula and identities relating ZFl G ,  1;  I ;  X) , to each of 
t h e f u n c t i o n s ~ ~ ~ ( f , ~ ; I ; x ) ,  z F , ( $ , $ ; l ; x ) ,  a n d 2 F I ( ~ , ~ ; 1 ; x ) . T h e B o r -  
weins [41, 161 further developed their ideas by deriving several additional for- 

The base (or nome) q is defined b~ 

:= e - n K ' / K  
- -  - -  - 

mulas for l/n. Ramanujan's ideas were also greatly extended by D. V. and G. where Kt = K(&').  - kz 
V. Chudnovsky [I], [2] who showed that other transcendental constants could Let n denote a fixed positive integer, and suppose that 
be represented by similar series and that an infinite class of such formulas ex- 
isted. 2 F 1 ( ; . ; ; 1 ; 1 - k ~ )  - - 2 ~ I ( f , f ; 1 ; 1 - e 2 )  
[ 2 ~ 1  (f, 4 ;  I ;@)  ' ( 1.41 

tial steps were taken by K. Venkatachaliengar [I,  pp. 89-95] who examined some 
of the entries in Ramanu'an's notebooks [9] devoted to his alternative theories. where 0 < k ,  e < 1. Then a modular equation of degree n is a relation between the 

The greatest advances toward establishing Ramanujan's theories have been 
made by J. M. and P. B. Borwein [5]. In searching for analogues of the classi- and b = e2. We often say that B has degree n,  or degree n over a. The multiplier 

cal arithmetic-geometric mean of Gauss, they discovered an elegant cubic ana- 
rn is defined by - - 

logue. Playing a central role in their work is a cubic transformation formula for 
- - - zF1 ( f ,  f ;  I;.) 

(1.3) 
book [9], and which was rediscovered by the Bonveins. A third major discovery I' 2F1 (i, $; 1 ; ~ ) '  
by the Bonveins is a beautiful and surprising cubic analogue of a famous theta- We employ analogous notation for the three alternative systems. The classical 

&,. rmmotogydescrrbea above is represented by the case r = 2 below. For r = 

more detail in the sequel. 2 , 3 , 4 , 6  and 0 < x < 1 ,  set 
As alluded in the foregoing paragraphs, Ramanujan had recorded some results . , .  . .  . f l  r - 1  

m l p p  
\ 

, - q r )  := ~ ( r ;  x )  := 2p1 ; I ; x  
257-262, are devoted to these theories. These are the first six pages in the 100 

(1.6) 

unorganized pages of material that immediately follow the 21 organized chapters in and 
me seconunm book. Our objedve in rhis c h a w  is RJ e-S. 
In proving these results, it is very clear to us that Ramanujan had establishedfurther 
results that he unfortunately did not record either in his notebooks, unpublished 
papers, or published papers. Moreover, Ramanujan's work points the way to many In particular, 
additional theorems in these theories. and we hope that others will continue to 
develop Ramanujan's beautiful ideas. 

nchoazF! (., ., .x\.Thetheortesmt 
The most important of the three alternative theories is the one arising from the 

I 2 . 1 .  . . 
(1.7) 

he remaining two cases 
-cted fmGth; clas&al theory and so are of less interest. 

UI pj- In Darticnlar. I4 pages 34-37, Chapter 17. pages 
We first review the classical terminology and theory, which can be found in Part (1 3) 

101-102. 
and Chapter 18, pages 2 13-2 14. and 

The complete elliptic integral of the first kind K = K (k) associated with the 
modulus k, 0 < k < 1 ,  is defined by 

p n / 2  
u+ (1.9) 

K := = in 2 ~ 1  (i, i: 1; k2),  (1.1) 
10 d w  (We consider the notation (1.7H1.9) to be more natural than that of Ramanujm 

quoted at the beginning of this chapter.) 

series and integrating termwise. For brevity, Ramanujan sets Let n denote a fixed natural number, and assume that 
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where r = 2. 3. 4, or 6. Then a modular equation of degree n is a relation between 
a! and /3 induced by ( 1  .lo). The multiplier m(r) is defined by 

- - ~ F I  (:, +; 1; CY) (1.11) 
ZFI (j, 7; 1 ; ~ ) '  

for r = 2, 3,4,  or 6. When the context is clear, we omit the argument r in q,, z(r), 

In the sequel, we say that these theories are of signature 2, 3.4, and 6, respec- 

second notebook [9]. We employ many results from Ramanujan's second notebook 
in our proofs, in particular, from Chapters 17, 19,20, and 21. 

-, 
L. R c Tmmfummnof~, the Borweins' Cubic 

Theta-Func tion Identity, and the Inversion Formula 

In classical notation, the identity 

tively. 9 3 4 )  = t9.&?) + @ a q )  

theta-function f (a, b) is defined by is Jacobi's famous identity for fourth powers of theta-functions. In Ramanujan's 
notation ( I  .12) and (1.13). this identity has the form (Part I11 [3, p. 40, Entry 

00 

f (a, b) := a"(n+')/2b"(n-1)i2, lab1 c 1. 25(vii)]) 
n=-a, ~ ~ ( 4 )  = v4(-q) + 16q@4(q2). (2.1) 

~f we set a = qe2'z, b = qe-2'2, and q = en", where z is an arbitrary complex The Borweins [51 discovered an elegant cubic analogue which we now relate. For 
number and Im(t) > 0, then f (a, b )  = if3(z, r), in the classical notation of o = exp(2ni/3). let 

f (a, b) , namely, * (2.2) 
8 m,n=-00 

I1 17) 00 \ . r , -  a\ . - J \Y ,YJ  - 
n=-a, 

b(q) := C ,,,,m-n m2+mn+n2 
4 (2.3) 

a, nt.n=-cu 
.- 3, - '7nn(n+1)/2 Ye)' Jf'Vn74 t L A  (1.B) 

n=O 
and 

and 

where (q 1 c 1. The last equality above is Euler's pentagonal number theorem, a3(q) = b3(q) + c3(q). 
lacobi's triple product identity (Part III [3, p. 

(2.5) 
T T  

35, Entry 191). 
One of the fundamental results in the theory of elliptic functions is the inversion 

( I , [L 5 U   par^ IU (3. P. 101. eq. (6.4)U (2.6) 

- 2 , (1.16) Formula (2.6) can also be found in one of . . ," e .. 3 .  .. . . , 
from the nursing home, Fitzroy House I l l ,  p. 931, and is proved by us in [9]. The 

for each positive integer n, so that z l  = Z. Thus. by (1.5), (1-15), and identity (2.7) is found on page 328 in the unorganized portions of Ramanujan's 
second notebook and was proved in Part 111 [3, p. 467, eu. ,,f 

ClJ/) proving some related identities in Section 3 of Chapter 21 in Ramanujan's second 
notebook. Furthermore, the Borweins [5] proved that 

ln the sequel, unattended page numbers, particularly after the statements of 
theorems. refer to the pagtnatlon of me lata lnm @.a) 
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and Next, from (- 

d 9 )  = f (a(q1l3)  - 4 9 ) ) .  (2.9) 

The Borweins' proof of (2.5) employs the theory of modular forms on the group 
generated by the transformations t -t l / t  and t + t + i&. Shortly thereafter, 
they and F. G. Garvan [I ]  gave a simpler, more elementary proof that does not 

(2.16) 
and, from (2.7) and (2.9), 

depend upon the theory of modular forms. Althoueh Ramanuian does not state 
(2.5) in his notebooks, we shall show that (2.5) may be simply derived from results 2 4 9 )  = 9(9)v(q? 
given by him in hisnotebooks. Our proof also does not utilize the theory of modular 

Lemma 2.1. Letm = 21/23, as in (1.17). Then 

m 2  +6m - 3 
a(g)  = d z 1 z 3  

4m and 

and 
By Entry I (ii) of Chapter 20 (Part 111 [3, p. 3451) and (2.13)-(2. IS), 

c (q )  = m (2.1 2) 4m 

Proof. From Entry I l ( i i i )  of Chapter 17 in Ramanujan's second notebook (Part 

$ (q2)  = $ f i ( a / q ) ' / *  and J ( q 6 )  = 4 & ( ~ / q ? ~ ' ~ ,  (2.13) 
-, and 

b+J 

3 in Section 5 of Chapter 19 of Ramanujan's second notebook, we [3, p. 233, eq. 
$ (q 29 (5.2)] derived the parametric representations 1 - 

a =  
(m - 1)(3 + m)3 

(2.14) 
16m3 (m + ] ) ' I 3  

& - 1 )2/3  ' 
(2.21) 

and 

and so (2.10) is established. (In fact, (2.10) is proved in Part 111 13, p. 462, eq. 

Using (2.13) and (2.18)-(2.21) and then (2.14) and (2.15) in (2.16) and (2.17), 
we deduce that, respectively, 
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d Corollary 2.4 (p. 258). For 1x1 sufiiently small, 

Hence, (2.1 1 )  and (2.12) have been estabtished. 

Theorem 2.2. The cubic theta-function identiry (2.5) holds. 

- 
Proof. From (2.1 1 ) and (2. 

Proof. Set c = f in Theorem 2.3. 

The Borweins [5 ]  deduced Corollary 2.4 in connection with their cubic analogue 
of the arithmetic-geometric mean. Neither their proof nor our proof is completely 

ential equations. Recently, H. H. Chan [4] has given a considerably more natural 
proof that depends upon rederiving some of the results in Sections 4-6 of this 
chapter without appealing to the theorems here in Section 2. The Eisenstein series 
M(q)  and N ( q ) ,  defined at the beginning of Section 4, play key roles. Chan [4 ]  
has also shown that Ramanujan's cubic transformation can be derived from two 
cubic transformations due to E. Goursat [I] .  

Our next goal is to prove a cubic analogue of (1.15). We accomplish this through 
a series of lemmas. 

Lemma 2.5. If n = 3*, where m is a positive integer, then 

by (2.10). This completes the proof. 

. . . > 
Our next task is to stale=- 

p p  - 1 

Theorem 2.3. For 1x1 sufficiently small, . (2.25) 

1 3 c + 1  
Setting x = b ( q ) / a  ( q )  and employing (2.8) and (2.9), we deduce that 

I 3 c + 5  (2.22) 
6 

a ( q )  + W q )  

- a(q)  
- 

/ I  2 -. c3@3)\ - 

Proof. Using MAPLE, we have shown that both sides of (2.22) are solutions of 
a(q') 2 r 1  \ii7 31 I t  a3(q3))  

the differential equation =-  
1 2  

a(q)  2Fl  ( j , j ;  I;  1 - 

2 fl 

a(q3>  
2,(, 4 3 u )  Y 

- ( 1  + 2x)[(4x3 - 1)(3c + 2x + 1 )  + 1 8 ~ x 1 ~ '  - 6c(3c + 1)(1 - X) 'Y  = 0. 

-singular point at x = 0, and the roots of the associated 
The next result is the Bonveins' [5 ]  form of the cubic inversion formula, 

indicia1 equation are 0 and (3c - 1)/2 .  Thus, in general, to verify that (2.22) holds, Lemma 2.6. We have 
we must show that the values at x = 0 of the functions and their first derivatives 

side are a u a l .  These values are easily seen to be equal, and so the proof (1 2 c3(q)\ 
on earh ,Fa - -. 1. - = a ( a ) .  (2.26) 
is complete. \ 3 *  3 .  ' u 5 ( q ) )  
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bv (2.2) (or (2.6)) and (2.3) (or We now establish another fundamental inversion formula. 

(2.8)), respectivcl~l Lemma 2.9. Let F be defined as in Lemma 2.8. Then 
lim a(qn) = 1 = lim b(qN) ,  

2 m  

and invoking Theorem 2.2, we deduce (2.26) at once. 

. .  . 
hmma 2.7. I f  n = 3-, where m is Proof. Letting n tend to m in (2.30) and employing Example 2 in Section 27 of 

(2.27) 
Chapter 11 in Ramanujan's second notebook (Part I1 [2, p. 81]), we find that 

Replacing q by q3 in (2.28), and then iterating the resulting equality a total of m 
times. we deduce (2.27) to complete the proof. 

and 

where in the penultimate line we used (2.6) and (2.9). 

Theorem 2.10 (p. 258). Let F be defined as in Lemma 2.8. Then 

a(F(x))  = 2F1 (4, :; I; 1 - U )  

On the other hand, by Lemma 2.9, 

. . of (2.3131) by -2z/fi and then taking the exponential of 
each side, we obtain (2.29). 

Multiply both sides of (2.31) by -4 / (2nn) .  take the reciprocal of each side, 
22. and then take the exponential of each side. We then arrive at 

BY the monotonicity of 2 F I  (f , +; 1; x )  on (0,1), it follows that, for 0 < x c 1, 

~ F I  (f, $; 1; 1 - u )  = 2FI (4, i; 1 ; ~ ) .  (2.35) 
(l'he argument is given in more complete detail in Part I11 [3, p. 1011 with 

I 2  2F1 (?. J:  1: X) replaced by 2 FI  ( 4 ,  f ;  1 ; X)  .) In conclusion, (2.32) now follows 
from (2.33) and (2.35). 

Theorem 2.1 0 is an analogue of the classical theorem (1. IS). Our proof followed 
along lines similar to those in Ramanujan's development of the classical theory, . . 

-1 ,  nap. - I J ,  pp. 9 - 5 - 1 ~ .  
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. . ql is de-tined by ;!1.7is, then 

Of x3wnq;  
z 2 =  1 + 1 2 x  

n - i  

where ~3 denotes the principal character modulo 3 

h f .  In Part 111 [3, p. 460, Entry 3(i)], it is shown that 

Since here q is arbitrary, we may replace q by q 3  in (2.37). Thus, (2.36) can be 
deduced from Theorem 2.10 and (2.37). 

Theorem 2.13 (p. 258). Let z and q be as given ubove. Put p = (m - 1)/2, where 
m is the multiplier ofdegree 3 in the classical sense. Then 

h f .  Our proofs will be effected in the classical base q .  We first assume that 
the second equality holds and then solve it for p. Lei B have degree 3. By (2.13), 

We conclude this section by offering three additional formulas for Z. claimed. 
Second. we prove the first equality in (2.38). By the same reasoning as used in 

Theorem2.12 (p. 2 ~ 1 ) .  Lei q = q3 a n a e z ( 3  j . Then 

9 .  /@,2+&, ? \  - . . , ,  - 
9""" 4'"'- - - J Z I Z ~  rkn = a ( q ) ,  

--- 1 - q3n+l  1 - q'n+2 

by (2.10). Appealing to Theorem 2.10, we complete the proof. 
ea ea 

- - + 6 C C ~ I +  I'm - (*+2)") 

n=O m=l 
3. The Principles of Triplication and Trimidiation 

00 eo 

= 1 + 6 C ( q m  - q2") Edmn 
m=l n=O In Sections 3 and 4, for brevity, we set q = 43, and z = z(3; x )  (unless otherwise 
. . 

M ) n ?  
stated). 

- 
= 1 + 6 E 5  

In the classical theory of elliptic functions, the processes of duplication and 

m= I dimidiation, which rest upon Landen's transformation, are very useful in obtaining 
formulas from previously derived formulas when q is replaced by q 2  or Jii, 

a, 9"' = 1 + 6 C  respectively. These procedures are described in detail in Part 111 [3, Chap. 17, 
1+4m+42m' 

m= I 
cubic transformation, Corollary 2.4, can be employed to devise the new processes 

and the proof is complete. of bip~ication and trimidiation. 

In the middle of page 258, Ramanujan offers two representations for z, but one 
of them involves an unidentified parameter p. If q  is replaced by -q below, then 

Theorem 3.1- Let x,  43 = 4 = q(x), and ~ ( 3 ;  X) = z be as given in (1.7) and 

the -meter D becomes identical to the parameter p in Lemma 5.5 below, as can 
(1.6), respectively. Set x = t '. Suppose that o relation of the form 

be seen from (5.1 1). ('.I) 
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, . .  . . and 
holds. lhen we have me 

Proof. Set Theorem 3.3. Recall that f (-9) is defined by ( I .  14). Then for any base q ,  
3 1 - t  p = 1 - (-1 (3.4) qf24( -q )  = &b9(qk3(q).  

1 +2t  
(3.8) 

Therefore, Proof. All calculations below pertain to the classical base q. 
1 - (1 - p)1/3 By Entry 12(ii) of Chapter 17 of Rarnanujan's second notebook (Part 111 [3, p. 

- (3.5) ' 
1 + 2(1 - t")'" 

124) 

24 
By Corollary 2.4, qf (-9) = k z i 2 a ( l  - a14. (3.9) 

= (1 + 21) FI (f, $; 1; 13 = (1 + 2t)z(t3). 0.6) 

Also, by (1.7), (3.4). (2.23, and (2.231, 

the pararnetrizations 

I - a =  
(m + l ) ( 3  - m)"  

1 6m3 

Corollary 3.2. With q and z as above, 
b (g )  = (1 - x ) ' I 3 z  
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Hence, by (2.11),(3.12),and(3.13), as desired. 

4. The Eisenstein Series L, M, and N 
- - ~ ~ r n ' ~ ' c P ( 1  - 'r)Ip (3.16) 

21/381/24(1 - ' We now recall Ramanujan's definitions of L , M, and N ,  first defined in Chapter 
15 of his second notebook (Part I1 [2, p. 3181) and thoroughly studied by him, 
especially in his paper 171,[10, pp. 136-1621. where the notations P, (2, and R 

3zl 2(1 - /!I)3/8 4 1 / 3 ~ 1 1 R ( 1  - f i ) I I R  are used instead of L ,  M, and N,  respectively. Thus, for Iq 1 c 1 ,  
c(q) = (1 - r y ) 1 / 8  a1/24(1 - u)1/24 

3 z l ~ ' 1 8 ( 1  - 8)'I2 
- - (3.17) 21/3m3/2al/24(1 - a ) l / 6  

a, n34" 
It now follows easily from (3.16) and (3.17) that M(q)  := 1 + 2 4 0 x -  

- n=l 1 -9" '  
&by(q)c"q) = hzl"(1 -a)', 

and 
which, by (3.9). completes the proof. 

00 

N(q)  := 1 - 5 0 4 x  
Corollary 3.4 (p. 257). Let q = q3, and let z be as in Theorem 2.10. Then n=l 1 - 9 " '  

We first derive an analogue of Entry 9(iv) of Chapter 17 in Ramanujan's second 
notebook (Part I11 [3, p. 1201). 

Proof. By Theorem 3.3 and Corollary 3.2, Lemma 4.1. Let q = 43 be defined by (1.7). and let z be as in Theorem 2.1 0. Then 
24 q f  ( -4 )  = & ( I  - 

dvb2 1 1 7 ~ 1 1  - bdz - ,. . . . , z , . \ . x  
from which (3.18) follows. ' - dx  ' 

Corollary 3.5 (g. 257). With the same notation as in Corollary 3.4, Proof. By logarithmic differentiation, 

4 1 / 8 f ( - q 3 )  = &3-3/llx1/8(1 - X)1124. d d 
9 - 1% ( 4 f  '"-9)) = 4 - 1% 

dq 4 
Prod Applying to (3.18) the process of triplication enunciated in Theorem 3.1, 

a, nqn 
we deduce that = 1 - 2 4 x -  I - q n  = L(q).  (4.2) 

r .  , . I n k 1 1 2  , . - . I  (7 118 n= I 
- X )  1 1  - ( I  - I).'" 

9 1 J 9 ( - 9 3 )  = &I1 + R1 3518 On the other hand, by Corollary 3.4. \ 1 + 2(1 - x)'13 
3 118 

a a 
q-  ~ o ~ ( ~ f ~ ~ ( - ~ ) )  = q- log ( & z ~ ~ x ( ~  - x y )  

(1 + 2(1 - x ) 1 / 3 ) ~  - ( I  - ( 1  - xI1'3) 
X 

4 1  a wa - -wn3 
dq 

d - A r  
dq 

= q- log (&zlLx( l  - x) ' )  -. 
d x  d9 (4.3) 

= J E ~ - 3 1 8  ( 1  - (1 - x-1/3}118 (1 - x ) ~ / ~ ~  
Now by Entry 30 of Chapter I I of Rarnanujan's second notebook (Part I1 [2, p. - 

J 3  
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Ti. 
Thus, by (4.4), Lemma 4.1, and Theorem 4.2, 

Using (4.4) in ( 4 3 ,  we deduce that z 
(1  - 4x)z2 + 12x(1 - x ) z b  

( I Z d z  1 3 
dx 

d .. 2 + - - -  
\ z d x  x I - x /  4z2(l + 8x)ffI + €iZ4 

dx 

Combining (4.2) and (4.5), we arrive at (4.1) to complete the proof. 

Theorem 4.2 (p. 257). We have 
- - 

= z6 {(I - 4x)(1 + 8x) - 24x(1 - x) )  

= z"1 - 20x - 8x2), 

and so (4.8) has been proved. 

131, Proof. Apply the process of triplication to (4.6). Thus, by Theorem 3.1, 

where we have employed the differential equation for z (Bailey [ I ,  p. I D  

Upon simplifying the equality above, we deduce (4.6). 

e. 

Theorem 4.5 (p. 257). We have 

Proof. Applying the process of triplication to (4.8). we find that 
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Lemma 5.1. We have 

- ,, f J ( - 4 )  / C  A\ 
We complete this section by offering aremarkable formula for z4 and an ldentity 

- 
' f (-4') ' 

involving the sixth powers of the Borweins' cubic theta-functions b(q)  and c(q) .  

(5.5) 
Corollary 4.6. We have 

the desired result. 

und 

Proof. Using Theorems 4.3 and 4.5 on the right side of (4. lo), and also employing 
Corollary 3.2, we readily deduce (4.10). Proof. First, (5.4) and (5.5) follow directly from Corollaries 3.2,3.4, and 3.5. 

(4 7,  \*.-/* 

5. A Hypergeometric Transformation and Associated Transfer 
Principle 5 - 3 - 3  

thc proof of (5.6) is complete. 
Again, from (5.5) and (5.3), 

We shall prove a new transformation formula relating the hypergeometric functions 
z(2) and z(3)  and employ it to establish a means for transforming formulas in the 

several formulas relating the functions ~ ( q ) ,  + (q ) ,  and f ( - 9 )  with a ( q ) ,  b(q) ,  
and ~ ( 9 ) .  

f C  ?\ L 7 ,  
\J.LJ,  13 43. I nus, (5 .1  j I S  proved. 

Lastly, (5.8) follows from combining (5.6) and (5.7). 
(a;  q)O;, := ( 1  - a ) ( ]  - aq)( l  - aq2)  . . . , lql < 1.  

For any integer n , also set 1,emma 5.2. We have 

From the Jacobi triple product identity (Part I11 [3, pp. 36,371). 
2 

9 ( - 4 )  = (9 ;  9)00(9; q )oo, 
Proof. By (5.8). we want to prove that 
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p. L221)- Thus, by Entry 3(i) of Chapter 2 1 of Ramanujan's second notebook (Part 111 [3, p. 
(5.10). (2.14), (2.15). (3.10), and (3.1 I), 

(P(-q) = f i ( 1  - @)Ii4 and ( ~ ( - q ~ )  = f i ( 1  - 8)114j (5.9) 

*es to prove that 

z3( l  - fl)"' - z I ( l  - Ct)IJ2 = 223(1 - B)"' ( llr3(q') 3q - 
Since m = 2 /z3, the last equality is equivalent to the equality, 

rn 

By (2.14), (2.15), (3.10), and (3.1 l ) ,  the last equality can be written entirely in 
terms of m , namely, 

(1 - B)" 1 83 11 
- - $ ((7--)1'4+ (--) ] +3q- *Yq3) 

This equality is trivially verified, and so the proof is complete. I *(4) ' 

BY (5.9) and (5. lo), the right-hand sidc above equals 
Lemma 5.3. We have 

The desired result now follows. . . 
Proof. By (5.8), the proposed identity is eqoivai- 

.- - .- - - 
55- l f p  ' ' 

q*2(q6) + *?(q2) = 

. . . .  to the identity, (5.1 1) 

By (2.14). (?.IS), (3.10). and (3.1 I) ,  the last equality can be expressed completely 

Since this last equality is trivially verified, the proof is complete. 

- .  - 
Lemma 5.4, We-ave 

Proof. By Entry 1 1 (i) in Chapter 17 (Part 111 [3, p. 123]), 

and 

Proof. Equations (5.1 ])and (5.1 2) follow from Lemmas 5.2 and 5.3, respectively. 
Asobserved by the Bonveins and F. G. Garvan [I], it follows from the definition 

(2.4) of c(q) that 
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Also. bv Lemma 5.5. 

Thus. by Lemma 2.6. 

 PI ~i, f ;  I ;  p )  = a tq -J .  

By Lenuna 5.5, (5.19), and (5.6). 

- -. * . 
I nus, (3. I 5 )  nas oeenverrfred. 

Lastly, by Lemma 5.4, (5.6),  and (5.7). 
= J 1 + 2 p a ( q 2 )  

1 / c 2 ( q Z )  , a=) 
- - 2 6  (i, :; 1; B ) ,  

= - - 
3 \ c(q4) * c ( q 2 )  1 .  by (5.20). 

Hence, by (5.13) and (5.161, Lastly, we show that our proof of (5.17) above is valid for 0 5 p < 1. 
e t h a  

Hence, a ( p )  and B ( p )  are 
6Imi *"A ,"(I\ - 1 - 

monotonically increasing on (0 , l ) .  Since a ( 0 )  = 
;* follows that Theorem 5.6 is valid for 0 5 p -= P,", . " L " U \ 1 ,  - 1 - p[1,, EL 

which proves (5.14). 

We now prove a corresponding theorem with a and B replaced by 1 - a and 
I - B ,  respectively. 

P%+ P )  ad B := 27p2(1 + p)2 a := 
1 + 2 p  4(1 + p + pZI3 ' 

(hen. for 0 5 p c 1, 

( I  + p + p 2 ) Z ~ l  e, i ;  1;a) = J - ~ F I  ( f ,  $: I ; B ) .  (5.17) 

Proof, By (5.19) and (5.20), with q replaced by -9,  
Proof. By Lemma 5.5 and (5.81, 

by Jacobi's identity for fourth powers, (2 .1) ,  with q replaced by g3. Thus (Part 111 
[3, p. 98, Entry 3]), with q replaced by - q 3 ,  

7 ,  

2p1 (4 ,  I ; ~ J  = 9  1-9'). 6 . 1 9  
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By Lemma 2.9, in the theory of signature 3. 

(5.24) 

and by Entry 5 of Chapter 17 in Ramanujan's second notebook (Pat I11 [3, p. 

If the formula (5.29) involves a, in addition to its appearance through g and z, 
it may be possible to convert (5.29) into a formula (5.30) involving only 8 ,  (13, 

and ~ ( 3 ) .  This good fortune is manifest in the next--er 
alternative proofs of Corollary 3.5, Theorem 4.4, and Theorem 4.5. 

Second Proof of Corollary 3.5. By elementary calculat~ons, 

(5.25) 1 - a =  (2  + p)*(1 + w(1 - pj2 
1 I 1  

(5.31) 
Combining (5.24) and (5.25), we find that From Entry 12(iii) of Chapter 17 (Part 111 13, p. 124]), Theorcm 5.6, (5.28). and 

(5.30), 

@ - 3) - f(-(,2\ - . - l / 3  b(1 - 1/12 

' 
J f k ,  J ,  7 .  v m  t \ -  a!:?] 

- - (1 + 2p)l14 
We now see that (5.23) follows from combining (5.22) and (5.26). (I + + p2Y2 

Corollary 5.8. With cr and 0 as above, for 0 < p < I ,  

Proof. Divide (5.21) by (5.17). by Theorem 5.6 and (5.3 I). This completes our second proof of Corollary 3.5. 

The authors' first proof of Corollary 5.7 employed Theorem 5.6 and a lemma Second Proof of Theorem 4.4. By Entry 13(i) of Chapter 17 (Pan 111 (3, p. 126]), 
arising from the hypergeometric differential equation satisfied by 2 Fl (a. b; C; X )  Theorem 5.6, (5.28). and (5.30), 
and Fl(a, b; c; 1 - x). We are grateful to Heng Huat Chan for providing the M ( ~ : )  = M ( ~ ~ )  = ~ 4 ( 1  -a 
proof that is given above. He has also shown that still another proof of Corollary 
5.7 can be effected by combining Theorem 5.6 with Enby 6(i) in Chapter 19 of - - (1 + * (, - P3(2 + P) + P6(2 f P 
Ramanujan's second notebook (Part 111 [3, p. 2381). We leave this proof as an 0 + P f P')' \ 1 + 4' a 
exercise for readers. 1 + 3 p - 5 p 3 + 3 p S + p 6  

Corollary 5.8 is important, for from (5.27) and (1.7), = z4(3) 

q 3  - 3 2 2 
3 - : Q ~ ( B ) = S  ( a ) : = Q ,  (5.28) 

where q = q(a)  denotes the classical base. Thus, from Theorem 5.6 and (5.28), - - 
we can deduce the following theorem. = z4(3) (1 - $8). 

Theorem 5.9 (Transfer Principle). Suppose that we have a formulo Second Proof of Theorem 4.5. By Entry 13(ii) of Chapter 17 (Part 111 [3, p. 1261). 

Q (q2(a), z(2; ( ~ ( ~ 1 1 )  = 0 (5.29) Theorem 5.6, (5.28), and (5.30), 

in the clussical situation. Then ~ ( q ; )  = ~ ( q ' )  = z6(1 + a)(l  - $a) ( l  - 2u) 
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Having thus proved Corollary 3.5, Theorem 4.4, and Theorem 4.5, we may use 
the process of trimidiation to reprove Corollary 3.4, Theorem 4.2, and Theorem 

6. More Higher Order Transformations for Hypergeometric 
&nes 

The first theorem will be used to prove Ramanujan's modular equations of degree 

which completes the proof of (6.3). 
Second, we prove that 

By (6.4). Theorem 2.13, (1.17), (2.13), (2.14),(2.15),(3.10),(3.1 I ) ,  (5.9),and 
(5.6), 

= % (7 - ; + ? m L )  
Theorem 6.1 (p. 258). If Z1 

1. 

CP' -4" c- 4 = 3 = -  - 2 
I 2 .  1. a\ ,, 3 .  P J .  

r(,,2\ ' 
2 1 5  (4, ;; ha) - ( 1  : d24 ( &\ Y )  

which proves (6.5). 

Proof. We first prove that Now let 

c2(q2)  
(6.3) 

p := p(q) := - - 
a(q )  - a(q2 )  = 2-. 

a ( q )  I .  (6.6) 
4 q 2 )  

c(q> 

From Entry 3(i), (ii) of Chapter 21 of Rarnanujan's second notebook (Part 111 
Then -k 

f3. p. 46011, u = 
7, \ 3 l e 3 \  

a(q2) = Y + *. ( 6 . 4  
Lkp(q3) %(q)  - - ( d q )  - a(q2))  (a@) + b ( q ? ~ ) ~  

Thus, by (6.4), Theorem 2.13, (1.17), (2.13). (2.14), (2.15), (5.10). and (5.71, b 3 ( q )  

.. .+3(q2) 1 ~ ~ ~ ( ~ ~ )  ( ~ ~ ( 9 )  
- c2(q2)  c4(q) 1 cYq)  

=4----- 
(6.7) 

!b(q6) W q )  +(q3) 
LC(~  

Also. by (6.6). (6.3). and (6.5). 
15 z:'* z;l2 

4'' 44'' 
- - 

312 ( 2(3+,2 - z 3  -- - - 1 4C4(q2) c2(q)  c3(q2) 
zl '  \ a12 (4s) 
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The desired result now follows immediately from Lemma 2.6, (6.6), (6.7), and Theorem 6.4 (p. 258). Let 
(6.8). 

We now determine those values of p for which our proof of (6.2) above holds. 
By (6.1). 

da! - 3 ( 3 + p ) ( l - p )  and - - 9 = 3P(2 + P) 

dp 2(1 + pI4 4J 4 

Thus, a ( p )  and B(p) are monotonically increasing on (0, 1). Since a(0) = 0 = 

a := a(p)  := 
27p(l + P ) ~  

and j3 := B(p) := 
27p4(1 + P) 

2(1 + 4p + P ~ ) ~  2(2 + 2p  - $)3' 
l6W 

Then, for0 5 p < 1, 

( 2 + 2 ~ -  p2) ~ F I  (i, $; 1;cr) = 2(1 + 4 p +  p 2 ) 2 ~ l  ( f ,  :; l i p ) .  (6.15) 

p(0) and @(I) = 1 = j3(1), it follows that (6.2) holds for 0 5 p < 1. Proaf. For brevity, set z(x) = Fl ( f , f ; 1 ; x). In view of Theorem 6.1, we want - .  

As functions of p, the left and right sides of (6.2) are solutions of the differential 
@ 

equation, y2(3 + Y) 

p(1 - p)(l + p)2(2 + p)(3  + p)u" + 2(1+ p)(3 - 4p - 6p2 - 4p3 - p4b '  
- - ( 1  + x h  

(x2(3 + 1)) 

\2(l  + X I 3 )  ' ' "' l, 4 j '  

Proof. By Lemma 2.9 and (6.7) and (6.8). respectively. x2(3 + x) - 27p4(1 + p) 
4 2(2 + 2p - p2I3 ' 

(6.10) and 

and 
(6.19) 

The desired result now follows easily from (6.2), (6.10), and (6.1 1). 

Solving (6.18) for x, or judiciously guessing the solution with the help of (6.19), 
wc find that 

Substituting (620) into (619) and salring far y.  we h W a t  

~ ~ ~ ( i , $ ; l ; l - a ! )  - - 2 F 1 ( 4 , $ ; 1 ; 1 - ~ )  
(6.1 2) 

3 P 
2 Y =  1 + p + p 2 .  (6.21) 

z F l  (i, :; 1; a!) 2F1 (4, :; 1; f i )  
Substituting (6.21) into the left side of (6.17). we see that, indeed, (6.17) holds. 

and Lastly, it is easily checked that, with x and y as chosen above, 
m(3) = 1 + p, (6.1 3) 

x(3 + x12 y2(3 + y) -=- 
where m(3) is the multiplier of degree 2 for the theory of signature 3. 2(1 + x I3  4 '  

Proof. Divide (6.9) by (6.2). Since (6.12) is the defining relation for a modular 
equation of degree 2 in the theory of signature 3, (6.13) follows from (1 .lo) and 
(6.2). 

Thenext transformation is useful inestablishing Ramanujan's modular equation 
of degree 4. 

i.e., the middle equality of (6.16) holds. Hence, (6.15) is valid, and the interval of 
validity, 0 5 p < 1 ,  follows by an elementary argument like that in the proof of 

-61. 

Corollary 6.5. Let a and B be defined by (6.14). Then. for 0 c p 5 1, 
- . a  7, " / I  7 . . \ r . . .  . 2 ? 

(L+LP-P ) 2 p 1  ( f r  f ;  Tr 1 a) < l t + P t  - - - 2 ( 1; 1 - P) . g?)m . 
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2(1 + 4 p  + p2)(1 + 2p )  - 2p(2 + p)(l  + 4 p  + p2) - - - (7.10) 
(P - U ( P  + 213(2p2 + 5 p  + 2) 

- - 
(2 + 2p - p2)(1 + pH1 - P) (1 + p)( l  - p)Q+ 2p  - p2) 

2(2 + 2p - p2)' 

Hence, from (7.6)-(7.10). 
- - 2( 1 + 4 p  + p2) 

= m, 
2 + 2 p -  p2 v'N(1 - lot 'I6 

by (7.4), and the proof is complete. 
27p2(1 + p)2  ( p  - 1)2(2p2 + Sp + 2)' 

Theorem7.3 (p. 204, NB 1). Let a, B, and y have degrees 1 , 2 ,  and4, respectively. - - 4(1 + p f p2I3 . 4 ( 1  t p It 4 ~ ~ ) ~ -  
Let m l  and m2 denote the multipliers associated with the pairs a, and 8, y ,  Pt1 + P)' ( 1  - PKP + LJ'CLp' + DP + 

2(2 + 2~ - ~ 3 '  respectively. Then 

- - (7.1 2) 

y2(3 + Y )  x(3 + x12 m2 I + x  2(l + p + p2)2 
and - 

4 .13 ' Combining (7.1 1) and (7.12), wc complete the proof. 

where x and y are given by (6.20) and (6.21). respectively. In either case, a short Ncxt, we show that Rarnanujan's beautiful cubic transformation in Corollary 
calculation shows that 2.4 yields the defining relation for modular equations of degree 3. We then iterate 

27p2(1 + p)2 the transformation in order to derive Ramanujan's modular equation of degree 9. 
8 = 4(1 + p + p2I3' 

(7.7) 
Lemma 7.4. If 

Using (7.6) and (7.7), we find that 1 - pl/3 3 

2 2 p 6 - 3 p 5 - 6 p 4 + 1 4 p 3 - 6 p  - 3 p + 2  @ : = I  -(-) I + 2 p 7  . (7.13) 
I - a =  

2(1 + 4p  + p2Y then 

Proof. In (2.23) and (2.25). set x = f i l l 3 .  Dividing (2.25) by (2.23), we deduce 
(7.14). The formula m = 1 + 2#?'13 is an immediate consequence of (2.23). 
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Theorem 7.5 @. 259). I f m  is the multiplier for modular equations of degree 9, 
then 

(In fact, (7.19) is given by Ramanujan in his second notebook (Part I11 [3. p. 460. 
Entry 3(i)l.) Thus, by (5.4), (5.5). and (7 .  lg),  (7.1 8 )  is equivalent to the identity 

where /3 hs degree 9. - - { f  I2(-q) + 279f 1 2 ( - 4 3 ) ] 1 / 3  [ f 12(-qS) + 2 7 9 ~  f 1 2 ( - q 1 5 ) ) 1 / 3  

Proof. Let a! be given by (7.13), but with p replaced by 
f (3)f (-4')f  ( -q')f  ( - q n )  (7.20) 

/ * ,,I13 \ - ,  
3 Cubing both sides of (7.20). simplifying, and setting 

Applying (2.23) twice, we find that we deduce that (7.13) is equivalent to the proposed identity 

We want to express the multiplier 

entirely in terms of a and 8. Solving for f l L r 3  in (7.13) and then replacing B by t ,  
we find that 

Thus, 

and dividing both sides of (7.21) by q2(A BCD)6,  we find that (7.21) can be 
written in the equivalent form 

Using this in (7.16). we deduce (7.15) to complete the proof. By examining P and Q in a neighborhood of q = 0, so that the proper square 
root can be taken on the right side of (7.22), we find that (7.22) is equivalent to 

Theorem74 (PLtSp). luxdegree 5. then the identity 

Now (7.23) is stated by Ramanujan on page 324 of his second notebook and has 
been proved in Part IV [4, p. 221, Entry 621. (See also a paper by the author and 
L.-C. Zhang [ I  I.)  This therefore completes the proof of (7.17). 

From Theorem 2.2 and (5.4) and (5.5) of Lemma 5.1, we find that Theorem 7.7 (p. 259). Ifb has degree 7,  hen 
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- - that (7.24) is 
equivalent to the equality 

- 
b(q7) cQ7)  . b(q7)dq7) _ / -- -- 

b ( ~ ~ ) c ( s ~ )  

b(q)  + c(q)  b(q)c(q) '\l b(q)c(q)  
(7.25) 

Employing (5.4) and (5.5) in (7.25) and then multiplying both sides of the result- 
ing equality by f (-q)  f  (-q3)/ (g f  ( -q7)  f  (-q?), we hnd that (7.23) may -be 
written in the equivalent form 

- - 3 \ 2(-,721) f 2 ( - "3 )  f2 ( -a7)  
J f (  4)Jf( 4 1 - - -I / +  - , J  ' ,  

q f  ( - q7 ) f  ( - q Z 1 )  f2 ( -q3)  f 2(-q7) q f  2 ( -4) f2( -q21)  

If we set 

of (7.36fbyft;flC D, 
that 

We next cube both sides of (7.31), simplify, and divide both sides of the resulting 
equality by 27(qA B C D ) ~ .  After considerable algebra, we deduce that 

we deduce that (7.26) is equivalent to the identity 3qBD 34 B D 

7 p2 02 s 

( ~ i ; ) ~  + (?)' + (32 +2) + (AC)4J 

P Q  + -- - - - -  
PQ Q 2 + P 2  " 

(1.V 
34 B D 

However, (7.27) can be found on page 323 of Ramanujan's second notebook and + ( 3 3 + 4 . 3 2 + 3 ) { ( 3 3 + ( r ) 3 }  

has wen  proved by the aumor and Zhang [ l ,  I n e o m  4 . 3 ~  z t b R u t W  [4, p. 
236, Entry 68L This completes the proof of (7.24). t ( ~ . 3 ~ + 2 . $ + 4 . 3 q  

Proof. Employing Corollary 3.2, we find that (7.28) is equivalent to the identity 

= ~ ( ~ ) u ( g l l ) .  (7.29) 

B y  ( 5 4 ,  (5.9,  and (7. N), (7.29) can be transformed into the equivalent identity 

A p = -  - rl(z) and Q = - - -- c q ( l l z )  - 
q11 '2B ~ ( 3 2 )  q 1 1 / 1 2 D  ~ ( 3 3 2 ) '  

where q(z)  = q1 /24  f ( -9)  denotes the Dedckind eta-function, q = exp(2niz),  
and lm(z) > O. 'l'hen (7.32) is equivalent to the identity 
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Next, employing (5.4), (5.5), and (7.12). we translate (7.40&(7.42) into the equiv- c is divisible by 24, 42. and 60, respectively Hence. (7 A ~ L ( ? . A ~ )  
alent eta-function identities, belong to M(ro(n), 2, I ) ,  where n = 24, 42, and 60, respectively, 

( / I2(-q)  + 27q f 12(-q3))Il3 { f 12(-q8) + 27q8 f 12( -q24) }113  If u, denotes the number of inequivalent cusps of a fundamental region for r&). then (B. Schoenebero 11, p. 107]) 
f ( -9 ) f  ( - s 3 ) f  (-s"f 

3 f ' ( - q 3 ) f  3(-q24) f +q)P( -q8)  = (P ( (d ,  n ld ) ) ,  
-94 '-, *,'-/ 2, 

- dltr 

where (P denotes Euler's (p-function and (a, b) denotes the greatest common di- 
= 9qf ( -q2) f  ( - s4 ) f  (-qh)f  ( -d2),  (7.43) visor of a and b. Thus, for n = 24, 42. and 60, there are 8, 8, and 12 cusps, 

I m , A -  A I I - 4 4 L -  - K?\I I f 3  respectively Uslng a pr- ' ' 
\J Y J T b ' Y J  Y J j  I J  Y j T b l q  J q ) I  - 

1 1 1 1 1  
f ( - s ) f  ( -q3) f  ( -qI4) f  (-4") f indthat(O.i ,L - iO. h. &. &, G, 1' I " oo L . / , h . m } ; ( O . f . i , t , t , h , ~  constitute complete sets of inequivalent cusps ' 2 '  for 3'4'5'6' ro(24), 

+ 18q5 
f 3( -93) f3(-q42)  + 2 f 3 ( - q ) f  3(-q14) ro(421, and r ~ ( 6 0 ) .  respectively. Employing (7.34), we calculate the order of each 

f ( -q ) f  (-9"') f ( -q3) f  (-4") expression in (7.43)-(7.45) at each finite cusp. In each instance. we find that each 
order IS nonnegatlve. 

Let F24, F42, and F60 denote the differences of the left and right sides of (7.43)- 
(7.45). respectively. Since the order of F24, F42, and F60 at each point of a funda- 
mental set a nonnegatlve, we deduce from the valence formula that 

rpr*(,,, 2 ord(Fn; w), n = 24,42,60, (7.47) 

provided that F,, is not constant, where r is the weight of F, and 

Recall that if q = exp(2niz), where Im(z) s 0, then q(z) = q'/24 f ( -4)  is a 
/ , \  

modularfom on r ( l )  of weight i. If a O 
E F( l )  andd is odd, the multiplier 

c d 

SYSkm u, (: 1;) is given by (Knopp [ I ,  p. 511) 
. . 

~ ( 7 . 4 3 H 7 . 4 5 )  7 A+\ IT a< are equal 
to, respectively, 

where ( 6 )  denotes the Legendre symbol. ine plus sign is taken if c 2 0 or d ? 0. 9q - 9q" -aq5 + o ( ~ ~ ) .  
and the minus sign is chosen if c < 0 and d < 0. Using (7.46), we find that each 
of the four expressions in (7.43) and each of the six expressions in both (7.44) 3 + 18q' + 189' + 18qh + 36q7 + 54qY+ 18qI0 + 36q11 

and ('7.45) has a multipher system Identicany equal to I ,  provided, ot course, that + 184'" + 364" + 904" + O ( q l ' ) ,  (7.51) 
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8. The Inversion of an Analogue of K (k) in Signature 3 

3 + 18q3 + 18~7' + 18q8 + Mq9 + 36q" + 36qI2 + 36q13 + 18q15 Theorem 8.1 (p. 257). Let q = q 3  be defined by (1.7), and let z be defined by 

1 9 ,  I- 23 (1.6) with r = 3. For 0 5 (p 5 n/2, define I9 = 19(~) by 

(7.52) 
62 = lq ~ F I  (). I ;  i; x sin2 t )  d l .  (8.1) 

Thus, R1 - - O k 9 L  FA? - - O ( ~ I ~ L  .& F M - - ObZ5) ,  which contradicts (7.50) 
unless F2& F42, and F60 are each constant. These constants are obviously equal to Then, for 0 5 8  5 n/2, 
0, and hence (7.43)-(7.45) are established. This completes the proofs of Theorems CQ sin(2nO) 00 

7 9 d  7JQ p = 0 + 3 y  .. = 19 + 3 y' sin(2n19)qn =: a @ )  (8.2) 
n ( l  + Zcosh(ny)j 

- 
n= l  - "(1 + 4" + 9 ' 7  

On page 328 in his first notebook, Ramanujan gives another modular equation of 
degree 8 in the theory of signature 3. This equation is quite interesting, because it 
is the only known modular equation of Weber type (H. Weber [I]) in the alternative 
theories. 

Theorem 7.11 (p. 328, NB 1). Let 

P := 1 - (afi)IJ3 - { ( I  - a) ( l  - B ) ) ' ' ~ ,  

where q =: e-y. 

Recall from Entry 35(iii) of Chapter 11 (Part I1 [2, p. 991) that 

zFI ( d  + n, 1 - n; d; x2) = (1 - x2)-Il2 cos (2n sin-lx) , (8.3) 

where n is arbitrary. With n = in (8.3), we see that the integral in (8.1) is 
an analogue of the incomplete integral of the first kind, which arises from the 
case n = 0 in (8.3). Since FI (i, :; $; x sin2 t) is a nonnegative, monotonically 
increasing function on [O, n/2];-'thereexists a unique inverse function (p = p(e ). 
Thus, (8.2) gives the "Fourier series" of this inverse function and is analogous to 

and familiar Fourier series for the Jacobian elliptic functions (Whittaker and Watson 
[ l ,  pp. 51 1-5121). The function 9 may therefore be considered a cubic analogue 

R := 9{afi(I - a)(l - f3))'I3. of the Jacobian functions. Theorem 8.1 is also remindful of some new inversion 
111 

Then Ramanujan's second notebook and which have been proved by the author and S. 

Proof. As with the proof of Theorem 7.9, we utilize the theory of modular forms. 
Transcribing (7.53) via Corollary 3.2, we determine that it suffices to prove that 

where p := z lzsP ,  t := zlzsT, and r = Z:Z;R. Employing (5.4), (5.5), and 
(7.19), we find that (7.54) is equivalent to an eta-function identity in the spirit of 
(7.43H7.45). Because the identity contains the same era-function products and 
quotients as (7.43), it follows from our previous work that each term has multiplier . . 
system identicany eqad to 1. h v  1 - 8; ~~ 
from the proof of Theorem 7.9 that pl.,,24, = 4. Thus, from the valence formula, 
in order to prove (7.54), it suffices to show that 

P4 - rp(5p + 91) - 2r2 = o ( $ ~ )  (7.55) 

as q tends to 0. Indeed, we have used the pentagonal number theorem (1.14) in 
connect~on wrth Mathematics to prove (1.53). lnis comfleres the p o f .  

Bhargava [I]. (See also Part IV 14, Chap. 261.) 
- 

0 

2FI ( f ,  i; ; ;xsin2t)dt  = 

m (;I (2) (& IT =x+& -- 
- > - (:W n !  2 

= i x  2Fl ( f ,  t ;  1; X) . 
Thus, I9 = 1712, which is implicit in our statement of Theorem 8.1. 

We now give an outline of the proof of Theorem 8.1. Returning to (8.3), we 
observe that 

S ( x )  := 2 F1 (4, 5; f ; x2) = (I - x2)-'I2 cos (f  sin-'x) , lx 1 < I ,  (8.4) 

1s that unique, real-valued function on (- I ,  1) satisfying the properties 

S(x) is continuous on (-1 , I ) ,  
- - 
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andso 

4(1 - x2)s3(x )  - 3 S b )  - 1 = 0. (8.7) Z@(p)  = (' ,F1 (i, $; 4 ; .  sin2f)dt ,  0 5 p 5 7r/& 

Properties (8.5) and @.6j are &vim, and c8 .3  7 
identity 4120s" 8 = 3 cos B + cos(3B). To see that S(x) is unique, set y = S(x) in 

J U  

since @(0) = 0. It follows that O ( p )  = O ( 9 )  and that (p = a(@).  Hence, the 
desired result (8.2) holds. . , 

By expanding 1/(1 - q3") in a geometric series and inverting the order of sum- 
mation, we find that 

d ,,(& ..., - (8.131 

4x sin2 (@ ( 8 ) )  = 4 - - (8.9) M. Hirschhorn, F. Garvan, and J. M. Borwein [ I ]  have studied generalizations 
of b(q) ,  and c(q)  in two variables. In parlicular, they defined 

, [O, n / 2 ]  + [0, n / 2 ] .  Setting S := By (8.8). we may define (3 := @-I . CQ 

dO/d(p, we see from (8.9) that b(L,9) := c Om-nqm1+mn+n2 zn 
m,n=-cm 

4s3( l  -xs in2(p j -33-1  -0 .  
and showed that 11, eq. (1.22)] 

Hence, (8.7) holds with x2 replaced by x sin2 (p. Now, from (8.2). 

a, 9" 4z7 4) = (4; 9)00(q3; q"m 
(z9; q)m(z-'q; q) ,  

@'(O)= 1 +6c, + ,, = 2, (29); q3),(z-'q? q3), 
.=I - - ' 4 M ,, 

by Theorem 2.12. Thus, 
(8.14) 

n= l 

Hence, by (8.4)-(8.7), we conclude that b(zq3, q )  = ~ - ' ~ - ~ b ( z ,  q ) .  (8.1 5 )  

We next show that v(z, q )  can be written in terms of b(z, q )  and b(-z,  q ) .  
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The first equality follows from the representation of u(l q )  in (8.17) To prow 
the second, we first find from (8.10) that 

o ( q )  := 
(9;  9&(Q? q3)& 

(q2; q2)m(q6; q6)w tq& q )  + * &, 1 
- - Q 3n - 3 1-3 ,  
2 ' 2 ' - L  

n=l I + 9" + q6" 2Uw " 
and 

then 
- 

The case z = 1 of (8.16) follows from the paper by Hirschhom, Garvan, and 
Borwein [ I ,  eq. (1.291. To prove Lemma 8.2, we employ tke 
due to A. 0. L. Atkin and P. Swinnerton-Dyer [I]. 

Lemma 8.3. Let q ,  0 < q < 1, befuied. Auppose rhaf f i z  j is an m d w  
of z ,  exceptforpossibly aJrtitenumberofpoles, in every region, 0 < Z I  5 lzl 5 z2. 

by Theorem 2.12. Since u ( l , q )  = a (q ) ,  by Theorem 2.12. we deduce that 

B y  (2.81, we conclude that b(a) = v(w. q )  to complete the pmf af !&19b 
Now setting z = o, we see from (8.17) that we are required to prove that 

I f  W ( ' i l l  v " F  . . . 
f ( zq)  = AZ' f ( z )  Chapter 20 of Ramanujan's second notebook (Part 111 [3, p. 345]), 

for some integer k (positive, zero, or negative) and some constant A ,  then either 
f ( z )  has k more poles than zeros in fhe region jq i -= Iz j 5 1, ar ji~) mridm 

d - 9 )  

Thus, by (5.9). ( l . l7) ,  (3.1 O), and (3.1 I), 
Proof of Lemma 8.2. Define 

- 113 
~ ( z )  := b(z, q )v (z ,  q j  - i a ( q ~ (  Z ,  Q )  t ; f l q M z ,  9). 

Examining (8.16). we see that our goal is to prove that F ( z )  = 0. From (8.1 3)  and 
(R 1'9, z 3 / 2 ( 1  - @)3/4  / - A 1 1/3 - - 

F(zq3) = ~ - ~ q - j F ( z ) .  
. . of the poles of u(z, q )  and from the definition 

(8.14) of b(z, q ) ,  we see that the singularities of F(z)  are removable. Thus, by 
Lemma 8.3. to show that F(z )  = 0, we need only show that F(z )  = 0 for 
three distinct values of z in the region l g 1 3  < izl 5 1. We choose the values 
z = -l,w,w2, wherew = exp(2nij3). 

. , 

3 (9; q&,(q6;q6)t, 1 
v ( -  1 ,  q )  = ;Sor(q) (8.1 8)  by (2.1 1). (See also the Boxweins' book [I ,  p. 143, Theorem 4.1 l(b)].) n u s ,  (8.20) - has been proved. (Note that in (8.21) a and p are squares of moduli and are not to 

But this has been proved by N. J. Fine 11. P. 84. eq- (32.64)1. be confused with the definitions of cr(q) and B(q) in Lemma 8.2.) 
For the values z = w, w2, we need the evaluations In conclusion, we have shown h a t  F ( z )  = 0 for z = -l,w,w2, and so the 

V(W,  q )  = u(02 ,  q )  = b k ) .  (8.19 proor or Lemma 8.2 1s complete. 
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among a(q), c(q), a(q), and B(q). Firsts Proof. From (8. LO), 

from (8.2 1 ), n ( z n  - z-")q" 
1 d ( - r )  ( r4(-9') = ( ~ ~ 2  - ~ 2 ) .  1 + q n + q Z n  ' (8.26) 

b3&\ - ------ 9- - 
W3(-9') \ v4(-9) / By expanding 1/(1 - g3") in a geometric series and inverting the order of sum- 

Since, from (8.14) and (8.161, with z = 1. mation. we find that 

Recall from (8.1 I) that V(0) = d@/dO, where @(0) is defined by (8.2). Our . . 
next task is to derive an 
employ Bailey's 6@6 summation (G. Gasper and M. Rahman [ I ,  p. 2391). 

Replacing n by -n - 1 in the second and fourth sums and then combining the first 
and fourth sums and the second and third sums, we find that 

Then, for la2q/(bcde)l < 1, 

r q f i ,  -q f i ,  b, c ,d ,  e . . -  a2q 1 
fJa L &. -A. qalb ,  q a i c .  qa /d .qa le '  " Ed.  J 

- 
aq, aq/(bc), aq/(bd), aq/(be),aq/(cd), aql(ce).aq/(de), q , q / a  

- 
L d .  ogle. a2q/(bcde) 1 

(8.24) 

Lemma 8.5. With z = e2'', we have 

by (8.24). With z = ezi8, we thus have shown, by (8.26) and (8.27). that 

dV dZ@ n sin(2nO)qM 43 - = - -  X 
( 1  - +q6")(1 - qn) ( l  - 9"')' 

dB do2 n= I (I - ~ c o s ( ~ Q ) ~ ~ ~ - '  + qb-2)2(, - 2~,(2@)~In-' + q6rl-92 ' n= l 

which is (8.25). 

- - 20) Next, define 
00 (I - 2 c o s ( 4 ~ ) ~ ~ '  + qb")(l - 9")(l - 9"Y 1 ,, - ,ms(2@)q3n-1 + ,b-z )q l -  +qN-4,2. 'Y(@ := 1 (4 - (y)) - 3 (F)~) = - (z  - v ) ( ~ z  + V)Z, 

n= l 4x 4x Z' 
W'm @.W 
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- neorem 6. I below. 

$ -  - X 2 3  

27 
' 

X s', = - zS ,  
by (8.23). So, from (8.41), 27 

0 < 'I.'(@) c 1 ,  0 < 6 i n/2.  (8.44 S6 = 

Now, by (8.38) and (8.31), d\lr/d% > 0, and again by (8.1 1 )  and (8.4% d@/dO 1 
0. Also noting (8.44), we conclude from (8.30) that 

and 

1 dw d d  - - 0 < 0 c n/2.  (8.45) s8 = ~ ( 8  1 + 648x + 80x2) 
2,/'m Jm de - de ' 3' z9. 

that W(O) - - 0. By d d i ~  'fion. @(O) = 0. 

Hence, by (8.4% Proof. Define 
1 qo' ,  x ,  a := -; ( 4 x z 3  + (V - Z)(" + 2zy) (" - 2). 

Then, by (8.32), 

(8.46) 
By r m  - - ighfPorward calculation, 

1 a 
i.e., PW, x ,  Z )  := -- ,, w 4 ( v .  X .  Z) - 

This proves (8.29). Thus, (8.8) and (8.9) have been proved, and this finally com- 
pletes the proof of Theorem 8.1. 
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From (8.46), Equating coefficients of 02'+' in ( 8  55)  

d~ d Z V  a q ( V ,  x ,  2 )  d V  2-- - - - ( - 1 ) " ( 2 r ) !  ~ e s  
dB de2 av d o '  Szr = 3 . p + '  - ana so, rrom q.4 1 1 ,  

We then used Mothematica to expand ( Z @ - ' ( v ) ) - 2 r - '  in powers of cp so that the 
d 2 V  -- (8.48) 

desired residues could be calculated. 
- P ( V ' X ,  Z ) .  

, L.-C. snen - ... I l J tound - another 
For n 1 2, define two sequences of polynomials sn(V, x ,  2 )  and ( V v  x *  Z ,  proof based on the classical theory of elliptic functions. 

by 

s Z ( v ,  X .  Z )  := P ( V ,  x ,  Z ) ,  (8.49) 9. The Theory for Signature 4 
t 2 ( V .  X ,  Z )  := 0, (8.50) 

The theory for signature 4 is simpler than that for signature 3, primarily because 
and, for n 1 3, of Theorem 9.3 below. a 

s n ( V ,  x ,  Z )  := t n - ,  ( V ,  x ,  Z ) p ( V ,  x ,  Z )  + - ln-1(V, x ,  Z ) q ( V ,  x ,  Z )  a  v (8.51) Theorem 9.1 (p. 260). For 0 c x < 1, 

By using (8.48>(8.52), we may prove by induction that 
W J  of Chapter I I of Ramanujan's second 

d V  
r7 7) + & f V ,  .r- 7 )  - n >  - 3 (R 57) T v K x q  . . I 

d o  ' 
O-.\ LD l.\ , . F 

( 0 . L h  (0.1 1 h 3 2 r 7  \*. 
on r that 

We also calculated Szr by using Theorem 8.1 in another way. From P. Henrici's 
book [ l ,  p. 1021, 

where Res ( @ - I ) - "  denotes the residue of ( @ - ' ) - I t  at p = 0. By using (8.2), it is 
easy to prove that 

Theorem 9.3 (p. 260). Let q  =: q ( x )  denote the classical base, and let q4 =: 
q ~ ( x )  be defied by (1.8). Then, for 0 < x < 1, 

P m f .  Dividing (9.2) by (9.1). we find that, for 0 c x < 1 ,  
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It is interesting 7 fomulations in the BY En@' 30 in Chapter 11 of Ramanujan's second notebook (part 11 12, p. 871). 

theory of signature 4 than in the classical theory. with q = q4, 

3 - 
a .  

- 4 
Theorem Y.Y (p. (9.9) dx x(1 x ) ~ ?  

q:124f(-q4) = m 2 - 1 / 4 x 1 / 2 4 ( 1  - x)1/12. Using (9.9) in (9.8), we deduce that 

/12dz  1 2 
proof. ~ r o m  Entry 12(iii) of Chapter 17 (Part 111 [3, P. 1241)9 

LK"?= -- - -  -\ '- . -, 
X(1 - X)Z \ z x  1 - x )  

(-q2) = fi2-I') ( ~ ( 1  - ~ ) / q ) ' / ~ ~ .  
(9.10) 

Hence, by (9.7), 1/12 Repeating the same argument, but with q replaced by g2 and with an application 
of Theorem 9.10 instead of Theorem 9.9. we find that 

- I 1  ,. 1/12 
= JZ(4)2-'14x'1r4 (1 + 4x1 ' ( 1 7 )  - x 

= f i2-1 /4x1/24(1  - x) ' "~ .  I ‘i 12 -12 2 dx =-q-10g(z 2 dx 2 x (1-1))- d 

Theorem 9.10 (p. 260). We have 

= 6 x 0  - , ) r a t +  i ( 2 -  3x)z2. 
dx  

(9.1 1) 
mf. Entry 12(iv) of Chapter 17 (Pm 111 I37 P- 1241)~ 

u 7 .  113,. - d/24,1/6. 2 4  ' (1 -4) Our theorem now easily follows from (9.10) and (9.1 I). 
q L ' 0 / ( - 9 9  = %' 

Thus, by (9.7), 
- & ( I  3 . 1 .  ,.\ 

1 \ 4 '  4' " -/  

found also on page 260. We need to first establish some ancillary lemmas. 

Recall the definition of L(q) at the beginning of Section 4. The following . , .  
not appear in the second notebook but can be found in the 

first notebook [9]. 

Proof. For brevity, set q = 94 and = z(4). From (4.2) and Theorem 9.9, 
d 

,y4) = q6 do log = ql d9 I O ~ ( Z ~ Z - ~ X ( L  - x ) ' )  

and 

Proof. By Entries qiii), (iv) of Chapter 19 of Ramanujan's second notebook (Part 
In [3, pp. 226-227,229]), 

and 
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I I.-. s for L{;la(c7) + a(&} and comparing 
o c e  (9.1 2). The proof of (9.13) is similar 

and 

and follows by substituting x = qSnC', q3n+2 in the elementary identity rp 8 (-4') 1 = -- bp9(-q3) v3(-9) - - -(a 1 + 2 ~ ) ~ ( 2 ~  - a). - - 27 
(9.24) 

X .4 = - -  
1-x2  I - x  1 + x -  Lastly, we need the elementary identity (Part 111 [3, p. 40, ~ n u y  25(iv)l) 

a. 

Lemma Y. 133% 

and 

Proof. For brevity, set a := a(q) and A := a(q2). Then, squaring(9.12), we find 

Hence, from (2.1). (9.251, (9.23). and (9.20). 

f v 4 ~ ~ )  + 1 6 q ~ 4 ~ a 2 ) ~ 2  , = b4(~) I .  - .  - 1 & $ 4 ~ 2 )  + 6*4&2) 

that - I ~ Z + ~  2 A  - - 2)2 

$%?) 
(0 76) 

4- = (a + A)'. (9.16) 
*2(q3) Equality (9.14) now follows from (9.19) and (9.26). upon taking the square root 

of both sides of (9.26) and checking agreement at q = 0 to ensure that the correct 
n. 

(9.17) The proof of (9.15) is similar. Thus, from (9.16)-(9.18), 

iord 2 3 
64$2(4)!b (4 - 3q2 = f (2A2 + 2aA - a*). (9.27) 

m 10\ 

Proceeding as in h e  proof of (9.14). from (2.1). (9.25), (9.24), and (9.21), we 
Hence. from (9.16H9.183, find that 

6 3 

2 J /  (q ) - a 2  + 2aA - 2A2. (9.19) '"') + 18q$2(q)$2(q3) - 279 - - 
4 3 3 4 6 2  

J'2(93> *2(q) 
(v  (q ) + J/ (9 ) )  = v8(-q3) + 64q3@8(q3) 

Next. from 6.16) anif@ . l n h  'q - &(a + W 3 ( 2 A  - a )  + q ( a  - ~ ) " a  + A )  

and 

432q3,b8(q3) = (21% 'm) (2m) = (a - A)'(a + A). (9.11) 
Ilr3(q) $(q3) 

From (5.6) and (6.5). 

v3(-q3) 3 = a + 2 A .  

Thus. from 19.13) and (9.221, 

= $(a2 - 2A2 - 2aA)'. 

Equality (9.15) now follows from (9.27) and (9.28). 

Lastly, we need the following lemma connecting 2FI ($, :; 1; x) with theta- 
functions. 

Lemma 9.14. We h v e  



152 R a m a n u j ~ ' ~  Notehks .  Part V 33. Elliptic Functions to Alternative Bases 153 

and 

Then 

where wc have employed (9.25) and the elementary identity 

0 2 ( s 2 )  + 4 q i 2 ( q 4 )  = v2(q), 

which is achieved by adding Entries 25(v), (vi) of Chapter 16 of Ramanujan's 
second notebook (Part 111 [3, p. 401). Hence, from Theorem 9.1, (9.30), (9.31), 

with - o3 rt.,paced bv a 

From (9.32) and (9.33, 

by (9.37). 
Hence, from (9.36), (9.37), Lemma 9.14, (9.38), (9.33, and (9.34). 

J27 - 18p - p2 2 ~ 1  ($, a ;  I ;  a) 

Replacing q%y q, we deduce (9.29). = 3 J 3 + 6 p - p 2 2 ~ , ( i , t ;  I ; # ? ) .  

Lemma 9.14 was first proved by the Bonvein brothers [ I ,  p. 179, Prop. 5.7(a)l, Thus, (9.33) has been proved. 
- 

[5, Theorem 2.6(b)]. 
increasing functions of p on (0.1). Since a(0) = 0 = p(0) anda(l) = 1 = #?(I),  

Theorem 9.15 (p. 260). If (9.33) is valid for 0 5 p  < 1. 

6 4 ~  64p3 
a! := and #?:= (9.32) 

(3 + 6 p  - p2I2 (27 - 18p - p2)' ' 10. Modular Equations in the Theory of Signature 4 

then, for 0 5 p < 1 ,  

J27- 1 8 p - p 2 2 F l ( ~ . ~ ; 1 ; a ) = 3 ~ ~ z ~ ~ ( ~ , ~ ;  I ; # ? ) .  (9.33) 
Page 261 in Ramanujan's second notebook is devoted to modular equations in the 
theory of signature 4. In each case, our proofs rely on (9.7). Thus, we will employ 
modular equations from Chapters 19 and 20 of the second notebook and convert 

Then, by (9.14) and (9.15), respectively, 

5 + 6 p  - pZ- - J- 
P 1 - 4 , , , ,  4 2 

m 4 ( 9 )  lY N J  I I- 

Theorem 10.1 (p. 261). I f p  has degree 3, rhen 

(aIr)IfC + (0 - a)(1 - m]"' + 4 [ a p o  a - ] - - 1 . (10.2) 
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Proof. From Entry 5(ii) of Chapter 19 (Part I11 13, p. 2301). Further simplification easily yields (10.4). 

( a ) ' 4 +  1 - a ) ( l  - = 1. (10.3) Theorem 10.3 (p. 261). ZfB has degree 7, rhen 

in the theory of signature 4, or Proof. From Entry 19(i) of Chapter 19 of Ramanujan's second notebook (Part I11 
[3, p. 3141). 

(a@)1/% ((1 - a)(l - b))Il8 = 1. (10.7) 
Squaring both sides yields 

Using (10.1) to transform (10.7) into the theory of signature 4, we find that 
112 

2 ( 4 p 4  + 2 ((1 - U)(I - f i ~ ~ ~ ~  = [ ( I  + + , h i  

Squaring both sides, we deduce that 

Squaring each side mce  again, we fhfthar - I 

( 1 k 9 " '  + 2( (1  - a)U - B)lIp = ((1 + &)(I + &)I V A 

2 ( a ~ ) ' / '  + 2 ((I - a ) ( l  - 8))I l2 + 4(crB(I - a) ( l  - 8 ) ) 1 / 4  1/4 
- 112 + [(I - &)(I - A)] . 

Collecting terms, we deduce (10.2). Squaring again and simplifying slightly, we find that 

( 1 6 a ~ ) ' / ~  + 2 [ ( I  - a ) ( l  - B ) ) ' / ~  + 4(]&$(1 - u)( l  - . 6 ~ 1 1 8  
Theorem 10.2 (p. 261). If@ has degree 5, then 

(a8)IJ2 + ((1 - a ) ( l  - B ) ) ~ / *  

+ 8 (ap(1 - a ) ( l  - 8))'16 ((ap)IJ6 + ((1 - a)( l  - p))'l6) = 1. 

h f .  By Entry 13(i) of Chapter 19 of Ramanujan's second notebook (Part I11 
[ 3 ,  p. 2801), 

Transforming (10.5) by (10.1) and simplifying, we find that, in the theory of 
signature 4, 

Squaring one more time, we finally deduce that 

- - - - 

+ 8 (aP(1 - a ) ( l  - /?))'I4 + 1 6 ( f f ~ ) l / ~  (16a8(1 - a ) ( l  - /?)]I1' 

+ 6 - 1  - )  1 - uMI - -,, fi)11/8 

= 2 + 2(afi)"2 + 2 ( ( I  - a) ( l  - B ) ] ' / ~ .  

Collecting terms and dividing both sides by 2, we complete the proof of (10.6). 

Theorem 10.4 (p. 261). If/? has degree 11, then 

teach we deduce that (10.8) 
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Transformine (1 0.9) into an equality in the theory of signature 4, we find that Using (10.1) and (10.10), we convert (10.12) into an equalily in the theory of 

1/12 114 signature 4, namely, 
(4,hp)"' + 2 ( 6 4 & W  - a)( l  - P ) l  

I + &  
-m2(4) = (dm + my2 + ((1 - d m 1  + f i )y 

I +  JB 
7 

\ Ja ( l  +dB)/ \O+,/B)O - J a) / 
- 

Squaring both sides again, we see that By (10.13), (10.14), and symmetry, 

+ 32(aj9)'I3 ((1 - a ) ( l  - 8))'16 + 3 2 t a ~ ) ~ l ' ~  {(I - a ) ( l  - 8)}1112 

+ 32(aj7)'/'* ((1 - a) ( l  - #9)5'12 + 32(~@) ' /~  { ( I  - a ) ( l  - B ) } ' ~ "  
+ I28 (crp(1 - a) ( l  - 8)) ' j4  = 2 + 2 ( a ~ ) ' / ~  + 2{(1 - a ) ( l  - ~ ) ) ' l *  . 

Collecting terms and dividing both sides by 2, we complete the proof. 

The last six entries on page 261 in Ramanujan's second notebook give formulas 
for multipliers. By (9.1), 

Multiplying both sides of (10.15) by Jp(1 - p )  / ( ~ ( 1  - a) ) ,  we find that 

9 B(1 - 8 )  JB(1 - JB) ( ) ( )  m2(4) a ( l  

(W 
Comparing (10.14) and (10.16), we arrive at (10.1 1). 

1 I. 1. 2Jn 
Z F ~ ( ~ ,  $; 1 ; a )  - - -  (1 + f l ) l n  2Fl ( 2 ,  2 '  ' I+& (10.17) 

m(4) = , (10.10) 
z F l ( ~ r ~ ; l ; B )  2 ~ l ( i , i ; l ; x )  

\ 7 7  I+--@, 

Thus, to obtain formulas for multipliers hmf. By Enuy 13(xii) of Chapter 19 (Part 111 [3, pp. 281-2821), 

from the classical theory, replace m by - ( P ( 1  - P y 4  
the transformations in (10.1). \ a ( l  - w)) 

Theorem 10.5 (p. 261). The multiplierfor degree 3 is given by and 

9 B(1 - B) 'I2 - - (-) . (10.11) (10.19) 
m2(4) a ( 1  - a )  

Transforming (10.18) into the theory of signature 4 via (10.1) and (10.10). we 
find, after a slight amount of rearrangement, that 

(10.12) 

and 

m(4) = 
4 1  + 43 

From (lo. 19) and symmetry, 
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both sides of (10.21) by Xp(1 - B)/(a(l - a ) )  and comparing the Transforminrr (10.28) and (10.29) into the k m  of sw 4 (10 1) 
result with (10.20). we readily deduce (10.17). (10.10), we find that, after simplification, 

Thenrem 10.7 @. 261). Let m(4) denote the multiplier of degree 9. Then m7+q - - f JB(1+.~8>\~ /*  / 1 - ~ \ [ / 2  
b a l +  ,m) + \G) 

l - a  (%@(I - J B ) \ ' l z  (JB(1 - , f q l ' "  

Lk41 - &I) (&(I - a ) )  
Proof. The proof is almost identical to the two previous proofs. By Entries 3(x), 

(10.30) 

and 

l - a  a ( 1  - a )  

and 

The transformingof (10.23)and (10.24) via(l0. I) and (10.10) yields theequalities 
respectlvelv. af (1031 \ h 

. . 

deduce that 

and 
- fm' + m \ ' / *  (SJT--B~I' 

-- , (10.26) + f i )) 
" 

(1032) 

Combining (10.30) and (10.32), we complete the proof of (10.27). 
respectively. A multiplication of (10.26) by YB(1 - B)/(cr(l - a) )  and a com- 
~ar i son  of the resulting equality with (10.25) gives (10.22). 

Proof. By Entries 8(iii), (iv) of Chapter 20 of Ramanujan's second notebook (Part 
By Entry 19(v) of Chapter 19 (Part 111 (3, p. 3 14]), 111 (3, p. 376]), 

and and 
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[1Q35) into the system of signature 4by means of (lo. 1) and 

and (10. lo), we find, 

mw= 

after some simplification. that 

respectively. Multiplying both sides of (10.42) by Js(1 - B)/(a(l - a ) )  and 
combining the resulting equality with (10.41), we finish the proof of (10.38). and 

1 1 .  The Theory for Signature 6 

allows us to employ formulas in the classical theory to prove corresponding thco- 

respectively. Multiplying both sides of (10.37) by d B ( I  - B)j(cu(l - a ) )  and 
combining the resulting equality with (10.36), we finish the proot ot (10.5x). 

rems in the theory of signature 6. To prove Theorem 11.3, we needihe foliowing 

Theorem 10.10 (p. 261). Ifm(4) denores the multiplier of degree 25, then 
Theorem 11.1 (p. 262). If 

Proof. By Entries 15(i), (ii) of Chapter 19 of Ramanujan's second notebook (Part 
111 13. p. 2911), 

. . :~e (iij in section 33 of Chapter I I (Part 
11 [2, p. 951h 

for I z l  sufficiently small. Thus, combining (I 1.3) and ( I  l.4), we find that 

Transforming (10.39) and (10.40) by means of (10.1) and (10.10) into equalities 
in the theory of signature 4, we find that 
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[ I .  p. 11 1. eq. (2)1), 

2 4  (i, i; 1; z) = 2F1 (h. &; I; 4z(1 - z)) (1 1.6) 

(Recall that 1 - was previously calculated in (5.31).) Setting 2 = 
(1 - p2)/( 1 + 2p) in (1 1.8). we complete the proof. 

. . 
~ i n i n g  nn(rm.11.5) and (1 1.6) in relation Theorem 113. Let a and ~5 be defined by (11.1). If0 < p < 1, then 
to (1 1.2), we see that we want to solve the equation 

96 =: 9 d 8 )  = qZ(a)  := q Z ,  (1 1.1 1) 

- 27z2(1 - 2)' 
4(1 - z + 2 3 '  

&TP q -ace. 

Solving this quadratic equation in x and choosing that root which is near the origin mf. Divide (1 1.9) by (1  1.2) to obtain the equality 
that 

2~1(:, i; 1; I - B) ~ F I ( $ ,  $; I; I - a )  
4(1 - z + z213 - 27z2(1 - z)' - - (11.12) +( 2 4(1 - z + 2')" ~FI(:, 2; I ;@)  ~ F I ( ; ,  f ;  1 ; a )  ' 

(1 + z)(2 - 5z +2z2) \  
valid for 0 c p c 1. From (1 1.12) and (1.9), we immediately deduce (1 1.1 1). 

(1 t 7 )  
-=yFxF-)* From Theorem 11. I .  we also can deduce that 

T ~ U S ,  by ( I  1.5)-(11.7). we have shown that 
z(6; B) : = ,/- z(6) 

1 5  1 
*F1 (;, ;; 1; j (1 - 

' 
= J r n z ( 2 )  =: J G j T 7 2 ( 2 ; a ) .  

1. 1 1  
(11.13) 

I 1  I v \  - - 0 - Z + Z  ) ! 1 4 2 ~ r ( " 7 5 ; l ; z ) .  Hence, from (1 1 .I), (1 1 .I I ) ,  and (I 1.13). we derive the following principle. Sup- 
pose that we have an equality 

Now set 
P P  + P) z = -. 

1 I '7- 
111 

Then elementary calculations give corresponding equality 

and 
(I + z)(2 - 5z + 2zL) - 27p20  + P)' 

We now give some applications of this principle. 

1 - - 
2(1 - z + z2)3/2 2(1 + p + p2)3 ' 

. . 
Theorem 11.4 (p. 262). We have 

a-1 1.81, weckduce ! 1 1  7 )  
Lastly, a and /3 are monotonically increasing functions of p On [O, 11 with M(%) = ~ ' (b) .  

a(o)  = 0 = ~ ( 0 )  and a(1) = 1 = ~ ( 1 ) .  It follows that (1 1.2) is valid for 

Corollary 11.2. Let a and B be defied by ( 1  1 .  I ). twr u < p 5 i , 

J ~ 2 ~ , ( t . ~ ; ~ ; ~ - ~ ) = J ~ ' 2 ~ ~ ( t , i ; ~ ; ~ - a ) .  (11.9) 

Proof. By Entry 13(i) of Chapter 17 of Ramanujan's second notebook (Part 111 
[3,p. 126]),(11.11),and(11.1), 
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by (12.17). This proves (12.20). t 2 Q . a  
Next, define 

x :- (12.16) ~ ( 1 )  := 64g$4(q2)p4(q) = 64q$8(e-n'), (1 2.24) 

In view of (12.15), we consider x = x ( t )  as afunction of t .  Define by (9.25). Hence, by (12.16) and (12.17). 

z ( t )  = (p4(q) + 1 6 q $ ~ ( q ~ ) .  (12.17) 

Then. by Lemma 9.14. 

r 4 ( + ,  $; I ;  ~ ( 1 ) )  = &?6. (12.18) Now, by (12.24). (12.22), and (2.1), 

w(2 / t )  = 6t4p8(-q) 
that 

x(2 / t )  = 1 - x( t )  (12.19) = f t 4  ( P ~ ( ~ )  - 16q$4(q2))2 

= a r 4  ((cp4(q) + 16qq4(q2))' - 64p,b4(q2)(p4(q)) I 

2(2/1) = ;t2z(t). (1 2.20) 
= i t 4  (z2(t) - ~ ( t ) )  , (12.26) 

(12.19), (12.18), and (12.20). 

2 ~ t ( ! .  a ;  1 ;  1 - x ( t ) >  
4211) z 2 ( r )  - W(I )  x (2 / t )  = - - - 
z2(2/t) z2(t) = 1 - x ( t ) ,  - 

ts(a,a;- which is (12.19). 

- - ~ F I ( ; ,  $; 1;x(2/t)) - - (12.21) Hence, from (12.11, (12.141, and (12. IS), 

~ F I ( ; ,  i; 1; x V ) )  2 
Y (( 8&$'(q2)p2(q) ) - 1 - - v k )  

Hence, by (12.13), (12.21), and (12.1% \\p14(9) + 16FP(q2) )  ' 4) ( p 4 q )  + 16q$4(~2))1/4. 

which is (12.14). It remains to prove (12.19) and (12.20). 
We will need the transformation formulas (Part I11 [3, p. 43, Entry 27(ii), (i)l) 

and 

a =  169rlr4(q2) - - 1 - - = I -  v4(-4)  ( 9 ;  q2& 
mq ) V W )  (-4; 4% 

( I ?  ?o) 









I76 Ramanuian's Notbooks, Part V 33. Elliptic Functions to Alternative Bases 177 

1 /, mv 00 n -- t e n ~  - 1 (B.4 
1 1 - 3  n= l 

1 + 5 . - .  - 4 ~ ( 1  - x ) + . - .  
2 42 I f y  i sg i venby (1 .7 )andz  = 2 F l ( f ,  f ;  l ; ~ ) ,  then 

m 30 n n hf. We first prove (1 3.4).  Recall that 
I -2x - 1 n= I (13.2) 

L ( Q ) = I - ~ ~ Y -  00 nqn 

These two claims were very difficult for us to interpret. First, ~amanujan did % 1 - 4 " '  
( I ?  6) 

not provide enough terms on the left sides to determine a general term in either 
do not conersldeSe for any 

where g = @-.". From the definition (13.6). it is easy to see that 

x ,  except nivially for x = 0,  1. Second, although y is not defined, it is reasonable 
00 n 00 n I-8z-- 16c- = 

1 2 
to guess (from Chapter 17) that en? - 1 - 4 7 )  + e2"r - l 3 (13.7) 

n= l  n = l  

From the proof of Theorem 9.1 1, 

d z  
L ( 9 )  = (1  - 3x)z2 + l b ( 1  - x ) r -  

Third, Rarnanujan had never before used -tion I ,  and so we did n-w 
(13.8) 

d x  
- - 2 nr;f should be attached to and 

the notation [I .  (Rarnanujan never used [ ] to denote the greatest integer function.) 
gularities a tx = 0,1,  

2 d z  L (q  ) = i (2  - 3x)z2  + 6x(1 - x ) z - .  d x  (13.9) 
V t L C I X  =o. 1. 

Eventually, we determined that the nth terms of the series on the left sides of k( 13.5% it suffices to prove that 

(13.1) and (13.2) have (n!)3 in the denominators, . . which is not evident . . from Ra- (4n + l>(k>n(a)n(:)n 
manujan.s (I 3 "f VQIRC~. and (4x(1 - x) )"  

n=O 
the expressions [4 /  yl and [ 3 / y ]  indicate that the results belong to Ramanujan's 
alternative theories of signatures 4 and 3, respectively. (See (1.8) and (1.7), re- - -- . . sions (1 - 2 s ) z 2  + 8x(l - X ) Z -  
spectively. fur h s  (13.10) 
[4/y] and [ 3 / y ]  should be deleted from (13.1) and (13.2), respectively. For some 
inexplicable reason, Ramanujan indicated that his identities arose from the two 

In C1ausen's formula, Entry 13 of Chapter 11 (Part I1 (2, p. 58]) ,  put = 
- i * ~ = - i , a n d ~  = todeducethat 

alternative theories by placing the "symbols" [ 4 / y l  and [ 3 / y ]  in the midst of the 

3 In 12 of Chapter 11 (Part 11 [2 ,  p. 56]) ,  set x = - &, = - ;, = 1. and 
P = 4x( 1 - x). Accordingly, 

w l  3 . r ,. .. - .  
2 ~ 1 1 $ ,  i ;  1 ;  4xt1 - X ) J  = 2r1( 
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. . 
using (13.13). we see that (1 3.- 

x = -&, Y = - f , z  = 1 , a n d p  = 4x(1 -x) inEntry 12ofChapter11 (Part11 
[2, p. 561). Combining these two formulas together, we deduce that 

z d z  
(4x(1 - x)jn-' = (13.14) 

q1-2~)zx. r2 = 3 FAf, ;, 4; 1 , l ;  4x(1 - x ) ) .  (I 3.20) 

Using (13.20) in (13.19), wc find that it suffices to prove that 
Differentiating (1 3.1% we find that 

3 
00 6 n(;)"(;~,,($~ I '+\ - 

z d z  
*(f a - x)]n-l (4 - 8x), 

22" = c &;3 @!I3 2(1 - 2x) d x '  
d x  .=, 

4) is Differentiating (1 3.20), we achieve (13.21) to complete the proof. 
(u. . 9 

complete. At the very bottom of page 392, Ramanujan [9] wrote 
~h~ proof of ( 13.5) is sinilar. First, from (13.6). We easily 

that 
1 . 3  

a z  
L ( ~ )  = ( 1  - 4x)z2 + 12x(1 - ~ ) z - )  (13.16) 

d x  
The notations G, G', g, and g' were not defined by Ramanujan. In view of the 

3) 
appearance of FI (4, 5; 1; t ) ,  it would appear that the latter two equalities pertain . . .  @ 

where = , F ~ ( : ,  1 : ~ ) .  a s- ' 

end, from Corollary 3.5 and (4.4). we find Ihat 3. Chapter 34 is devoted to class invariants, and in the table of class invariants 
in his second notebook, Ramanujan uses the notations G := G, and 8 := 8,. 

1 A 
~ ( 9 3 )  = Lq - log (rf24(-~)) 

3 d9 invariants in each equality should be reflected in the appearance of two distinct 
d x  moduli on the left side. Thus, we are left with the conclusion that Ramanujan is - 1 5 1 0 g ( ~ ~ ~ 3 - ~ x ~ ( l  -1))  - 

- 1 ' ~ r  d 9  claiming two q-series identities, one for the pair G, G', and the other for the pair 

Hence, from (13.15)-(13.17). 
z 

: L ( ~ )  + :L@) = ( I  - 2r)z2 + 6x(I - x)zL d x '  (13.18) 

g ,  g', whatever these "invariants" might be. 
Now. by Corollary 3.2 and Lemma 5.1. 

= q  ' I3 (3 - 429 + 393g2 - 324oq8 + . . + ) , 

where we employed Mathenzatica to obtain the q-expansion. Ramanuian. in his - .  
second notebook, defined C by 

o, :. ;, ,m.ffi~ient tn nrnve that 

(-9; 9% 
and later, in his paper [3], he gave the different definition 

or (13 41  we put a = -i, B = -4, Y ! 
YT 

in Clausen's formula, Entry 13 of Chapter 11 (Pan I1 [2, p. 581). Then we se 

Using either definition, and any similar representation for G', we do not obtain an 
m (13.- m (13 . lj) . 
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Small portions of the material in this chapter have been described in expository 
lectures by Berndt [ l a  and Garvan [I].  

GG1=2"(1 + b g C + . . . ) .  

I ne 

= f and b = -9 . 22/? We are unable to use the resulting expansion 

GG' = 160 - Y .  2?:"q'!3 + . - . j  

1 to identify GG' in any meaningful way. 

Lr seems inconceivable that Ramanujan could have developed the theory of signa- 
ture 3 without being aware of the cubic theta-functron ~dentity Q.5j, -la 
2.1 and Theorem 2.2 we showed how (2.5) follows from results of Ramanujan. H. 
71 &n I 1 has found a much shorter proof of (2.5) based upon results found in 
Rarnanujan's notebooks. 

H. F. Farkas and I. Kra [ I ,  p. 1241 have discovered two cubic theta-function 
denthim different from that found by the Borweins. Let w = exp(2ni/6). Then, 
in Ramanujan's notation, 

w2 f 3  (wq1J3, Oq2I3) + f (uq2'.', o q ' i 7 q 3  (-41:3, - q q  

Some of Ramanujan's formulas for Eisenstcin series in this chapter were h 
established by Venkatachaliengar [I] .  

1% c~a~l;ln &scribes how the computer algebra package MAPLE was use 

to understand, prove, and generalize some of the results in this chapter. 



1 1. Introduction 

I So that we may define Ramanujan's class invariants, set 

l and 

where n is a positive rational number, the two class imuriants G, and g, are 
defined by 

In the notation of Weber [2], G, =: 2 - ' I 4 f ( f i )  and g, =: 2-'I4f 1 (6). The 
definition of G, employed by Ramanujan in his paper [3], 110, pp. 23-39] is not 
the same as that used by him in his notebooks [9], while his definition of g,, in [3] 
is that used in his first notebook but not in his second notebook. More precisely, If 
we replace G and g in the second notebook by H and h ,  respectively. the relations 
between the definitions are given by 

AcQk, . . .- knfPlllntlF) Q < k <  1 &- 
the modulus. The singular modulus k, is defined by k, := k(e-"61, where n is 
a natural number. Following Ramanujan, set a = k2 and a, = k:. 

&& 
p. 2 1 4, Theorem 10.23; p. 257, Theorem 12.171. However, much more is known. 
Weber [2, p. 5401 and, more recently, H. H. Chan and S.-S. Huang [ I ] ,  using a 
r 

- 
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eaueauations to calculate only a couple of simple in- 2. Table of Class Invariants 
variants in [3]. This fact and the sentence, "The values of G, and gz, are got 
from the same modular equation." [3], [lo, p. 25) are the only clues to his Both prior to his table of class invariants in his second notebook and at the begin- 

far s. tt would seem that if Ramanuian had ning of his Paper [3, eqs. (5). (7)1, [lo, p. 231. Ramanujan recorded two simple 
employed another type of reasoning, he would have dropped some hint about formulas relaling these invariants, and so we first state and prove these here. See 
it. As mentioned earlier, Watson 171 used modular equations to establish some also Exercise 5c on page 73 of the Borweins' treatise [I]. 
e f ~ h h k c ~  

. , .  . ions of G,, it is impor- 

tant that n be a square or a simple multiple of a square. We have been able to Entry 2.1 (p. 294, NB 2). Far n > 0,  
prove six of the remaining thirteen values for G,, namely, for n = 65, 69, 77, 

As will be see 
g4n = 21 J~~~ G ~ .  

n in our proofs 
in Section 6, we need some new ideas to effect proofs of these six invariants 
via modular equations. To prove the remaining seven invariants by employing hf. This identity is an immediate consequence of the definitions of G, and g, 
modular equations, we would need modular equations of degrees 31, 41, 43, in (1.1)-(1.3) and the elementary identity 
53, 79, 89' and 101. Apparently, only for degree 31 did Ramanujan derive a 
modular equation, for he recorded no modular equations for Be other six de- 
grees in hisnotebooks. Thus, Ramanujan's methods appear to be even more elu- Entry 2.2 (p. 294, NB2). For n > 0, 
sive. 

Watson [6, p. 82) opined that "I believe that fourteen were obtained by Ra- 
manuian by means of the empirical process which I described in the discussion . . 
of G1353.'1 We are not so confident that Ramanujan used this empirical process, I'IW~'. Jacobi's identity for fourth powers of theta-functions (part 111 13, p. 40, 
for which Watson offered little explanation. In fact, Watson's "empirical process" Entry 25(vii)l) can be written in the form (Whittaker and Watson [ I ,  p. 4701) 
is not rigorous. However, in Section 7 we shall use class field theory to make 
Watson's procedure rigorous for a large class of invariants including those 13 in- 

2 8 (-9; q 1, - (q; q2)L = 1 6 ~ ( - q ~ ;  q2)k = 169 

variants mentioned above, and we use the process to calculate two new ~nvanants 
(2.2) 

27 where we , .  . 
ir, 

new class invariants. 1 
Section 8 is devoted to some miscellaneous results on class invariants, including (-4; 9 ) ~  = - 

atso (9 : q2),' 

establish Ramanujan's more detailed assertions about the imeducible polynomials BY (2.1). we can write (2.2) in the form 

satisfied by G29 and G79. 2-2 4 -113 (4; q2)&2-2q-'f3(-q; q2)I$ 
n 

then it is easy to calculate an from (1.6) by simply solving a quadratic equation. 
X (2-2q-'f"-q; q2): - 2-2g-l/3(q; q2)&) = f, 

However, this expression for a, that one trivially obtains . .  from the . quadratic for- that k by (1. l H I  .3), when q = exp(-nfi), 
nmfa n u s u b  
other algorithms for the calculation of a, that will reflect the unit structure of a, ( g n ~ d o ;  - g,8) = k. 
described in Theorem 1.1. For the calculation of a,, when n is even, Ramanujan 
devised a very clever algorithm given in Theorem 9.1. For odd n ,  we do not have Recall from Part 111 13, pp. 91, 1021 the definition 

such an inclusive algorithm, and so we had to develop some lemmas to facilitate 
calculations. . O < x c l ,  (2.3) 

In Section 10, a simple function of singular moduli is studied. 
In the last two pages of his notebooks, Ramanujan studied the j-invariant. where 2F1  ( k ,  i; 1; X )  denotes the ordinary hyperneometric function. ~ ~ ~ ~ l l  also 

He seems to have quoted some results from the literature. However, Ramanujan from Part 111 I3, p. 361 or Chapter 33 the theta-function 
made some remarkable discoveries, including very simple polynomials satisfied 

a0 

by certain algebraic functions of the j-invariant. Ramanujan's work on the j -  (P(q) = qn2, 141 < I .  (2.4) 
invariant is the topic of Section 11. n=-w 
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1') . .  For convenience, we use the following abbreviations in citing sources for the 

(2.5) 
listed invariants: 

~ ( k )  = $7 z~,(i, $; 1;  k 2 )  = $W2(q), Rarnanujan's first notebook: N1, 

and so, since a, I i. 

Refs.: N2,RP,WS,we 

ate root but Weber did not. In Refs.: N1(287F),N2,w3,w4,we 
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Table of G, (Continued) Table of G, (Continued) 

n =  13 n = 31 

( 3  + a\"' 2'f4x, wherex3 - x2 - 1 = 0 
\ 2 /  Refs.: Nl(296F,345,35l),N2,W3,W4,We 

RC~S.: N 1(292F),N2,RP,We n = 33 

n =  15 

( I  + q3 21/4 - 
\ 2 /  Refs.: N 1 (3 1 1 F),N2,We 

Refs.: N1(289F),N2,W4,We n = 37 

n =  17 

Refs.: N 1 (305F),N2,RP,We 

Refs.: N 1 (2%F),N2,RP,We 
n  = 39 

'& I I 

n =  19 

2-'I4x where x3  - 2 x  - 2 = 0 

Refs.: N1(295F,345,351),N2,W3,We Refs.: N1(305F),N2,W4,We 

n  = 41 
n = 21 

Refs.: N3(382),WE,BM 
Refs.: N 1 (293F),N2,We 

n = 43 

Refs.: N 1(287F),N2,RP,We 

Refs.: Nl(305F,345,35 l),N2,W3,We 

n = 29 

G& = x,  where n6 - 9x5 + 5x4 + 2.x3 - 5x2 - 9x - 1 = 0 - .. .. Kers.: 19- 

2 - 1 / 4 ~  where x 3  - 2x2 - 2 = 0 

Refs.: Nl(3 13F,345,351),N2,W3,We 

Refs.: N2,We 

n = 47 
d ld 

L'''x, wherexJ = fJ + x ) ( l  + x + x i )  

Refs.: N1(234),N2(263).We 

Refs.: N1(293F)N2,RP,We 
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Table of G ,  (Continued) Table of G, ( C o n f a )  

,I = 55 n = 77 

2 ' " ( ~ j  + Z ) 
Refs.: N 1 (315),N2,W4,We 

n = 57 n = 79 

Refs.: N1(315),N2,We 

Kets.: N I( 

= 21 '4 /~79 ,  where t S  - r 4  + r 3  - a2 + 3 - 1 - 0 

Refs.: N2(263,300) 
n = 81 

n = 67 
2-I/aX w h e r e r 3 - 2 n 2 - 2 r - 2 = 0  

(39 + ~ f l ) l ' ~  (y 3 f i ) I t 4  

a ~ f n W N l , l d S , W e  
Refs.: Nl(3  1 3 ,  N2,We 

n = 69 n = 97 

- a - -  
Kers.: 19 Wb],NZ,RP,We 

n = 7 3  n = 105 
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af G, (Continued) Table of G ,  (C- 

Refs.: N1(294F,317),RP,WII,WS 

n = 121 n -- 169 
1/3 

1 1 + 3 J T \  
3 4 2  \ 

((3Ji-l. 3 f i '  4;". + ( 3 m  3 ~ s  + 4)II3) + 21 

\ " / 3 .  2114 
Refs.: N1(315),N2,We 

8 - 3 1 / 5 + 3 & i + J ~  3,A a , ~ \  - - - 
1 /2 

Refs.: N1(316),We 

\ .  / \ '  

Refs.: N1(294F,3 17),RP,Wll,W5 x '  

I 

Refs.: N1(315),N2,RP 

- I  . \ / 

Refs.: NIC31QlQRP 

n = 213 
Refs.: N2,RP,W5 1/12 

n = 153 
2 113 

( /s+m, /m-3) 

\v v 8 
n = 217 

Refs.: N1(315),N2,RP I 12 

n = 163 
u / ? . a  n 

L L 1 - ~  w n e r e x - - o n + * &  - L - u \ / \ '  

1 ,  y 3  / l l + r n  ,J 

Refs.: N2(300),We Refs.: N1(314),N2,RP 

c - - n = 225 

(l + f i ) l 1 4  (3& + 2 f i )  

Refs.: N1(317).N2,We Refs.: N 1(293F),RP,W11 

113 ' 

T 3Y3 - 
2 2 J 
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Table of G ,  (Continued) Table of G, (Continued) 

.. - - -  

I~ + ,m\112 [ I S , ~  +9m\'I4 
2 \ n ) \  2 2 

Refs.: N1(315),N?,We 
Refs.: N l ( 3  17LN2.We 

Refs.: N l (3  14),N2,RP Refs.: Nl(3  17),N2,We,BM 

Refs.: Nl(3  17),N2,We 
Refs.: RP,WII 

Refs.: N 1 (46),N2,RP 

Refs.: RP,WII 

Refs.: N I (320),N2,RP 

n = 465 

Refs.: Nl(3 142 l S l , m l  Refs.: Nl(3  19),RP,WI 
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Pall v 

Table of G ,  (Continued) 

n = 1225 

Refs.: N 1 (344hN2,RP 

553 

/ 

/ 
Refs.: N 1 (320),N2,RP 

Refs.: N1(46),RP,WII 

Refs.: N1(320),RP,WI 
- - 
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Table of g, (Conrinued) Table of 8, 

n = 38 
n = 2  g = g ~ .  where g3 + g h  = m ( l  + g2&) 

1 

Refs.: Nl(3 16),N2,We 

Refs.: N l(3 16),N2,We 

Refs.: N1(344),We 

n = 42 

Refs.: Nl(3 16),N2,We,BM 
n =  10 

n = 46 

J 3 + ~ i + ~  
D - v 

n =  14 
Refs.: N l (3  16),N2,We 

I c 1 - G  . - 
- 

- 
I + % ' Z + \ / L d L  1 1/3 

2 
Refs.: Nl(3 16hN2,We ( ~ 1 + 7 & + 6 & + / 1 + 7 & - 6 & ) )  

I 
n = 1 8  Refs.: N1(318,344),WS,We 

(a + &P3 n = 58 
Refs.: Nl(3 16),N2,RP.We I 5 L m  

Refs.: N1(316),N2,RP,We 

2 n = 26 
I ( j 4 + m + m ,  / m + - - 4 1  

J2 + f i  + ,/(2 + ~ 1 3 ) . / 2  + 4 1 3  + 3 4 3 0  + 
- 

I 8 8 

Refs.: Nl(3 19),RP,Wll,W6 

n = 66  
Refs.: ~1(318,34V,WS+We 

112 

n = 30 

~ e f s . :  Nl(3 16),N2,RPBWe Refs.: N1(319),RP,Wl 

- n = 70 /- 
a - - -  
KCIS.: I- , . +  Refs.: N1(316),N2,RP.We 
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1 Refs.: Nl(3  16),N2,We Refs.: N l (3  16),N2,RP, We 

Refs.: N1(316),N2,We,BM 

Refs.: N 1 (3 18),N2,RP 

Refs.: N1(319),RP,WI 

Refs.: N1(316),N2,We 

Refs.: N l(3 19),RP,WII,W6 
n = 158 

Refs.: N 1 (319),RP,WI 

Refs.: N1(318),RP,WKw6 Refs.: N l (3  19),RP,WII,W6 

- n = 190 
- 

(I  + JZ)1/2(3JZ + J17)'f3 
Refs.: N 1 (316),N2,We 

\ / 

Refs.: N1(319),RP.WI 
1 Refs.: N l(3 18).N2,RP 
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Table of gn (Continued) first notebook, J. M. and P. B. Borwein 11. pp. 145, 149L althou 
results explicitly, derived a formula connecting g, and gy,, as well as a formula 

n = 238 relating C, and CY,. We use one of Ramanujan's modular equations of degree 
3 to establish the aforementioned formulas connecting G, and Gb, and n. and 
g9,. The former formula is not found in the notebooks, but it can be proved along 

Refs.: Nl(3 19),RP,Wl 
the same lines as the laaer. The Bonveins [ l ,  pp. 145, 1461 also derived formulas 

w ~ t b  G. and Gh. wrth P n a n d .  

n =310 Of course, the theorems described above can be utilized to establish other class 
invariants found by Ramanujan when 91n, in particular, for n = 27, 45, 63, 81, 
225, 777, 7 6 5 X 7 J ~  63Q. I J n d o n b t e d l v .  these oroofs would 
be simpler than previous proofs, for example, for 81,225,333,765, 126,522, and 

Refs.: Nl(3 19),RP,WI 630. In parlicular, Watson's proofs for n = 333,765,522, and 630 [6] were based 
on his "empirical method." In fact. the Borweins [ 1, pp. 147. 149, 1501 employed 

a = 330 the aforementioned formulas to calculate the invariants G27, Gsl ,  Gzz5, and g522. 

Moreover, prev~ously undeterm~ned class mvanants, for example, for n = 171, 
189, and 279 can be calculated. However, we shall confine ourselves here to the 
cases, n = 117, 153.441.90, and 98. 

Refs.: NlCStO),We 
Theorem 3.1. Let 

Then 

, 
Refs.: Nl(3 1 8),RRWI 

where /3 has degree 3. Then 

3. Computation of G, and g, when 9 ( n  
1 II -uian's class invariants for n = 117, 153,441, Recall from (1.6) that, whenq = e ~ p ( - ~ J ; i ) ,  

go, and 198. Note that for each such n, gin. Our starting point is a da t lon  con- Gn = (4apI(1 - a,))-'124 and G9, = (48,(1 - ~,))-1/24. 
nccting bn sd found on page 318 of Ramanujan's first notebook, but in 

K, G. Rammathan 14) noticed this relation in the first note- 'Ience* by ( 3 3 ,  P = (G,~Ggn)-%nd Q = (G,/G9,1)% .us, from (3.41, 

(G,~/~Y~)~+(G~/G~~)-~+~~((G,G~,)-~-(G,G~,,)~=~~ (3.5) 
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Using (3.8) and (3.9) in (3.7), we deduce that - " , O ~ ? r r  I 2  3et x = \U%/ u n )  . l lrLLr 

X 4  - 2&c6x3 + ~ J Z G - ~ X  + I = 0. (3.6) x = -  1 
the f i  

J ( P + m )  ( ~ 2  - 2 +  J ( P ~  - u ( p 2 - 4 ) )  

~ e m a n g i n g  and . ,  
form { ( P  + C) ( p  +z - 4 +  J(p2 - i ) ( p 2 - 4 ) ) .  

7 r 4 . a ~  - Cz_lO) 1 \2 
( X - - u - m X t p J  LIP A) ' 

Recalling that x = (G9,/G13, we see that (3.10) is equivalent to (3.2). and so the 
Since x  > 1, proof is complete. 

We next prove the aforementioned result found on page 3  18 in Ramanujan's 
first notebook. 

Remembering that x > 1 when solving for x ,  we find that P  = g i  - g,i4. (3.1 1 )  

Thus, squaring and expanding, we find that 
Proof. Set g = throug- 

Using (1.3) and ( l . l ) ,  we rewrite (3.5) in the form 

Multiplying both sides by JiJ and then replacing q  by -9 ,  we find that 
and 

Using (1.3) and ( I  . l )  again, we find that 
- 

+; ( P + ~ p r 4 ) ( p 2  - 1 )  - 2 ~  -2m Setting x = ( g ~ , / ~ ) ~ ,  we deduce that 

(2.9 
A - - r  r 

LuLg-x- - L a g  * X  - 1 = 0. = ( p  + J p 2  - I )  ( p 2  - 4 + J(p2 - MP' - 9). 
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u = a + - ,  (3.20) 
where a 

(3.14) so that, after squaring, (3.1 9) takes the shaoe 

and 

e relevant expressions above are algebra~c Integers, we hnd that, upon 
taking norms in (3.21). 

( 9  1 l\ 
1 ( d . l - J f ,  

that 

(a  - &)'I3 x - 4 
0.fs) 

- - -. 
x2  - y Using (3.22), we determine u. We then solve (3.20) for a.  

C 

suppose we set c = x2 - Y ,  so that Entry 3.4. 

(a - &)'I3 = .X - (3.1 6 )  1 /4 

G117=- - ,. -(3 16) a d  solving for a .  We find lhat 
( 3  + (2& + &)'la 3"' + 4 4  + J?) . (3.23) 2 2 

a = x" 3 x y .  (3.17) 

Usually, it i s  best to solve (3.14) by trial or inspection, for if, for example. 
of ~allle so obtained most frequently is the cube C 

root that we originally sought to simpllty. 

Pmof. Let n = 13 in Theorem 3.1. From Weber's treatise [2, p. 721 1, or from the 
ction, 
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. . 
E Thus, (3.24) has been shown once again. 

BV (3.1). IJ = d13. Inus* a- 

Entry 3.5. 1 

(On oa.c 3 14 in his first notebook 191, Rammujm recorded . . GI n in the form given 
I 

above, which is strong evidence .at ~ a r n a n u p  onh+cMlraffnrbLw have 
1 done.) It therefore remains to show that 

- ----. 
- 

from (3.1) we find that p = (5 + J17)/2. AISO, 
&" 33x - 

2 I 

solve , h i  by inspection, it perhap is k s t  to Square both sides and s t  t = x'. 

Thus, I-J.* 
* 

- 4. Hence, x = $ Ja, and, from 
I Is no1 1 + 
(== &id. T ~ U S .  (3.24) f~llows, the proof is I 

*ltematiVely, in h e  notation (3.18) and (3.20). by (3-21), We wmt 
solve 

I;; (325) X , 

17 + 5m + J(19 + 5m)(l3 + 5m) 
% - uL(uL - RL - n + n*l 3. 

4 

Factoring in z[&] and using (3.22), we find that 

N ( v ~ ) N ~ ( u ~  - 3 )  = NW + 1-24-z2 13. 
- .  - 

Then 
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which is rather curious indeed. Note that 

1 - 11' Proof- We apply Theorem 3.1 with n = 49. From Weber's treatise [2, p. 7231, or 

9 + 4Ji * (9  + 3 3 ) 7 " 4  ~2 = --- 
2 2 J Z  

\ Thus P = 9 + 4fi. After a mild calculation, 

n u s ,  by (3.28), it sufices to show that P + J ~ ' = ~ + ~ J s + ~ J ~ J =  (3.34) 

(3.29) 
n , ~ T 7 , - - 3 f i  fii - .5v J(? ; V r ,  

4 = (2 + h u 3 h  + 2 4 %  

x I 

In the notation (3. and (3.- 

U2(u2 - 3)2 = 7 + f i. 

from the tables of Section 2, - + 7'14 

r 7 

we now factor in the principal ideal domain Z L(I + J 17)11 Inus. 
1 1 ~ 1 3 7 7 J - ( ? 3 4 ) i n ~  . .a71 w e e t h a t  

I -  r L, a , = / K .  G 

N ( ~ ) N ~ ( u ~  - 3)  = N(7 + f i) = 2'. 
L + 4 1 t v 1 t - 4 4 1  2 2 

( 2  + 

~~~~k~~ h e  equality above with (3.26), by (3.27). We See that it Emam' 2 
(213) 

show that It is easily checked that 
I 

(3.28) J4 + J 7  + 7 1 / 4  - 2 + J 7 + J 7 + 4 ~ 7  
2 2 (3.33) 

113 we a r t e m  r F 

I L q l  f A 
X ' 

191 + - IZ . \ l ' I  + A 

*4 = ~ ( ~ 2  - 3) =: N = A2 + /Ig - 482. 2 
+ 

2 (3.35) 
r where 

rae A = - 1 md B = 1. m e n  u2 = (5 + J i i ) / 2  and N(u2) = 2 A simp' 
h d y ,  we find that A : = J(192 + 72f i ) ( l89  + 72&) 

calcu 
= 642016 + 762fi = 6 .  7'14&(3 + &)'. 

1 Using this calculation in (3.35). we see from (3.35) and (3.31) that it remains to 
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h f .  Setn = 1 0 i n T h e ~ [ ~ , p h n n C 7 ~ ] ] , ~  
the tables of the preceding section, 

Jq'/" @-.j8) 
We apply Lemma 5.3 with 

\ 

' / 4  3 3+J?)2  191 + 7 2 J ? + 6 . 7  L( Thus, from (3.12) and (3.38), 

a = 2 
gw = ( 2  + ~ 3 ) 1 " q ~ 3  + %hip6 . (3.39) 

and 

comparing 0 . 3 9 )  and (3.37), we see that we must prove that 
b = * 

We now verifv that 

tr2(u2 - y2 - 18 + 6,,%. 

Factoring in the unique factorization domain z[&], we find that 

We thus want to solve 

k6 = N ( U ~  - 3 )  =: N ( A  + B&) = - 6 ~ ~ .  

t = - (  16 Choose A = 0 and B = 1, so that u2 = 3 + &and N ( u ~ )  = 3. It is trivial to siee 
that (3.41) is satisfied. Then 

Thus, 

by (3.15). ~ h u s ,  (3.36) follows, and the proof is complete. and the verification of (3.40) is complete. 

Entry 3.7. 
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- 
TECiT. set  n = 22 . . [7,  p. '77% ~~QIII ou r 

tables in the foregoing section, 

) is analytic except for a simple pole at s = I. The Kronccker limit formula 
provides the constant term in the Laurent expansion about s = 1. More precisely, 

An easy calculation yields p = 4&. Thus, from Theorem 3.2, where y denotes Euler's constant, and q(z) is the Dedekind eta-function defined 
by 

g19B = JI+J~(~J~+&)''~{ J=+ ~ 1 7 + 3 & ) " .  ~ ( 2 )  := 41/24(4; q)a, =: 41/24 f (-q), q = eZnir , y > 0, (4.3) 

( 3 . 4 3 ) e r e  f !-q) is defined in (1.14) of Chapter 33. 
BY (3.42) and (3.43). we must show that Next. let K be an algebraic number field over the rational numbers. Let N(IZL) 

I 

In the notation of (3.18) and (3.20), we seek to solve 

U2(u2 - 3)2 = 4118 + 3&. 

Thus, 

denote the norm of an ideal 'ZL. Then the Dedekind zeta-function for K is defined 
by 

n > l  

where the sum is over all nonzero integral ideals Z! of K.  Let CK denote the ideal 
.[ 

defined by 

3 d ) )  = 24 .3'. a > I. 

Factoring in Z[(I + m)/2], we attempt to find a solution of 
21eA 

If x denotes an ideal class character, then the L -series for K is given, for a > 1, 
I 

*6= N(.' - 3) =: N ( A  + B = ti2 + A B  - 88'. 
u \ P 

\ L K V ,  X) .= / 7 AJ, 
- 

x+i)<(s - 
a A 

~~t A = 1 = B ,  so that u2 = (9 + *)/2 and N(u*)  = 12. It is easily c h ~ k e d  
where the former sum is over all nonzero integral ideals !2l of K ,  and the latter 

that ( j . m 7  sum is over all ideal classes A of C K .  
In the sequel we assume that K is a quadratic field. It is well known that (C. L. 

Sicgel [ I ,  p. 581) 

Thus, we can deduce (3.44), and the proof is complete. 

4. Kronecker's Limit Formula and General Formulas for 
Class Invariants 

k t  Q(u, V )  := Y-'(~ + UZ)(U + v i ) ,  where z = x + i y  with y > 0. Epslein 
zeta-function ~ ~ ( s )  is defined for a = Re s > 1 by 

iF K is imaginary, 
K := 

c a  { u .  t~~ll except (0.0). It is well known 
that T a ( s )  can be analytically continued to the entire complex s-plane, where 

r d d  
Here w is the number of roots of unity in K, d is the discriminant of K ,  and 6 is 
the funnarnental in K . . 

Let 
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9 .  

Then 
where (E) IS the Kronecker 

(4.7) d = [  -h, i f - m = 2 , 3 ( m o d 4 ) ,  CK(S) = { ( S ) ~ J ( S ) ,  
-m, i f - m = 1  (mod4). 

where ~ ( s )  dEiSiEthe ~ie- - 

let d = dld2,  wheredl > 1 and, for i = 1.2, d, 1 (mod 4)ord;  O It is (R. Mollin and L.-C. Zhang [I]) that each ideal class contains primitive 

(mod 4). ~~t denote a prime ideal in K. Then a Gauss genus character X is ideals which are %modules of the form b = [a, b+Q], where a and b are rational 

defined by integers, a > 0, alN(b + Q), Jbl 5 a /2 ,  a is the smallest positive integer in B, 
and N ( b )  = a .  

, i f N ( V ) t d r ,  Let z = (b + Q)/a. m e n ,  for A = ua + v(b + Q), 

1 0)) 
1 -1, 

if N('J9ld1, = a2(u + V Z N U  + UZ) 

ain denotes the Kronecker symbol. Note that N ( g )  '( d2 if (4.1 1) 

N(q)ldl.  ~ h &  definition can be extended to all ideals of K by multipEcativ- 
ity. It is well known that the genus characters form an abelian group, denoted by 

Thus, for 2 = (b + Q)/a and y = Im z = m / ( 2 a ) ,  

wr 7k-1 a k the number of distinct prlme divisors of d.  G(K),  - ,  my -\ (%mi)-' ,., , .,=\ 

Next define 
=\a, 01 - \ 2a r* "". 

G o : = [ ~ ~ C ~ : ~ ( A ) = I , x ~ G ( K ) ) ,  And, from (4.1 ), (4.1 O), and (4. I 1 ), 

which is named the principal genus. Clearly, Go is a subgroup of C K  , and CK/GO 
is called the genus group. Furthennore, CK/GO 2 G(K). Obviously, A1 and A2 ~ Q ( s ) .  

nnlv lf  r u ! )  = x(Ar)  for each x G ( K ) .  

Kronecker (Siege1 [ l ,  p. 62, Theorem 41) proved that, for a genus character x 
T W )  

of K corresponding to the decornpos~tlon = d ' - I /  2 IS/ Fa Fa $ \ $ , A )  - - - 71 
- la29 

(4.8) w \ m )  (s-l I L n Y  LK(s, X) = Ldl(s)Ld2(s). 2r ( 2 ).' 
Thus, by (4.4) and (4.8), 

- -  (-I log(2a) + log lq(z)l2) + O(s - 1). w \,/qri(/ 
(4.12) 

Ldl (s)&?(s) = x (A)<(s, A). 
AECX Since, for any nonprincipal genus character x , 

For a fixed nonzero integral ideal b E A-' , 
AECX x(A) = 0, 

Let 
- if - m E 2 , 3  (mod 4), 

n= ' if - m  1 (mod 4). 
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lmarem4.2. L e f m -  - 1 (- .F a a msitive squarefree integer with Then 

prime divisor p. Let K = Q ( G )  be an imagimry quadratic field such that 
each genw contains exactly two ideal classes and such that the principal  enu us Go 

I 

onprincipal genus containing 
Q + - + 7 = 2 &  

conr- . , , O1 -J.  a* 
Q 

the two classes [2,1 + Ql and [2p, p + SZI. Then 
&1h2lwz 

(G,G,~,~)~'~ = fl €I Let 9 = exp( -n / f i ) .  Since G .  = GI,, (Rarnanujan [3] ,  (10, p. 23]), by 
x(G~)=-l (1.6)y Gn = 1 - If B has degree p over a, then G~~~~ = cpTIn = 

(48 (1 - In summary, we can express the equalities of Lemmas 4.3-4.5 
in terms Gn and Gn/$, P = 3 , s .  7, respectively, by employing the formulas 

( G ~  ) = - I), associared with the decompojition d = and lherefore Gn E ( & ( I  - a))-'/** and GnIp2 = (48(1 - ~ ) ) - l / ~ ~ .  (4.24) 
d l , d 2 , h I ,  h2, w2. and~1 aredependenton X .  

The proof of Theorem 4.2 is analogous to . .  
The genus structures for ~tm) and Q(-) are different from those 

of the eleven imaginary quadratic fields to which either Theorem 4.1 or Theorem 
4.2 applies, and so Gzl 7 and G553 must be calculated by another means. 

I t .  

We say that m is of the first kind or second kivd according as it satisfies the 
fi 4J.i l.f?? m . .  . --. . - 

It is not difficult to show that [I, Q], (2 , l  + a. [ P ,  nl. and [2p, p + 521 are Q = ( G m  /Cm14y)4. Then 

representatives of different  deal classes (Mollin and Zhang [ 1 I). 
Theorems 4.1 and 4.2 need to be combined sf 

Ramanujan (Part 111 (3, pp. 23 1 ,  282, 3 1.51) in crder to calculate Ramanujan's 
class invariants. We have already employed Lemfla 4.3 in our proof of Theorem 
3.1. (4.25) 

Lemma 4.3 (Modular Equation of Degree 3). bet 

Then 

Lemma 4.4 (Modular Equation of uegree 5). kt 

Next, by an entry from Ramanujan's second notebook (Part IV [4, p. 209, Entry 
3 5 5  

. . . .  

Muhiplying both sides by q"' and then replacing q by -9, we find that 

I ; !  \ r r  f 2 4 f 2 - 2  q f 2 ( q 7 ) f 2 ( - q )  f"-q2) f y q 7 ,  
- p- 

J Y4')JL(-q"9 
Lemma 4.5 (Modular Equation of Degree 7)- Let 

f 2 ( 9 ) f  2(-q2) f6 (q )  f6(-q'4) 

f S ( I  - 8)) 1 /6 + 8 ,  4 f2 ( -q2) f2 (q7)  8 q 2 f 2 ( q )  f 2 ( - p ' 4 )  q 3  f q p )  f 6 ( - q 1 4 )  
- -  - e I \ f 2 /  14\ 

- 
f' = {16ab(1 - a)(l - J  \ Y J J  \ I f 2/ J t \U(I  -a)) 7, . 

) (4.27) 
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Recall that q = exp(-xfi j7)  and recall that G r n I 4 ~  is then given by (1.3). Thus, 503-5092, and for 0 < 8 < 10,000 in the 224 2x1. , - G, = 2-1pq-7 /L4( -q  '; q14)00.  Hence, Lists of fundamental units can be found in the book by Borevich and Shafarevich 
2 (11 (ford 5 101). the book by M. Pohst and H. Zassenhaus [1, pp. 432-4351 (up to ( " - 1 -  - - ( -q7;  d4)& 

,- d < 299). and the tables of R & - 1,. 
\ u m / 4 9  / 3 .  

Cohen's book [ l ,  pp. 262-2741, there is a table providing the ideal class structure 
- - (q2;  q 2 & , ( - q 7 ;  -q7)& - f 2 ( - q 2 ) f  2 (47)  for Q!(a), d 5 97 and for Q(& d 5 97. - s l / 2  f q q )  f 2(-q14)' {* l*\ 

\ ' + & U l  

Dividing (4.27) by q3I2 and substituting (4.26) and (4.28) into the resulting equal- 5. Class hvariants Via Kronecker's Limit Formula 
ity, we deduce (4.25) to complete the proof. 

Theorem 5.1. 
Theorem 4.7. Let m be a squarefree positive integer with 7 1m and m = 1 (mod 
4). Let K = Q(G) be an imnginary quadratic field such that each genus con- 114 11' 

rains exactly two classes and such that the principal genus Go comprises [ 1 , a] and 
r i *  7 1 0 1  

where h ,  h l ,  and h2 are the class numbers of K ,  Q(&), and Q ( f i ) ,  respec- 
1112 are dx 

€ 1  is thefundomental unit in Q(&), and the product is over all characters x 
(with x ( G I )  = - l), associated with the decomposition d = d i d 2 ,  and therefore 
d,,d&, h?, I + ,  ntuicl nwakptd~ntnn ?: 

Proof. The following table summarizes the neededinformation about ideal classes 
rs. 

- - 
m t .  Let Ao = [ ~ , s z ] , A ~  = D, I + a l , A ~  = L 1 , S i ] ,  a n d ~ 7  = 114, l t s d l .  
Then by the same reasoning that we used in the proof of Theorem 4.1, 

F I B ' \  - t? lw\ 1./14 - l f i  
\ ' I T  ' I  \ i 4 i 1 - - .  \ ,! 1 1  - 

Substituting these values into (4.30) and recalling that the number of genus char- 
acters x with x(GI)  = -1 is equal to h/4 ,  we deduce (4.29) to complete the 

Note that 65 is of the first kind. Applying Theorem 4.1 with h = 8 and w = 2,  
we find that 

The class numbers cited below for [dl < 500 can be found in tables in the 
texts by L. I. s o r e v ~ m  ana I . Ei- . [I  . pp .4 'T~-426] . n. " C. "ohen ( 1  , plr . 

By Lemma 4.4. 
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(G Lo.-,9 9) We apply Theorem 4.1 with h = 8 and w = 2, as 69 is n f p  

Thus. it remains to show that 

1 I 
= -(Q 44'5 -b Q-') + - 4 a  J(Q + Q-112 + 32, (5.9) 

From (5.8). 

\ 
(Q + Q-1)2 + 77 - l(i(Q&..fq2. 

which is easily shown by a routine calcuhtion. 
P p  . . . I 

Theorem 5.2. 
P - I =  +J=+ 2 (5.1 1) 

BY (5.8), 

Proof. We summarize the needed information in the following table. 

This can be achieved by a straightforward computation. 

Theorem 5 3  
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. . Theorem 5.4. 
pnw,~, We compose the ~ O N W W  table V lded 

-. we see Wt kind. Thus, by Theorem 4.1, since 

h = 8 a n d w = 2 .  

~f p = (G71GL1/7) 3 ,  d ~ 1 1 ,  
- .  

-We see mat 141 IS  agam 01 me hrst kind. Applylng Theorem 4.1, we find that, 
since h = 8 and w = 2, 

p-I - 
7 

Q + Q - ' + ' I + ~ ~ ( Q *  I i 7 ?  32. (5.13) 
4JZ 4 ) = (48 + 7 f i ) ' " ( 9 5  + 8 a ) " * .  (5.15) 

NOW I 

Using this in (5.13). we find that 

and thus by (5.14) it remains to show that 

= (48 + 7&)1/2(756& + 1 9 1 m ) ' ' ~ .  

Let P = ( G I ~ I G ~ . I / ~ ) - ~ .  Then, by Lemma 4.3, 

From the last representation of Q in (5.16). 

\ v  - 1 
\ 

which is readily shown by a straightforward calculation. 



Hence, it remains to show that 



Theorem 4.2 with h = 8 and 
/ 

w = 2, we deduce that I'roof. We have the following table: 

P-' := ( ~ 2 o s ~ 4 1 / 5 ) ~  = 

2 
dl 

1 -852 xo Go 
(5.22) b 3 ,  SZI 1 1  

" I I P Lemlgu (G - - 2051 u 4 1 / s j 3 ,  44that [2,1 + n] 1 - I  

" I  D\2 1 ( 5  U) 
13,521 1 - I  

- v {' 
r7.2 + '21 1 - 1  

From (5.22), [7. -2+Ql -1  1 

p-' - p = 
42 lV'L. 12 -71 

2 

I 

l'husfram (523). 
Ubserve that 213 is of the firs1 kind. Applying Theorem 4.1 with h = 8  and 

(5.24) w = 2, we find that 

-. I 
-- 

1 1  

C dz x 

. I 

C 

I 

Cl ,- 

4 

r l  n1 1 1 

X ( G ~ )  ~ ( ' 1 )  
x G 2 )  x G 3 )  

,. r 
3 ~ + 4 - 1 3 4 1 1  

- 
73 + 5 m  

2 

u v 

h2 w2 61  



By (5.25) and moderate calculations, 

and 

Thus, by (5.26), 
Note that 265 is of the first kind. Applying Theorem 4.1 with h = 8 and UI 2, - - 

we find that 

Thus, by (5.25) and (5.27), so that 

Hence, it reInains to show fhat BY using (5.28) and the identity Q + Q-' = JQZ + Q-2  + 2 in (5.291, we find 
3 that 

./1(135619 + 78300J?) + ,(87 + sod) 
- I / 

3 
-- ,Ji\l~17+457%+ $t85+5d). (5.30) 

- - By (5.28) and (5.30), 

'3265 = Q1/6~-'/4 = (A + 2)1/4 
which is accomplished by a direct calculation. 

(?+ 7, 'I4 

Theorem 5.8. 
Hence, it remains to show that 

c26S = (A + 2)lt4 1 / 1 

2& 
- d69l7 + 4254265 + i(85 + 54265) 

Pmmf. The following table i s  easily verified: 



zfi WdV . , 34. Class Invariants 237 

1 / 
which is easy to establish. 

- 
43 "my'n + N36 

T- 
It remains to show that 5.9. 

&oi + ~ 4 5 )  + --!-J7(25941+ 3956~33)  
G,", = (8 + 3 f i ) ' 1 8  2 (23S + "T8 1 /2 JZ / I JZ I \ 3 

- - 
X 

which is a routine task. 

7- Theoran 4.1 with h = 8 and w = 2. 
we find that . ,,. 

15.31) Thus, 445 is of the second kind. Applying Theorem 4.2 with h = 8 and w = 2,  - - we aeauce mat 
\ I 

~~t p = ( G ~ ~ G ~ ~ / ~ ) - ~ .  Then, by Lemma 4.5 and (5.31)l P-' := (G445Gs9,5)4 = 

1 1 - I  + 7)2 - 32 
P - I = ~ ( ~ + Q - ~ + ~ ) + ~ ~ J ( P + Q  . . 

(MI +46&) + &1/-. --  I p-I = (9+4JS)  2 (5.33) 
m + 2 1  

- 
J L  J 2  \ I 

Therefore. by (5.31) and (5.32). 
Let Q = (Gu~/GR~/s) ' .  Then. by Lemma 4.4 and (5.33), 
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I I 

- - 
2  

It thus remains to show that 
6 

- 8 -  , I n  . . - 

1 8 9 + 2 0 6 4 = =  (/ - .  
(%os/ 101/5)-. 1 m, Dpernrna 4.4 and (5-1, 

Q = ( P - I - P ) +  J ( p - l - p ) z - l  
By first squaring the binomial on the right side and then cubing the resulting 
expression, we can easily -- I 

= (13045 + 294'101) + 4 169440 + 7540&3. (5.36) 

Theorem 5.11. Therefore, by (5.35) and (5.36), 
1 /4 

Csa = + 2) \ I2 (F) (m + 1 0p4 

.,".! G- - - en1/6  - (A + 

112 
P 

X 

\ '  I 

proof. We compose the following table: Thus, it remains to show that 

4 d2 x G C 
x & )  xKI )  

x(Gd x(G3) 
h~ h2 w2 € 1  

( 1 3 0 h  + 2 9 m )  + 4169440 + 7 5 1 0 a  

which is straightforward. 

1 we find that 
I 

Proof. We set up a table to summame some information that we need. 
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so that 3 

- ( / 1 1 + 4 ~ i  , / 9 + 4 4  
= 76, \ 2 I V 2 

Thus, from (5.40) and (5.411, where 

- L 77%. - v I - a .  /11)'/2C574fi - - - + . 2 4 9 6  1 )'I2. 

~t follows from (4.25) that 

( 5  'I@ / 

where Q = ( G ~ ~ ~ / G ~ , ~ , ) ~ .  By an elementary calculation, 

(6 - E - I ) ~  = e 2 + c - - 2  

= 4(1053643 + 398240fi)  = 4(27 + 108)'(367 4- 1mfi) .  which completes the proof. 

1 Let x = Q ' / ~  - e-II2. Then (5.38) can be recast in the form Theorem 5.13, 

It is now obvious that 
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Proof. We set up the following table to summarize the information that we need. from which it is obvious that 

-r I I 

Solving for 0 Il2. we r- 

Now let P = ( G s s ~ G w / ~ ) - ~ .  Then, by Lcmma4.5 and (5.49, 

~ & ( P + P - ' ) =  Q + Q - '  + 7 = x 2 + 9 =  19168+2156&. 

It is clear that Q(m) satisfies the hypotheses of Theorem 4.7. Thus, since Solving for P-I , we find that 
h = 8 a n d w = 2 ,  

I - 
I {  - - -  (4192 + >3Yv'% + J45.914.421 + 5. 165,T16d%) 

3 

= (8 + 3fi)s(624,635,837,407 + 2 6 , 5 6 2 , 2 1 7 , 7 0 4 ~ ) " ~ .  
- - 

2 + (5.47) 

By Lemma 4.6 and (5.42)-(5.44), with Q = G 7 9 / ~ ) ~ ,  

\ 

and the proof is complete. 

6. Class Invariants Via Modular Equations 

- - vYL + @- r~d I/' 12 '* - - 
. . 

LII n x  Ot Kamanujan's class Invanants by using tools wen 
known to Ramanujan, in particular, modular equations. 

= 7,/=(19170 + 2 1 5 6 f i ) .  - - 
~f = Q V2 - Q- "2, then the foregoing equality may be written in Ihe form Second ~ m o ~ e o r e m  5.1. From (1.1) and (4.3) it is easily seen Ulat 

u3 + 1 La 
f ( - 4 )  -- 

2, - x ( -4 ) .  (6.1) f( Y / 
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Using this equality, we rewrite two of Ramanujan's eta-function identities in terms (IIhis could also be proved by using (6.1) along with the transformation formula 

( , - x m )  = enl(3A3)X(e-=Jiq, (6.12) 

The aforementioned transformation formula for f (-q) is given by (Part 111 [3, p. 
43, Entry 27(iii)]) 

(6.2) 
e n!17aL/Af( - e-20) = e-q1'b!,4j-( -e % ), (6-13 and 

Replace q by -q in (6.2) and then set q = exp(-n m). If 

and 

where a ,  b > 0 with ab = n2. If a = n a ,  so that b = n m ,  then we 
) that 

f ( - e - 2 " m )  = (13/5)l/4e-2x/(3&) ( - e - 2 x ~  . (6.14) 

First, from (6.5) and (6.12), 

e f = i ~  equaliV of is. re) n a s d e m o n s t r a t e d .  second, by 
( 6 4 ,  (6.1) with 9 = - e x p ( - n m ) ,  (6.12), (6.141, and lastly (6.1) with 
n = pun(-n. /l?l4\ 

and 

then (6.3) takes the shape 

We shall prove that 

B = B' and A = , / :Af .  

by (6.7). Thus, the second equality of (6.10) has been established. 
Employing (6.10) in (6.9), we find that 

&A - = B' - B-' = (B - B-')' + 3 ( B  - 8-I).  

Dividing both sides by u := B - B-' (f O), we find that 

(1.3). Since G ,  = G I / , ,  we find that 
-nJ;;\ = p ( n / 2 4 ) ( 1 1 f i - f i )  & - n / f i ~  

X (@ (6.11) 

Solvino for u 2 : m  u2 = (fi - I 117 
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Now solving for B, we find that 

B;\IF+/F 
Putting (6.19) and (6.20) in (6.18), we complete the proof. 

where in solving the quadratic equation we took the plus sign since B > 0. Before commencing our second proof of Theorem 5.2, we establish a general 
If q = e x p ( - n m ) ,  then q" exp(-rJ63). Hence, from (1.3) and 

@ -y see that R - - f&dGC?7rg-rg-F~ .' - n w J r m  (1.64 GII,I_F - - ~finciplc. Let p and r denote coprime, positive integers. Set q = e x p ( - n m )  
- have degree r over a. Then, by (1.6), 

(&(I - a)]-'/24. Hence, if has degree 5 over a ,  then G 6 ~  = (48(1 - / ¶ ) I - " ~ ~ .  
We now employ Lemma 4.4, where it is to be noted that P = ( ~ 6 s C 1 3 / s ) - ~  G,, = (k(1 - and G,, = (48(1 - (6.21) 

-0 - R - 3  - f r  &:,,,)-3 \Ne w b  ,J& 
G runhermore, trom (1 2) and (I .3). 

P from Lemma 4.4, we first calculate 

Q + Q-' = B3 + 3-' = (B + B-')((/I + 8-Il2 - 3) K(fi) = 6, 
K (43 (6.22) 

- - 

K - K ( J i = - p )  - 
D-I K (fi) K (,@) (6.23) 

If we solve (6.22) for r and substitute this in (6.23), we find that 
p - 1 = ; j J G +  JW+IOGS). (6.17) K (A) 

- K (-1 P - 
K(JB) ' since P > 0. 

Hence, by (6.15) and (6.17). From the last equality we conclude: 

Furthermore, from (2.5) and (6.22), 

I f B  has degree r over a ,  then B has denree D over 1 - a. (6.241 

\ I and 

Second Proof of Theorem 5.2. We need two of Ramanujan's modular equations 
of degree 23 (Part 111 [3, p. 41 1. Entry 15(i), (ii)]). If p has degree 23 over a, then 

Second, We also need two of Ramanujan's modular equations of degree 3. The tirst is given 
by Lemma 4.3, while the second is given by (Part I11 [3, p. 231, Entry 5(ix)]) 

(a(1 - p))"' + ((I  - C Z ) ~ ) ' ~  = 2(@(1 - a)(1 - @))'IX. (6.28) 
/ 

We shall apply (6.24) with r = 3 and p = 23. Thus, b has degree 23 over 
- 4 ( 3 + & + 3 J J + J 1 3 )  - - 

-. 
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respectively, Wenow apply Lemma 4.3. Noting that P = u3 ,  we see that we want to calculate 

((I - a)f l ) ' /% ( @ ( I  - B ) ) ' / ~  + 2213{a/3(l - a ) ( l  - = 1  (6.29) 

and = J ( x 3  - 7x12 - 4 

For brevity, in the remainder of the proof, set G = Ggg and G' = Gal?. By (6.21), 
we can rewrite (6.29) in the form 

Setting u = (CC')-I and squaring both sides, we deduce that 

- - - 

Substituting (6.31) into (6.30), we find that 

2 + 4u2 - 2 h u  - &u3 = 4 2  (1 + ( ( 1  - a ) ~ ) ' / ~  + ( ( ~ ( 1  - 8)]1/2)"7. (6.32) 

Solving for GIG', we deduce that 

c / I  I 
4748 + 432d3 + 4747 + 43243 

Then, using (6.28) in (6.32), we deduce that Thus, by (6.33) and (6.34), 

2 + 4u2 - 2JZu - JZu3 = &(I + J Z U " ~ / ~ .  1/12 
G = - U - l / *  = 

Squaring both sides and simplifying, we amve at 
(Ja + J ~ u +  4 3 2 h )  

2 - 8 h u  + 24u2 - 22&u3 + 24u4 - 8&uS + 2u6 = 0. 

which, with x = u + l j u ,  is equivalent to 

- - To complete the proof, it suftices to show that 

= 2(x3 - 3 4  - S J Z ( X ~  - 2) + 24x. 

Y lmphfy mg, we find that 

X' - 4 J b 2 + 9 x  - 3 h = 0 .  which is a straightfornard task. 

By inspection, we verify that is a root. Now G. is a monotonically increasing 
function of n, and it is not difficult to check numerically that the root that we seek Second Proof of Theorem 5.3. We need two of Ramanujan's modular equations 
is greater than A. Thus, of both degrees 7 and 1 1. If f l  has degree 7 over a ,  then (Part 111 [3, pp. 3 1 4 3  15, 

Entry 19(i), (viii)]) 
z 2 - 3 f i r + 3 = 0 ,  

and s o x  = (3 + fi)/fi. Since x = u + l / u ,  we find that 
and 
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where m = q ~ ' ( ~ ) / p ' ( ~ ~ ) .  If /3 has degree 11 over a ,  then (Part I11 [3, p. 363, From (6.25), we see that 

( ~ / 3 ) ' / ~  + ((1 - a)(l  - fi)]'I4 + 2{161xfi(l - a ) ( l  - /3)]'/'2 = 1 (6.37) mJ = &m. 

Since 
.I 

dllU 

11 11  
m1 - - m I = 2 ( ( 4 ) 1 / ~  - {(I - a)il - /3)]li4) m - z = G m ' - $ I ~ = c ( , , , , - - )  m 7 m1 I ! 

x (4 + ( c I ~ ) ' / ~  + ((1 - a)(l  - /3)P4), (6.38) we deduce from (6.39) and (6.40) that 

where m' = p2(q)/p2(q1'). - 
I t  q = exp(-n Jl lm, by (6.21). 

G11/7 = (4a(l - and G7, = {4/3(1 - B ) ) - ' / ~ ~ .  

Thus, setting u  = (G77G1 we deduce from (6.35) that 

((a/3)"8 - { ( I  - a)(l - /3))I'y2 = ((@)Ii8 + [ ( l  - m)(l - /3))lfv)2 

kolating the terms involv-, qvanng boUl rides, 
simplifying, and factoring, we deduce that 

(6.41) and 
p&-&,, .- .- "2  ' n.-w , . lnlegcr . (see Lemma 7.2) and so must be a root of a 

@p)1/4 + ( (1  - @)(I - = ( (OCB)~'~ + ((1 - @)(I - B ) ) ' ! ~ ) ~  monic irreducible polynomial. The latter polynomial in (6.41) is irreducible, and 
so x must be a root of the former polynomial in (6.41). Alternatively, we d - 2((u(I - cr)B(1 - B)I"~  
-k numericany that x  i s  not a root of the latter polynomial on = 1 - J ~ u ' .  the left side of (6.41). Thus. 

~ h u s ,  from (6.36), x4 - &'+7x2 -8x + l = x 2 ( ( x  + ]/I)*-8(x + 1/x)+5) =0. 
7 '12 rn - - 2 (I - 2 h u 3 )  (3 - v'5u3), (6.39) Sincex + l / x  > 1, 
111 

Since u < 1, we find that and 
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Hence, Hence, 

and 

+ h u  ( I  + ((\/lu3 + u ~ ) ~ / ~  + h U 3 ) l i 2 ) .  
\ 

one of degree 3 and one of degree 47. If B has degree 3 over a (Part I11 [3, p. 231, ' (6.50) 

Entry S(ix)l), Using Grobner bases, A. Strzebonski denested (6.50) and obtained a polynomial 
of degree 48 for u. The value of u that we seek is a r n o t  uthe - 3236 + 

(a(1 - p)}'/' + (p(1 - a))1f2 = 2(@(1 - - B))". (6.44 15u4 - 32u2 + I of this 48th degree polynomial. If x = u2, then 

If 8 is of degree 47 over a (Part I11 [3 ,  p. 444. Entry 23(i)]), x4 - 3 2 2  + 151' - 32x + 1 = x2 ((x + l / ~ ) ~  - 32(x + ]lx) + 13) = 0, 

Since x + l/x > 1, we find that 

~ 1 1 3  - - ~ ) \ 1 / 8 )  Hence. 
0 .  I '  

(6.45) 

Let Q = e x p ( - n m ) .  Then, by (6.21), 
so that 

G' := G47r3 = ( h ( 1  - and G := G14, = (48(1 - 8 ) 1 - " ~ ~ .  

, \ 
I 

4 4 ,  (0.5 1, when /3 has degree 3 over a. Thus, by (6.45), 
Lastly, we apply Lemma 4.3 with P = u3 and Q = ( G ' / G ) ~  to deduce, fro,,, 

2 ( f  (1 + ((1 - a)@)11z + (a(1 - /3))"2))112 (6.51), that 

Solving for l/Q, we find that 
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Thus, by (6.5 1) and (6.5% Thus, by (6.55), with a replaced by (I - a) ,  

and 

R = 8uI2. 
X 

Substitute these values into (6.54). square both sides, simplify, and factor, with 
the help of Malhemarica. We then find that 

k lmlahxm t o w  that 
(u= + I ) ( u ~  - u2 - - uZ + I ) ( U ~  - 2oub - 4 3 ~ ~  - 2ou2 + 1) 

h ( l 4  + 9&)'"(17 + 9&) + 4- x (uI2 - 9ulo+ 181u8 - 126u6 - 181u4 - 9u2 - 1 )  = 0. 

d L  / 
which is easily accomolished via Mathemarica. 

In numerically checking the roots of each of these polynomials, we find that 
x ;= u2 isaroot of 

Thus,x+ l!r - 1 0 + . . ~ , ~ ~  1 
Second Proof of Theorem 5.5. We need two modular equations, one of degree 
5 and the other of degree 29. The first is found in Ramanujan's second notebook. 
If r ,  721, w . H )  a I (6.56) 

in his second. R. Russell [2] established this modular equation in 1890, but his for- 
mulation is imprecise; in particular, it has a sign ambiguity. We give Ramanujan's 
formulation as stated in Entry 65 of Chapter 36. Let 

Then, if /? has degree 29 over a, 

Let q = e x p ( - K J ~ ) ,  so that we may apply (6:D j and (6.24) with r = 5 
and p = 29. If u = (G14&~u/~) -1 ,  then, by (6.53), 

Hence, 

From (6.56) and (6.57), 

'ro complete the proof, we must show that 
- - - 1 1 4 ) ~  

2 

- 2{(w(I - a)B(1 - 811"~  
- - 2~~ a6. I 
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and Solving for I /  Q, we find that 

\ 

Hence, by (6.60) and (6.61). 
Both equalities are easily verified. 

1/12 -112 
(3213 = e- 

-# 

given by (6.44), we need Ramanujan's modular equation of degree 71. If /3 has 
= ( 2(19+12&) ' / ' (41+24h)+  542,475+313,200& 

degree 7 1 over cr, then (Part I11 [3, p. 444, Entry 23(ii)]) 

I + (cr@)If4 + {(l - crH1 - /?))If4 - ($ (1 + + {(I - w)(l - b))lJ2)) 
112 

J 1 / I 2  

(JT + jyzy 
= (ap)"" { ( I  - @)(l - p)) ' lR - (a@(l - a)(1 - 

+ 22/3(a/3(1 - - , 9 ) ~ ~ / ~ ~  (1 - ( @ y 8  - ((1 - - p ) p 8 ) .  It thus remains to show that 
( 6 3 9  

Let r = 3 and p = 71 in equalities (6.21) and principle (6.24). Thus, /3 has 
degree71 over (I -a). Replacinga by 1 -cr in(6.58) and employing(6.47)-(6.49). 
but now with u = ( G Z ~ ~ G ~ I ~ ~ ) - I ,  we deduce that 

Using resultants, A. Strzebonski and M. Trott denested (6.59) and found a poly- 
nomial that tactors mto several polynom~als of degrees 8,12, and 28. Numencaily 
eliminating all factors except one, we find that u satisfies 

Letting u2 =: x ,  and solving for x + l /x ,  we find that x + l /x  = 40 + 24&. It 
then follows that u + l /u  = Jm. Hence, 

which can be verified via Mathematica. 

7. Class Invariants Via Class Field Theory 

In [6], Watson employed an "empirical process" to evaluate 14 of Ramanujan's 
class invariants. Motivated by Watson's idea, we succeeded in formulating theo- 
rems which give rigorous evaluations of G,, and G,/, when p and q are distinct 
primes satisfying pq = 1 (mod 4) and h ( G )  = 8. 

Let K = Q(G) (rn squarefree) be an imaginary quadratic field and let OK 
be its ring of integers. By class field theory (J. Janusz [ l ,  p. 228, Theorem 12.11). 
there exists an everywhere unramified extension K")I K such that the Galois group 
Gai(K") ! K! = Cr .whereC.e is the ideal class K. 1Y. Tne K(" is 
known as the Hilbert class field of K. A Hilbert class field of K is usually defined 
as the maximal unramified abelian extension of K.  

Let a = [XI, rz] be an DK -ideal. Define 

Lastly, apply Lemma 4.3 with P = ( G ~ ~ ~ G ~ ~ / ) ) - ~  = u3 and Q = where 
(~71/,/G213)~. SO, by Lemma 4.3 and (6.60). w 1 

1 sz ( [ r1 , t z l )=60  
Q + -;; = 2 1 / 2 ( ~ - ~  - u3) = 4(19 + 12&)'12(41 + 2 4 h ) .  ,.,=-,  TI + n r d 4  

w 
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and Next, suppose that 3 j pq. Then 3 1 D K  and n ( r ~ )  generates ~ 1 ' ) .  From the 
00 1 equal~ty (Cox [ l ,  p. 257, Theorem 12.171) 

g3([Tlj 7~1) = 140 
m,n=-m ( ~ S I  + n~2)" 16GE - 4 

- (m,n)+(n.O) y ~ ( J - - p q )  - a ( 7 4  
I,* 
8 7 

It is clear from the definitions of g2([rl, t21) and gs([tl, r2]) that and (7.3), we find that G;,, E K " ) .  Hence, G;, E Ko), by (7.3). 
j([r, ,  ~ 2 j )  = j ( [ l ,  t l ) a i ( t ) ,  

In [ I ,  p. 2901, Birch quoted Dcuring's results [I,  p. 431 and indicated that GPq 
where t = t 2 / t l -  We also let is a unit when pq I (mod 4). A more elaborate proof of this statement was 

- - giveninapaperby-[!,cq . -. ~ 2 1 ~  . , 1 
in this chapter. In fact, from the treatment given in their paper, one can show that 

with the cube mot being real-valued when j(a) is real. G,,, is also a unit. This fact will be needed in our main theorem. 
It is well known that K"' = K ( j ( D K ) )  (D.  A. Cox [ I .  p. 220, Theorem 11.11). From class field theory, we know that if H is a subgroup of CK , then there exists 

If DK is the discriminant of K and 3 1 DK, then K")  = K(y2(5~) )  (COX [ I ,  p. an abelian and everywhere unramified extension L I K such that 
24%- 

G ~ ~ ( K " ~ I L )  11. H. 
'fi. DK E 0 (mod 4), 

In particular, when H = C i  := the subgroup of squares in CK,  the corresponding ,. . - ,  .. neld M I R  is known as the genusfield of K .  One can show that M is the maximal 
unramified extension of K which is abelian over Q (Cox [l,  p. 1221). 

Lemma 7.1. Let a and b be two OK-ideals.  Define a,(j (b ) )  by 

a,(j(b)) = iW), 
Theorem 1.3. Let K and y he &jed as in Lemma 7.2. Ifrhe order of CK IS  8, 
then 

where aa is a principal ideal. Then a, is a well-defmed elemenrofGa1 (K"' I K), 
und a n a, induces an isomorphism 

and 
CK + ~ a l ( ~ " '  I K ) .  

&, := (Z)? + ( % ) - y  

GP/, 
11, p. f Carom' ' 1 .A 11. are algebraic integers which belong to the real quadratic field R ,  where R E 

(Q(&& Q(@, Q(,&)), and where R is afield such that none ofthe prime 
Lemma 7.2. Let K = Q(m), where pandq are two distinctprimessatisfying ideals (2), ( p ) ,  or (q )  are inert. 
pq = 1 (mod 4), andlet 

Proof. From the hypothesis, we deduce that a ,  = [I, -1, a2 = [q, e l ,  
- . . . .  a3 = [2,1 +-Landad = &,q +*Q]- 

equivalence classes (see Section 4). This implies that CK contains the Klein four- 
Then GY,, is a real unit generuting the field K " ) .  group generated by the ideal classes [ail and [a,] for i z j > 1. Using the 

isomorphism described in Lemma 7.1, we conclude that G a l ( K " '  I K) contains 
V generated by a,, and a,, 

a fickfwitlh degree 2 over K, it suffices to show that a ,  and o,, 
fin@,,., and pp. ,  More precisely, if F := Fix(V) is the field fixed by V, then by 

(16Gg - 4)3 
(7.2) Galois theory (J. Rotman 11 ,  p. 49, Theorem 631). IF : KI = I G ~ ~ ( K ( "  1 K )  : V J  

j @ ~ )  = j(=) = c 2 4  1 It.-" t o, - . . 
o ~9 I L K  I - 0) .  wtnrfrrrPlphes that F IS of degree 2 over K. Since a,,,, and 

# I p , ,  are real numbers in F .  they belong to R := F f l  R, and R is clearly a real 
we conclude that quadratic tield over Q. The fact that they are algebraic integers follows from the 

~ ( 1 )  - K I C ~ ~  \ faact Y Y ,%, - 
" \- P9" P4 . L, . 
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~t rhis stage, we will assume that 3 1 pq. From COX'S text [ 1, P. 257, Theorem Now, applying Lemma 7.1 again, we have 

. . . 

By Lemma 7.1, we find that 

o. , ( i ta~ ) )  = j ( a z a ~ i  = riaz). - - 

From (7.2). (7.5), and (7.6), we find that 

ua, ( j h ) )  = j ( a d .  

By (7.10) and (7.2), we find that 

which implies that 

12 --I2 %,(Cpq) - l V p q  - 
Similarly, since a3a2 is equivalent to a,, 

Simplifying (7.7), we deduce that %(G:,) = f G ~ ~ , Z  or + G;;;, . . 

1,- 7 . r 2 \  
(a - bjta + u~ l o w  + 0 )a%u - 2b2 + 1)  - 0, -e.- e r f q  j may have the same or opposite sign as oa, ( G 4 ) .  

We will Show that the latter case is inadmissible. If 
where a = o,,(G$) and b = G;,. But 

( ~ 1 2  , - - c - I 2  
% ' - ~ / 9 '  ' -p/q' 

then 
for otherwise it would con~adict the fact that a and b are algebraic integers. Thus, - - ( P I 2 1  /.-17 
WL L " a , " a ~ I ~ ~ ~ l  - +up,9. 

U,,(G;) = f G:,. (7.8) This is c k d y  a contradiction since u,,u,, = a,,,a,,. Hence, 

i.e., o n , ( ~ ~ q )  may have the same or 0pp0SiY Sign as 0 a 2 ' . , ( ~ z ) .  since = I> ~ a ,  (81.4) = Bp.9. 
1- is ~nadmissible. Hence. 

g r e s u h  we see that both un, and a,,, fix a,,, and B,., , and this 
u , , ( G ~ , )  = f G:. (7.9) implies that a , ,  and BP,, are real quadratic algebraic integers. 

. . The proof for the case when 3 C pq is similar. In this case, ~ 4 ,  generates ~ ( l ) ,  
F- ( 7 3 ,  it  19 nm& that - A  . . 

so 0 4 ,  (b,) 1s we11 defined for i > I .  Hence, we may deduc'e from (7.7) that 

%2(@p.q) = B P , 9 .  Simplifying (7.12), we have 

Next, from Cox's text [l, p. 2631, we find that (0 - b ) ( k 2 b  + 4ab2 + 1) = 0, 
4 .  .. 

*a = 00, (bFq) and b = P,,, . But 

4a2b + 4ab2 + 1 # 0,  

for otherwise it would contradict the fact that a and bare algebraic integers. Hence, and we deduce that 

( 3  + mi) (7.11) 
j (ad = j 2 

\ / 



Now, sjnce ,,, G ~ ~ ( K " ' I K )  and G:, generates K"' (see Lemma 7.21, Proof. Let [a] E A := {[@I, [ad, [ a d ,  and let H be the group generated by 
lal. I-rom Ule paragraph betore the statement ot 'l'heorem 7.3, we know that there 

"at ( ~ 4 , )  = * G : , ~ .  exists an abelian and everywhere unramified extension LI K such that 
me rest of the arguments are similar to those of the previous case, and we shall 

r d ( ~ ( I ) 1 1 \  .̂ . . ,  
omit them. 

we have already seen that a,, and p,,, lie in a real quadratic field R.  Our next In fact, from the isomorphism of Lemma 7.1, we find that L = Fix(a,) .  Since 

task is ~ v e  a necessw condition for R. First, we observe that R = F fl W, G ~ ~ ( K ( " I K )  -- Z2 @ iZ4, the group 
where F F ~ ~ ( v )  is an abelian, everywhere unramified extension ot K (see me 
paragraph before the statement of Theorem 7.3). Hence. R E ( Q ( m ,  Q ( f l ,  G d ( L I K ) - - Z z @ &  or Z4. 

a o o l ~  N~~~ we will show that none of the prime ideals (2), ( p )  or ( q )  are The first case can only happen for exactly one element in A, and the field L in 
;e<i Suppose me contrary holds. Then without loss of generality, we may this case is the genus field M of K. As for the second case, Gal(L1Q) -- Dg, the 
assume that is inert in R. This implies that p in K is inert in F, where pl(p) dihedral group of eight elements, since L is generalized dihedral over Q (Cox [ I ,  I F ; ]  has order 2 (see the books by Con [ I ,  and the Frobenius automo~hism - p. 1911). Hence, Gal(L1Q) is nonabelian. 

Now, rewrite (7.13) as 
1 q71) ." " 2(u+ s-'1 =a1 +azJ;;;, 

on the other hand, we know that the Frobenius automorphism a, = 
(7.15) 

where q = (Gp,G,/ , )Y.  Note that a,,  fixes and a , , (q )  = 'I-'. Therefore, the 
field L .- 

has order 2 and that 
.- A irl) = F i x ( <  a,, >) is of degree 4 

Suppose L is the genus field of K .  Since a,, = I, we conclude that the ideal 
[a21 - lies in an ideal class belonging to the principal genus. Hence, by Theorem 
4.4 we may wnte 

s i n c e m s z  11, p. 127, Property 2.31) 
(7.16) 

r E l K 1  [ K " ) I K ~  1 
- - where 
I P  J 1 P J I E  w h l h 2 / ~ 2 ,  i f 3 t p q ,  

3whlhdwz,  if 3lpq. 

Since w = 2 and 

= I. w2 = 2 o r 4 ,  i f 3 ] p q ,  

This clearly contradicts the last statement of the previous paragraph. Thus, ( p )  is 
not inert in R. 

we conclude that el must be of the form e;/2, where e', E W. Hence, we may 
rewrite (7.16) as 

4 / 2  
our step is to determine a,, and #$,,4 using the numerical values of Gp9 'I= n € 1 .  (7.17) 

and G ~ ~ ~ .  TO achieve this, we need the following res~l t .  x(C1)=-l 

Now, it is known that a fundamental unit of a real quadratic field takes the form 
Theorem 7.4. Let K = v(( I, 8 > -b [ I ,  P. I? . LF 

2a,,,, = a1 + a 2 6  (7.13) - = ul& + vl&, then ul ,  vf > 0 Collecting UI=kC 
deduce that h' is of the form ul + u z f i  + u 3 4  + u 4 m ,  where ui 2 0 for each 

/7 1 7 \  . .  . 
and t 1 . 1  I J ,  - a z m p o s l r l v e .  

2&., = h + b 2 f i .  (7.14) Next, suppose L is not the genus field. Then from the beginning of our dis- 
cussion, Cal(LIQ) " Ds is nonabelian. We claim that there exists an element 

. .  . 
t h e n a ~ ,  a ~ ,  b 1 , a @ b 2 ~ - "  , . B L ) K )  
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L r l  R = Q ( q )  would be Galois over Q ,  and hence Gal(LIQ(q)) is a normal Therefore, 

subgroup of Gal(L IQ). On the other hand, Gai(Q(v)lQ) 2 (iali LiKh a normal 
subgroup of Gal(L(Q)  (Cox [ l ,  p. 1911). Hence, Goi(LIQ) is isomorphic to the u2 = 45 +s& and V 2 =  37 + 3 4 3 3  

direct sum of Gal(LlQ(q)) and Gal(Q(v) (Q)  and is therefore an abelian group, 
2 2 ' 

and this contradicts our initial assumption. 
Next, we will show that o(&) = -&. Suppose that the contrary holds. & + 9  

Then (II = - 2 and vI = -. 
&+7  

u ( d  + u(v) - l  = V + v-l ,  This further implies that 

and therefore 

u ( q )  = q or $-I. 

This shows that o ( q )  is real, which contradicts our choice of u .  Now, applying a 
to (7.15), we deduce that 

~ ( o ( t ) ) - q )  ' j = a 
- r 

I -azvnr.  

From (7.15), (7.18). and the fact that a(q) is complex, we find that 

Hence, 

1/2 
and 

-/;;;12 C l6. 
-- 

This implies that 4 a l a 2 f i  z 0. Since q r 0, we deduce that a~ and a2 are 
positive. The integrality of a I  and a2 followscasily from Theorem 7.3. In a similar 
way, we can show that bl  and b2 are positive integers in (7.1q. u aria v aria I neorems 1.3 a n d n ,  we find that 

.s.. . -  7 

The argument given here for the case when Gal(L1Q) is nonabelian is due to 
u6 = m 4 4 +  1 0 ~ ~ 2 ~ 3  and v6 = + 1728d3. 

H. Weber; see Cox's book [ I ,  p. 2691. . . The first equality implies that 
-~~=,-p the Last s h e -  6 I. 

ment in Theorem 7.3. Note that. since ISKI is finite and 2a,,, and 28,, lie in 
U" + u " = 8(47 + ZId5) 

a discrete subset of the ring Z(&) for some Q ( @ )  E LRK. we can therefore Since 
of G H, in r 

(n7+u ?Y 3i ' - '~ - - U +U -) = u"~ = 8 i 4 / + n 4 5 )  
a finite number of steps. This will in turn lead to exact values of C,, .  

= (4+3a' -3(4+3&3 

Except for K = Q(-) and ~(m), in all of our calculations, I%\ = we conclude that 

I .  

We illuslrate our computations with two examples. Before we proceed, we let 
u := G p p G P / , .  v := G W / G , l / 9 ,  Ui := (ui + u - ~ ) * ,  and V, := ( v j  + V - J ) * .  

r a 7 t u  4+345 - - - and UI = b + J d j .  
Collecting our results and simplifying, we deduce that 

Example 1. Let p = 5 and q = 13. In this case, y = 4. By Theorem 7.3, f f g . 1 3  
1/12 

2.5, and 13 are c* = (J748+432Jj + 4747 + 
1 

Now, evaluating u and v using the product representation of G ,  (see (1.3)). we 
1 / 2  

,- - 86777.. . . . We know that these . . .  5.13 - Q1-'113PS z T S L  of thOeio':P; b r 2 h ' ; b y  Theorem 7.4, we conclude that 

41 +s- - 33 + 3 4 3 3  The following table ~unmarizes our further calculations.  he values for G~~~ 
- - 

L 
and GtQ3 are new. - 
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I 

8. Miscellaneous Results 

In this section we collect together some miscellaneous results of Rarnanujan on 
class invariants. We have been unable to provide meaningful interpretations for 

Entry 8.1 (p. 311, NB 1). We have 

This sextic polynomial has two real roots, and, via @Mathematics, we easily 
checked that the expression on the right side of (8.1) satisfies (8.4) and is the 
correct real root. 
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in (8.1 I) ,  and, after dividing out the common factor 47 + 21 a, we find that 

Entry 8.2 (p. 316, NB 1). We have we find, after much simplification, that 
3.2114 

G175 = 113 
J3 - I (5 - &\ (1, - 3 ~ L  3~ 27 3 f i 2 1 1 / 4 '  

- + - =  
+ I S - 3 ~ - 3 1 / 2 ~ )  - 1  

2  4 \. - 
(8.6) Thus, from Hall and Knight's text [l, p. 4801, the real root of (8.12) that we seek 

is 
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Now repeat the calculations from the proof of (8.6), but with f i  replaced by -fi. where p 0, then 
L" we men mauce (a. 

p 3 + p = & .  (8.19) 

We also calculated G 175 from (8.10) by using Cardan's method and found that 
che first ciaim is equivalent to a result in 

Weber's book 12, p. 7221. 
3 We now prove (8.16). By swaightforward algebra, it is readily verified that (8.15) - 

1b L qulvalml equanon (1 17 + 3 f i J l i l  + (17 - 3f iJ" ' )  

10 1 \ (8.20) 
to. '3, \ '  " /  

which is a slightly more elegant representation than (8.6). By combining (8.6) and 
(8.13), we deduce that 

Let 

Then, from (8.20), 

\ y 2 - 5 y 1 = 0 ,  
I 7 -1 l l 3 \  \ 

+ { ~ - 3 J 5 - 3 1 / 2 1 }  which has the roots 4 . Since x = 0.119252.. . , the plus sign must 
1/3 be taken. Hence, 

1 

Y I - x  2 ' 
(8.21) 

/ I -1 1/3 i -I 1/31) - - - x \17+34211 + (17-34211 - akirrg the quare root of each slde and recalling that x = t4 ,  we complete the 
(EL 1 4) proof of (8.16). 

We next prove (8.17). Employing (8.21) and (8.16) and remembering that x = 
We are unable to establish (8.14) directly. 

t4 ,  we see that we are required to prove that 
At s c a ~ r e d  places in the second notebook, Ramanujan discusses a few addi- 

tional class invariants. 
(8.22) 

Entry 8.3 (p. 263, NB 2). Let t = I / G ; ~  and let x  denote the positive real root 
OJ Agaln, from (8.21). 

x6 + 9.2 + 5x4 - 2x3 - 5.2 + 9x - 1 = 0. 

lhen x = t 4 ,  where t > U. Purfhermore, 

Hence, from (8.23), 
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and 

. * 

I nos, 

Squaring both sides and simplifying, we find that it suffices to prove that 

3 p - 9 p 2 + 8 p -  16=0. 

But this is precisely (8.25). and so the proof is complete. 

Parts of the proof of Entry 8.3 were taken from the notes of V. R. Thiruvenkat- 
achar and K. Venkatachaliengar [I]. 

BY (8.22). we want to show that the right side above is equal to (1 + x ) / ( l  - x ) .  Entry 8-4 (PP- 263, m, NB 2). Lett -. 21f4/G79.  Then r is the real root of 
-es to move that J - 4 . 3  , - z . -  - - 

( I  - x) ( -2x3  - x ~  - 2~ + = X ( I  + x ) ( x 3  + 2x2 - x + 212. 
Furthermore, $ 

Enpanding both sides and collecting terms, we find that the foregoing equation is 
equivalent to the equation (8.27) 

0 = x ~ + 9 ~ ~ + 6 ~ ~ + 7 ~ ~ + 7 ~ ~ - 6 ~ ~ + 9 ~ 1  
then 

= (x2 + 1)(x6 + 9x5 + 5x4 - 2x3 - 5x2 + 9x - 1). 

Since 12 + I # 0, it suffices to prove that the second factor above equals 0. But 
this is true by (8.15), and so the proof of (8.17) is complete. 

e (8.19). From (8.181, Proof. The class equation for n = 7 9  was not computed by Weber [2 ]  and is not 
otherwise given by Ramanujan in his paper [3] or notebooks [ 9 ] .  However, Russell 

(8.24) [21 and Watson I101 determined the class equation, which is easily shown to be 
equivalent to that of Ramanujan. 

This equality and the symmetry in (8.15) suggest that we set p = x -' - x. A brief NOW (8.28) is valid if and only if 

calculation shows that 

X 6  + 9x5 + sX4 - 2x3 - 5x2 + 9x - 1 = -x3 ( p 3  - gp2 + 8 p  - 16). 
(d + p3 + 2 4 '  = ( 3  + 2 P 4 ) 2 ,  (8.29) 

since the square root of each side is positive. Also, (8.29) holds if and only if, by 
Since x # 0, by (8.15). (8.27). 

From (8.24) and the defin~t~on of p,  
= ( + ) ' - + ) ' + 5 ( f  - r ) ' - 8 ( f  - [ ) ' + 4 ( f  - I ) - ~  

C = - I d - 2 p + t - > - ,  : - 2 t  -+r' 
Thus, 

Since clearly p3  + p > 0,  it therefore suffices to provc that 

f iw- 1 ) = 2 .  

and since p z 0, it is sufficient to prove that 

Smce t z 0, t i  + 3t4 + 21' + 1' + I + 1 > 0. Hence, (8.28) holds if and only if I 
satisfies (8.26). and this is what we wanted to prove. 

Entry 8.5 (p. 382, NB 3). Let z = x + l /x ,  where x = G:, . Then 
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Proof. From Weber's book [2 ,  p. 7221, as corrected by Brillhart and Morton [ I ] ,  
2 

( 1  4%. men - - - 

I . . 
u 1 .. / 

Since u = G:, , (8.30) and (8.31) are equivalent. 

We have no explanation for this mysterious fragment. The definition of y is not 
I 

given, but perhaps Rarnanujan intended to write y = d ( m  - 3)/2. However. 
this value of y is not a solution of either of the indicaied polynomial equations. 
The top half of the page comprises results discussed in Chapter 37, and underneath 
the fragment is Ramanujan's (equivalent) representation for G765; neither topic 
appears to be connected with this fragment. 

g; = u v ,  

indicated formula for G l z l  is equivalcnt to the one given in the tables. Parts of the u2 + 1/u2 = 2U, u2 + 1/u2 = 2 V ,  

last two lines of the entry above are difficult to decipher, especially the definition w = Ju2+ v2 - 1, 
Of.4. 4 5  

and 
that is to say, that the value of x in the firs1 two lines is the same as in the second 
two lines. Even more enigmatic is that an equality sign seems to be missing in the 2 S = U + V + W + 1 .  

'j 

the expressions in the last two lines and could not account for a missing equality 
sign. In conclusion, we are unable to supply any meaningful interpretation to the a, = {A - 67)Z(v '3?7  - d m ) '  

incomplete entry offered in the last two lines. x ( m - J s - V -  lt2{J-- Js -  W-1j2 .  
On page 343 in the first notebook, Ramanujan wrote 

Watson's proof of Theorem 9.1 is a verification; it does not shed any light on 

below. Later we show that the algorithm implicit in Theorem 9.1 can be adopted 

Ramanujan's formulation of Entry 8.5 is, in fact, slightly enigmatic. In particu- 
lar, in contrast to the notation used throughout the second notebook [9] .  Ramanujan 9. Singular Moduli 
employed the conventional notation in the theory of elliptic functions and wrote 
l / x  = 42kk1. Recall from the Introduction that the singular modulus k, is defined by k, := 

We now make a few remarks about two entries possibly related to invariants. k ( e - " d ) ,  where n is a positive integer. It is clear from (1.6) that if the value 
On page 294 of the first notebook, Ramanujan claims that of G ,  (or 8,)  can be determined, then a, :-- ki can be computed by solving a 

quadratic equation. For example, see (2.8) or (9.1) below. However, the expression 

expressed in terms of units in certain algebraic number fields. (See Theorem 1 . 1  .) 

where Thus, formulas for cw,, that facilitate their representations via units are desirable. 

1 ( 9 4 3  + I)'/" ( 9 J j  - I)'/" 
1 

x + - =  
X J5 kzlo = (A - 114(2 - & ) ' ( A  - &14(8 - 3 A ) '  

-r * 2 . 
x3 /X  , 

one to calculate a, for even n. 

Theorem 9.1. Set 

fi+ I / & +  1 - 
2 . This was first proved by Watson [4], who used the following remarkable formula 

which he found in Ramanujan's first notebook [9, vol. 1, p. 3201 and which enables 
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Proof. From (1.6) and (he notation above, We write the last quality in two ways as follows: 

and 
I 

Now, 
. . 

squaring eacn of B e  lag p b .  w 

- - ( U + V + W + 1 ) ( U + V - W - 1 )  
ab = 2u2v2 - U' - v 2  + 1 + ~ U V  J(U2 - l)(VZ - 1) 2 2 

+ w 
- - w+V)'-w+1)2 and 4 

+ w  

These two equalities imply that a = b. Thus, 

Thus. from the first eq&y in (9.2). 
2 

a = (JSCS - w - 1) + J(s - W)(S - I))  
Solving for fi ,  we find that 

- - 
&=(,&-&)(&-&=3. (9.1) = s(S - w) + ( S  - w - 1)(S - 1) - S + ( S  - 1) 

It thus suffices to compute &. 
From the definition of a and the fact that a = b, 

Hence, 
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Next, of units. This list is repeated, with the addition of als, at the bottom of page 262 
in his second notebook. On pages 345 and 3% in his first notebook, Kamanujan 

( S  - u - 1)(S - v - 1) = (S - U)(S - V) - W recorded units that appear in representations of a, when n = 3,5,7,9,13, 15, 17, 
- - W + l + V - U W + I + U - V - w  25, and 55. (Inexplicably, the units for a7 and a l ~  are recorded twice.) Ramanujan 

L L also Indicated that he had intended to calculate a 3 ~ .  but no tactors are glven. 

(W + - (U - V)2 Of course, the result for n = 15 is superseded by the complete formula given 
- - - W  

4 on page 262 in the second notebook. It is unclear to us why Ramanujan only 

U 2  + V 2  - 2W - (U - V)2 llsted portlons ot a, and not complete tormulas. lnitiany in our mvestlgatlons we 
- - 

A employed computational "trial and error" to "guess" the complete formulas for 
a,, n = 5,9,13,17,25, and 55. We remark that the values for a3 and a, are easily 
determined from 0, i.e., 

were sought. 
We adopt the algorithm of Theorem 9.1 and reformulate it in Theorem 9.8 in 

-rerrpls of G.  m cafclrtare some vatoes of a,, when n is om. I necmm93 provides 
a list of all of Ramanujan's values for Odd n. Although Theorem 9.8'yields a 
systematic procedure for calculating a,, when n is odd, the calculations are often 
cumbersome and h e  representations that we obtain, a'khough expressed in terms 
of units, are frequently more complicated than we would like. Thus, we establish 

Hence. three simple lemmas, Lemmas 9.1s9.12, that provide an alternative procedure 

./a - Ja - 1 = J(s - u - 1)(S - v - I )  + J (S  - (I)@ - V )  for calculating an of KlmanLIJan's singular moduli for odd n. 
I - - - We conclude Section9 with two further algorithms of Rmanujan for computing 

a,, . These were cryptically stated by Ramanujan in his first notebook and are rather 
= (m- JS-V-I)(JS-U- J S - U - I ) .  different from his other algorithms. The first provides a method for determining 

I Y ~  fran a cenam tvoe af mochkqmmeouarlan of denree n. The second &o arises 
Using our just calculated formulas for Jai - &and & - Ja-f in (9.1). from modular equations and gives a formula for a3,. - ~ 

we complete the proof. Ramanujan likely learned about singular moduli from a brief discussion in A. G. 

Furthermore,Watson [4] inexplicably claimed, " . . . this is the sole instance in of each singular modulus that has been determined. Ramanathan [I] and J. M. and 
which Ramanujan has calculated the value of k for an even integer n." In fact, 20 P. B. Bonvein [ I ]  previously calculated some of Ramanujan's values for a,, and 

a are found mthcbd. Theorem 9.2 w e ~ r ~ l  . .. . 
gives 13 of these values. 

On page 82 of his first notebook, Ramanujan offers three additional theorems for 
calcuiat& a, when n is even. The first (Theorem 9.3) expresses ad, as a product 
of units involving G,. The second (Theorem 9.5) expresses (Y1bp as a product of 
units involv~ng G,. The third (Theorem Y.6) enables one to determine as, as a 
DmhIct of two fourth powers of units, provided that az, can be expressed as a 

Singular Moduli for Even n 

notebook. 

broduct of units of a certain form. We calculate eight exihples of Ramanujan as 
illustrations. 

l* A - L1*3 =k=%m 51'9 313, 
')a- 1,') 

The calculation of a, when n is odd is slightly more difficult. On page 80 in 
his first notebook, Ramanujan recorded the values of a21, a13, and a45 in terms 
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a, = ( 2  - &)"3JS - - 2 h ) 4 ( 5  - 2&12, 
~kp* 

4 can be easily verified by direct calculations. 

(5 - 2&)4(& - 5 h ) 2 ( 2  - &)4, 
~ n e  Borweins [I,  p. 1m calculated a, for 1 < n ( Y. Kamanalhan ( I ]  also 

established a ~ w  by using Theorem 9.1. 
a,,, = (5m - ~7)~(J10 - 3Y(& - 5)4(3 - 2 h ) 4 ,  Recall the definition of F ( x )  given in (2.3). 

and 

\ 

then 

Proof. The value of a2 was, in fact, establishedin Example 1, Section 2 of Chapter 
I7 in rhe second n-HI [3, p. 97- 
[ I, p. 1391 also determined (YZ .  

for determining a4, from the value of a,, or from G, ,  namely, 

All of the remaining values for a, are easily determined from Theorem 9.1. The 
required values for 8, can 12] or 8.4) 
in Section 2. In each instance, we list the values for u, v, (I, V. W, and S in the 
table below. The reader can easily verify the calculations. Before proving IImrern 9.3, we verify four examples recorded by Ramanujan. 
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and 

= (fi - 3)4(J2 - I)"& - &)"(1/5 - A 1 4 .  

The value of a4 was also recorded in the second notebook (Part 111 [3, p. 97J). 
Both ad and a28 were also determined by Ramanathan [ I ] ,  and the Borwein broth- 
ers have determined a4 and a,* [ I ,  pp. 139, 1511. 

which implies that 

Since k(l - a) = n-2, we deduce that 

1 
(Y12 = (& - &14(& - u 4 .  B = (J- + J=)4 

Let p = 7, so that, from the table in Section 2, G7 = 2'14 and n = 8. Thus, 
from (9.4), =(Jn+i+Jn-114 

= (3 - zJz)~(z J 2  - J714 = ( 4 2  - 1)'(2& - 471'. \ / 

4 

Let p = 15. From the table in Section 2, GIs = 2-'/"(1 + 45)'". Thus, 
n = ( 1  + fi14/2 = 4(7 + 3&). Hence, from (9.4), = (m - &I)"(- - J;;)4, 

Therrmrn In Q7 NR " Under the same hypotheses as Theorem 9.3, 

where we have corrected a misprint. To that end, from (9.5), 

Thus, together Theorems 9.3 and 9.5 v i a  thefannula 
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F~~ example, if p = 1, then n = GI = 1, and a simple calculation shows that 
(9.15) 

a16 = (h + 1 ) ~ ( 2 " ~  - IT. 
Comparing the proposed value of u from (9.13) with that of (9.15) above, we see 
that it suffices to show that 

Also. by Entry 2(v) of Chapter 17 in the second notebook (Part 111 13. p 931). for 

If we square both sides of (9.16). it is a routine matter to show that (9.16) indeed 
is a correct equality. This therefore completes the proof. 

, . . , 

~ h u s ,  from (9.12), (9.10), and (9.1 I), it suffices to show that The next theorem enables one to determine as, from the value of az,. 

1 2  - (,hq + a+ I - d z m m + . / I ) }  
e - n f i  = F ((&TI - ,Iii)'(&i - &T)2), (9.17) 

2 

(6-1- J ~ J ~ ~ ( J ~ + I - J ~ I )  a P.13 then 
4 

From (9.1 1). it follows that + + - 
- J (&+ I)(& + MI 

2 1 - 42 
=-+A, (9.14) 

(Jni - JTi)2(Jii - Jn-iY f i  (fi-l+Jn-ti 1 '\ - 
~ e t  u = fi. Since u tends to 0 as n tends to 00, the solution of (9.1 4) that we fi 

+mi 

seek is 

1 1 
u = z + T  Observe I that 8 

\ v  q+Ln+l J5;fiA - 

2 
I &+ I ) ( & + M )  

- 
1 - - 

/2(4m-4K)2i45-4-2 2 )  + ~ t f i * l ) t f i + h T i )  = l .  

(J i+&i)2+(6 i - f iy  \ , (9.19) 
Thus, if a2, can be expressed as a product of units of the form (Jn + 1 - Jn)2 
(Jfi - a)*, then asp can be-expressed as a product of two fourth 
of units. Before proving Theorem 9.6, we present three examples recorded by 
Ramanujan. 

Examples 9.7 (p. 82, NB 1). We have 
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and and, by (9.18) and (9.12), it suffices to prove that 

Proof. Let p = 1. Then from Theorem 9.2, a2 = (A - 1)'. Thus, n = 1, and 
from Theorem 9.6, 

But from (93,  

Let u = 4. In view of the form (9.22), it is natural to assume that 

I L ,, I \ - lul - ulJlU2 - u21, 

. . - , U1 08. Then, by (9.22) and (9.24), 
~ ~ 1 2 .  n u s ,  n = 3, and 
from Theorem 9.6, 1 1 

( ~ + f i ) ( f i + ~ ) = ; ( u + - ) = a , a 2 + b l b .  (9.26) 
L \  tl, 

3 + JS 
4 

I + &  ~ = ( ~ - ~ s t l ~ j ) ~ ( ~ - ~ l ~ ) .  (9.21) If s := f i+ m, the values of a , ,  bl , a*, and b2 that satisfy (9.25) and (9.26) 
are 

But from (9.9, 

Then, as already observed in (9.19), (9.25) is satisfied. Furthermore, 
and ala2 + blb2 = n + 4- + (6 + m)m 

= (Jn+i + &)(A + Jn-i), 
and so (9.26) is satisfied. Hence, (9.23) has been shown, and the   roof of Theorem 

Using these calculations in (9.21), we complete the verification of Ramanujan's 9.6 is cornpletc. 
representation for a24.  - - 7 -1, - 6 1  

~ e t  p = 3. prom I heorem 9.2, a10 = (4 IU 5 ) - ( 3  L ~ L J '  
a - - . inus, n = Y, 

and from Theorem 9.6, Singular Moduli for Odd n 
\ 4  / 

2& + 43 - 44(3 + 4%) 
7 r 7 

4 2 + d 5 - \ 1 2 0 + d 1 0 )  

which is what is claimed. 

9~ 6.- (z) 171 By elementary manipulation, we find from the other equality of (1.6) that 

Hence, as in (9.14), If we set 

2an Gi2 (gi)'2 := i ~ : *  and a; := - . ,  
1 
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Theorem 9.8. Set 

and 

Then 

Theorem 9.9 (pp. 80,345,346, NB 1; p. 262, NB 2). We have 

2 - 4 3  
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Proof. It is readily verified hat 

2 

(10 - 3J11)(3JJ - 2Jli) m+1 - a-1) - 
2 \ 2 2 '  

1 
9JO in ( Q . w 3 1 >  

Lemma 9.10. I fr  is any positive real number and t = J(r + 1)/8, then Applying Lemma 9.1 1 with r = G:', we find that 

Proof. The equality (9.30) can be readily verified by elementary algebra. 

Lemma 9.11. If r and r are as given in Lemma 9.10, then 
and 

/ I 
~ 1 2  - d?4_1= (9.36) 

I r n ,  ('3 --' . , .fl, AO), we deduce Ramanu~an's value for @. 
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after a lengthy calculation. We now apply Lemma 9.10 with r = 20 + 5m. Then 
L C ~  n = 13. From the table in Section 2, 

Then in Lemma 9.10, set r = G t: to deduce that 

t = 
19+5JT? - - 5-tJ13 

8 4 

and so 

I 

Next,setr = 2 0 + 5 f i + 4 ( 2 0 + 5 J l 7 ) ~ -  1 inLemma9.1l.Then and 

Hence, the given value for a13 follows from (9.3), (9.37), and (9.38). 
Let n L 15. From the table in Section 2, 

- - 
Apply Lemma 9.10 with r = G: .  Then 4 

and 

Thus, 

= 2 8 +  12&- 1 6 & - 7 a  With r = G:: in Lemma 9.1 1, 

(9.40) I 

t = 162 + 7 2 4 5  6 + 3 4 3  
Hence, by (9.3). (9.39). and (9.40). the desired result follows. 

- -- 

Let n = 17. From the table in Section 2, 
8 2 

and 
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Putting (9.43) and (9.44) in (9.3). we complete the proof. 

The next lemma will enable us to calculate ( ~ 2 1 ,  a333 a45, and ass. which completes the proof. 

R a *  r d  .. - - uv - + u?. where - 
7 . 1 - . L I C * f  C > 

u u2 > 0 and u: - ui = 1. Furthermore, let 
h f  of Theorem 9.9 for n = 21,33,45, and 55. Let n = 21. From the table in 
Section 2. 

Set ul = 2 f i  and u = 8 + 3 3  in Lemma 9.12. Then 

\ I 

a2 = 1 + 2(8 + 3d7)2d7 + (8 + 3J?)2 = 212 + 80J? = (10 + 41/?)* 

and 
X 

9.45) b2 = 1 - 2(8 + 3J?)2J? + (8  + 3 f i 1 2  = 44 + 16fi = (4 + 2J?12. 

Hence, a = 10 + 4 f i  and b = 4 + 2J?. Moreover, 

/ I  . .- I 9 i a + h + 2  1 6 + 6 f i  3favf i  
a + b + i  a f o - L  - - - - -- -- 

4 4 4 
\1 16 16 4 

\ , . 
\ and 

Thus, by Lemma 9.12, 
2 

G" - JG24 - ] = 

(9.48) 
On using (9.47) and (9.48) in (9.3), we complete the proof. 

, 

Then. bv an elementaw cakulation, 
\ - -  I 

Apply Lernma 9.12 with u 1 = 10 and u = 26 + 15& Then 

a * =  1+2(26+15.\/~)10+(26+15d3)~= 1 8 7 2 + 1 0 8 0 d 3 = ( 3 0 + 1 8 & ) ~  
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and Let n = 55. From the table in Section 2, 

and 
Apply Lemma 9.12 with ul = (99 + 45&)/4 and v = 8 l A  + 2,'. Thus. 

~ h u s .  by Lemma 9.12, = 17469 + 7812& = (93 + 42&)* 

Upon substituting (9.49) and (9.50) in (9.3), we complete the proof. 
Let n ;= 45. From the table in Section 2, 

Thus, a = 93 + 4245  and b = 39 + 18&, so that 

- v' - 
16 8 

and 

Thus, by Lemma 9.12, 
and 

and 

i- -"" 
Now, by Lemma 9.10, 

-= - 
2 .  ( /67 + 30& - I - /67+ 30fi  - - 1 )  

4 

So, by Lemma 9.1 2, \ v 8 I 2  \I 8 2 
4 

7 + 3 a  / 3 + 3 ~  -- - - - - 
4 4 

(9.52) = 6 6 + 3 0 & - 9 & - 2 0 f i  
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Using (9.55) in (9.54) and then (9.53) and (9.54) in (9.3). we complete the proof. On the other hand, from Theorem 9.9, 

We close this subsection by showing how different modes of calculating a, can 

Entry 9.13 (p. 311, NB 1). We have 

Combining the last two calculations, we obtain (b) with the minus signs chosen 
on both sides. 

We verified via Mathematics that both (a) and (b) also hold with the plus signs 
and chosen on each side. 

(b) cal- @anda%' with 

Rarnanujan obscurely described two further methods for calculating a, in his first 
- - + 1)/2. and using this value in 

(9.3), we easily find that 

notebook [9]. 
- 

In the hrst, Ramanujan ~ndicated that a2, may be calculated by solv~ng a certa~n 
type of modular equation of degree n. For several prime values of n, the desired 
form of modular equation exists; many of these modular equations can be found 

( z ~ ~ ) ' "  = 6 - JI - (a- as. in Ramanujan's notebooks and are proved in Part Ill Dl. This very novel method 
is the only known method that does not require apriori the value of gz,. Thus, the 

On the other hand, from Theorem 9.9, method is a new. valuable tool in the computation of a%. 
In the second, Ramanujan disclosed a method for determining a3, arising from 

(~a~~)'/" { 161 - 7 2 h  
4 4 of this formula and prove it by using a device introduced in Section 6 to calculate 

certain class invariants. 

we also devise a method for calculating as,, that is similar to Ramanujan's method 
4 for determining a3, . 

h 
ing /3 to 4B/(1 + 8)' a n d a  to 1 - B* we get an equation in 4B(1 - B)/(l + B) 
and the value of B2 is for e-"fi. ' '  We now state and prove a rigorous formulation 
gf 

Theorem 9.14. Let /3 have degree n over a ,  and suppose LY and ,9 are related by 
a modular equution of the form 

. . 
Combining these two calculations, we & d p  

-. , 
a I - 1 - ) 0. - - (9.567 

(9.3), we readily find that 

1 9 .  1 - 4 
- y ,  , I  

b -6- 

for some polynomial F a d  for some positive rational number r. If we replace a 
- , .2 + 2 tke#{7 I '  Y 4-~,/(1 + .x> P 
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Proof. Under the designated substitutions, 

( a r  1 - a ) ( l  - B)lr) 
, , . , , . \ \ I \  

that 

\ / I / .  4 x  \ \  \ - .. .- a 1 - - I I  I 

Example 9.15(b). Let n = 5. Then we have Ramanujan's modular equation of 
degree 5 (Part I11 [3, p. 280]), 

Using Ramanujan's substitutions, we find that (9.61) can be put in the shape 

Hence, the first part of Theorem 9.14 follows. u + $uZ + 2u = i u 2  + 3u = 1, (9.62) 
For brevity, let 2 ~ 1 ( 4 ,  4; 1; X) = Fl (x). Setting B = 4x/(1 + x ) ~ ,  we find where 

that 
i 4x ) 

~ F I  -- 
\ I  ( I + x ) ~ )  - !ZFI( I -X~)  - , (9.57) 

\ I + x j  
(9.63) 

2FlU - B )  - - 
2 FI (B) 2 zF1(x2) Solving (9.62), we deduce that u = -6 + 2 f i .  Next, solving (9.63), we find 

t h a t x = 3 m - 9 - 4 , 6 + 6 J ?  m u . h  rwn . . 
. . . . 

by a fundamental transformation for F(x) (Part 111 13, p. 931). which actually 
arisesfrom a special case of Pfaff's transformation. With a replaced by 1 - x2 ,  
we find from (1.4). ( 2 3 ,  and (9.57) that 

at0 = x2 = (J10 - 3)'(3 - 2 h l 2  = 
3 & 0 + 6 J Z - 9 - U  

3 m + 6 ~ ~ + 9 + 4 ~ 5 '  
The former representation is given in Theorem 9.2. 

We next derive Ramanujan's formula for a,". 
.3), 
-, , 

suppose mat p nas degree n over a. l'hus, (1.4) 

Theret ore, 

- . . 
- holds. Now suppose also that 6 has degree 3 over 1 - a -: d .  Then, hy (! 4), 

Now recalling the definition of a singular modulus and (1.2), we deduce that 
x2 = atn, and the proof is complete. 

Example 9.lya). Let n = 3. Then and, from (9.64) and (9.65), 

which is originally due to Legendre and was rediscovered by Ramanujan ( P m  111 
[3, pp. 230,2321). With Ramanujan's substitutions, (9.58) takes the form 

Next, from Part 111 [3, p. 2371, since has degree 3 over a', we have the 
paramelrizations 

where 

f I - ~ \ ' / ~  where 0 < p < 1. It follows from (9.67) that 
u =  - (" 1 + x )  

(1 - a')B = (1 + p)(2 + p) 
Solving (9.59). we find that u = & - 1. Then solving (9.60), we find that I + 2 p  - 
x = 2 d 3  3 2 a  - - ' + &. using two differern m- 19.68) 
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a faint line has been drawn through the enuy to indicate that the entry is incorrect, 
m UZm+l 

- - 
or that Ramanujan could not prove his claim. We record In bnuy '18 the enuy m =O I +u*+'J 
Ramanujan gives it. We are unable to discern a general formula for the nth term in 
the series on the right side. Then we sketch an attempt at proving (or disproving) 
the formula. As we shall see, serious technical difficulties prevent us from utftizing 
the ideas that we used in proving Entries 76 and 77 and Entry 6 of Chapter 18 in 
Part 111. - - Lz2(t)J-, 4 (76.5) 

by Entry 16(i) of Chapter 17 (Part 111 [3, p. 1341). with x there replaced by r here. 
Entry 76 (p. 281). With the notarion (76.1). (76.2). We substitute (76.5) into the right side of (76.4) and make the change of variable 

03 I I \n /; 03 (1, rn yo = nz(1 - t)/z(t). By Entry 9(i) of Chapter 17 (Part 111 [3, p. 120]), 
- - 

C ( 2 n + l ) c o L ( ' b n + I ) y / 2 )  n=O " 2 * 5  n! '2"r .  (2n + 1)' d ~ o  = - 1 
d t  t ( l  - t)zZ(r)' 

(76.6) 

I Proof. NOW. When Yo = y ,  then 1 = x ,  say. We therefore find from (76.4) that 

1 We now evaluate the integral on the right side of (76.4) in another way. Replace and 
by -u. For brevity, set u = exp(- ~012) .  Now. 

Hence, 

= c2 
+ e-&"' + 6 

L'l -01 , dt du. 
J P J U  Ce 
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Now let c = (2n + 1) /2 ,  multiply both sides of (77.3) by (-1)"/c2. and sum on RePlaclng u by YD above, we find. from (76.6), that 
n, 0 c. n < oo. Accordingly, we find that 4 dyn I 

00 
--  - - 

(-1)" 3 
S : =  y , dxo x d l  - xo)z2(xo) ' 

n=U 1- 
1 \.. 1'71 

When yo = y, then xo = x, say. Hence, appealing to (77.7) and then replacing xo 
e(2n+l)l + e-(2n+l)r  + 6 by u,  we find that 

(-0" 1p(2~+1),/2 - ,+2n+l)r/*p dt du.  

s = Q  I 
For brevity, sets  = exp(-112). The integrand in (77.4) then becomes 0 

dxo 

by Entry 9(iii) of Chapter 17 (Part 111 13, p. 1201). Using the definition of F2 in 
(77.8), setting k + J = n, and inverting the order of summation: we find that 

x " (;I: = J c ~ c - .  ( ' ) I  , 
(77.6) 22 2 ,, ,=, (w2 

which completes the proof. 
where, for the sequel, it is more suggestive to set I = yo. 

We now apply Entry 16(x) of Chapter 17 (Part I11 [3 ,  p. 1341) in (77.6) to deduce 
that 

By using Entry 29(b) of Chapter I0 (Part 11 [2, p. 391), namely, 
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w e  are 
right side 

unable to discern 
above. 

general formula for the nth term of the series on the 
' I  

bc obtained from Entry 17(viii) of Chapter 17 (Part 111 [3, p. 1381). Thus, 

Sketch of Attempted Proof. Differentiating (76.3), or from the proof of Entry 6 (-l)'"(2m + 
of Chapter I8 (Patt 111 [3, p. 153]), for any complex number c,  we find that 2 e(2m+~,w - , = (z5(t)(5 - t)(l  - t )  - 5).  (78.5) 

m=O 

1 e 2 ~ ?  + e-2c.V - 6 "( )&  The value of the "first" sum in the integrand on the far right side of (78.4) can be 
dy2 ecr + e-CY CecY + e - ~ ~ ) 3  ' obtained from that of the "second" sum by the process of dimidiation (Part 111 [3, 

n 17Y)durs, 
which is an analogue of (77.2). After two further differentiations, 

(xu) $ (-1)"(2m + 
d4 / 1 e(2m+~)~u/2 - 1 = ( z  - I - &)(s + 6 4  + 51) - 5). (78.6) - 

d y 4 p  + e-C? 
Using (78.5) and (78.6) in (78.4), we find that 

Letting c = (2n + 1)/2, dividing both sides of (78.1) by (2n + I)', summing both 
1 f m  [do /X ~ C C I  sides on n, 0 5 n < oo, and mtegratrng, we find mat - - - 1 1 I z?(t)(l - r)(l - 51142 ddyo ~ Y I  d ~ z  dy3 

oo e2(2n+~)?.o - 76e(211+1)?0 + 230 - 76e-('h+l)?~ + e-2(2"+l)?fl by (76.6). We can make similar changes of variables for yl, yz, and y3, and we 
C (e(2t~+~)?o/z + e-(Zn+l)v~/2)5 

~ Y O  ~ Y I  dy2 4 3 .  
(78.2) 

can employ (76.6) (with yo replaced by yl , y2, and y3,) as we did above. However, 
tr=O these steps do not enable us to completely evaluate the quadruple integral in (78.7). 

AS before, set u - exp(- yo/2). The integrand in (78.2) may then be written in Thus, at this point, we terminate our discussion of this apparently deleted entry. 

the form 

u 2 n + ~  - 76u3'2n+l) + 230~s(ar+1) - 76y7(k+l) + U ~ ( 2 n + t )  10. Miscellaneous Results 
n =I) 

( I  + u ~ + ~ ) ~  

u 2 n ~ + 3  
Entry 79 (p. 172). For 0 i x c I .  suppose that 

bO 

- - , ( r n + 4 ) ( m + 3 ) ( m + 2 ) ( m + l )  ( u2"'+' . - - 7 6 .  u l ~ u  
4! \ 1 - u ~ ( ~ + "  1 - U""" ' -' 

"I =O 
-- -- 

U2m+S U2n~+7 U2m-t9 
I +239 - where 0 _< a, @ 5 n/2. Then 

1 - U2(2m+3 
de 

- 00 (- 1)" (2m + I ) ~ U ~ ' " + '  (78.3) . (79.2) - 1 1 -x3Z+Xsin2@ - 3!7rn&U 1 +2I 
m=O 
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Entry 6(iii) of Chapter 19 (Part 111 [3, p. We now apply Entry 7(xii) of Chapter 17 (Part I11 [3, p. 1 121). If 

tan ;(a + p )  = (1 + p )  tan% (79.3) (1 + Y sin2 y l s i n p  = (1 + y)siny, (80.5) 

then (79.2) holds, with x replaced by p. Thus, it only remains to show that (79.1) and we use (80.3) and (80.4). then 
and (79.3) are equivalent. In Pan I11 (3, pp. 239-240, eq. (62)j. we solved Clr.3 B 
for p in terms of sincr and sin /I and found that 

dB 

- cos .f3 - sin2 0 =.l J l - ~ s i n 2 0  

' sina(sinb - sina) 
tTy.41 

Put J;; = (1 + x sincr)/(l - x sincr). Thus, from (79.1). = (1 + Y )  

dl9 

xslncr = - = 
1 ( 1 + s i n b ) ( l - s i n a ) , ,  
(1 - sin a ) ( l  + sina)  ' 

- 
= (1 + x ) ~  

dtl 

After straightforward elementary algebra and trigonometry, we find that 

1 - s inas inp  - c o s a c o s ~  
X = condition 

sinu(sinB - sina) 
(1 +xZs in2a)s iny  = ( I  +x2)sina. 

This agrees with (79.4). and so the proot 1s complete. 
(80.6) 

Combining (80.5) and (80.6). we find that 

Entry 80 (p. 172). For 0 c x < 1, suppose that sin b - -- - ( 1  + x l Z (  1 + x2  sin2 a )  
l + s i n p  l + s i n u f  ) sin a (1 + X* sin2 a)* + &(I + x2)  sin2 ' \m. 1) --- 
I - s i n B  l - s i n ~ \  It remains to show that (80.7) is equivalent to Ramanujan's hypothesis (80.1). If 

where 0 5 a ,  /l 5 n/2. Then we substitute in (80.1) the formula for sin obtained from (80.7). we find that 
(80. I) and (80.7) are compatible, and so  the proof of ( 8 0 3  2) ccomplek 

d 0  dl9 
( l + x ) 2 ~ u J T = ~ p  1 - x  sin 0 1 - I I - (~-r)'\ sin2@ . 

(80.2) 
Entry 8 1 is one of many entries where Rarnanujan writes "nearly" to indicate 

I +x 
1 an approximation. 
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On the other hand, using Mathematics to expand the right side of (81.1). we find \ Entry 83 (p. 271). ~ e t  

that v4(-u) 
4 x = l - -  

v4(u) ' 
1 + ( 1  - tK1 - f + - p9 where 

The first four coefficients in (81.2) and (81 -3) agree, while 

and 

Thus, the fifth coefficients in (81.2) and (81.3) are remarkably close. Therefore, 

where z is defined by (76.2). Then, jor any real number n ,  

Proof. From Entries 6 and 9(i) of Chapter 17 (Part 111 [3, pp. 101, 1201). 

t4 

Ramanuian's claim has been justified. Thus, bv a chanee of variable. 

Entry 82 (p. 244). Let F(x) be defined by (76.1). Then 

Proof. From Entry 2(vii) of Chapter 17 (Part I11 [3, p. 96)), 

5 
we arrive at 

Thus, the first three coefficients in (82.2) and (82.3) agree, while 

and 
1197 

35 . 5 2  . 2 2 3  = 6.25383.. . x lo-'. 

Thus, the fourth coefticients in (82.2) and (82.3) are amazingly close, and * 
manujan's approximat~on IS imeed jasrified. 



35 gives a series transformation, reminiscent of the Poisson summation formula. 
However, Entry 35 involves the Mobius function, and, indeed, it is extremely 
unlikely that such a general transformation would exist. Numerical calculations 
demonstrate that Entries 36 and 37 are "close to being true." We conjecture that 
Rarnanujan employed approximate formulas from prime number theory that he 
considered to be more accurate than warranted (see Chapter 24 of Part IV [4]). It 
would be interesting to reconstruct Ramanujan's thinking. 

On pages 335,340, and 341 Rarnanujan makes successively more general claims 
about the behavior of partial sums of certain oscillating series. Ramanujan's claims 
are very remarkable in their explicit descriptions of the oscillations. We are not 
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aware of any theorems in the literature similar to Entry 42, which is a rigorous 
where, for n 0, 

formulat~on of Ramanujan's most general clalm. 1 b 

Beginning with Euler, many authors have writlen about the convergence of R, = --- 
(2n + I)! B2rl+~ (t  - [I]) f ( Z n i - ' ) ( ~ )  d t ,  (0.6) 

infinite exponentials 
W ~ E  &@), 0 5 n < 00, denotcs the nth Bernoulli polynomial. 

af2 . For cach nonnegative integer n ,  the rising factorial (a ) ,  is defined by 

. . rln L a1 
1 1 1  m l a [  . .  (a ) ,  : = a ( a + l ) ( a + 2 ) - . . ( a + n -  1 ) =  u. 

possible general upper bound for la, I that suffices for the convergence of iterated w) 
exponential$. However, in his third notebook, Ramanujan offers a slightly better IT C is a simple closed contour. I ( C )  denotes its interior. The residue of a function 
O P F ~ ~  larl I f (2) at a pole cr is denoted by R,. (Usually, the function f (z) is understood, and 
possible. These claims were recently proved by G. Bachman [ I ] ,  and we present so there is no ambiguity by not specifying f in the notation for a residue.) 
his elegant, difficult proofs in Section 50. 

We conclude our introduction by stating some definitions, notation, and well- In Sections 17 and 18 of Chapter 13, Ramanujan states a version of the Abel- 
known results that are needed in the sequel. Plans summation formula and some variations (Part I1 C2. m. 2 2 & 2 3 3 u  the 

Recall that the Bernoulli numbers Ell, n > 0, can be defined by the generating top of page 335, Rarnanujan offers another version of the Abel-Plana formula. A 

function rigorous proof of this formulation can be found in Henrici's book (1, p. 2741. 

M Io 

Z 
(0.1) Entry 1 (p. 335). Let q(z) be analytic for Re z 0 and suppose that either 

00 OQ 

mi d=) dx 

(0.2) is convergent. Assume furthermore that 

(3, p. 1911, uniformly in x on every finite interval, and lhat 

JO 
For any complex number 2 ,  the functional equation of ~ ( z )  is given by  itchma marsh 
1 p I 
r?  ??_]I existsfor every x > 0 and tends to 0 as t& T & ~  

((z) = 2 s i n ( f n ~ ) ( 2 n ) ~ - ' r ( l  - z)<(I - z). (0.4 

We shall need the Euler-Maclaurin summation formula (Olver [I, p. 2851). If f 
Entry 2 (p. 335). Let n be any complex number such r h r  Re n > 1. Let z" have 
ils principal value. Then. $Re x > 0, 

Proof. Let f ( t )  = 1"-'e-I". Although f ( I )  is not necessarily analytic at t = 0, 
the proof of the Abel-Plana summation f i  
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this function. We therefore find from Entry 1 that Letting N tend to m, then letting m tend to w, and using our hypotheses, we find 
w 00 (iy)n-le-l?x - (-iy)n-lerrx mat 

F k " - l e - * '  = tfl-le-lxdt + i 
e 2 n ~  - 1 d y  

k = ~  ~ ( 2 )  dz  
I- \ I 

J J / ~ J L L )  7 
= r(n)x-" + i 

e Z n ~  - 1 dy  
- 2i CC; 

-- 
(-hb - 1) - ,,x) , (q(2n + I + a )  - q(2n + I - 9 ) ) .  

Y" 
- 

' dy 
' n=u = r(n)x-" - 2 

e 2 n ~  - 1 
Upon parametrizing the two integrals above, we complete the proof. 

- cos ( i n n  - yx)  , V ., e 2 ~ ~  - 1 "" Jo The next result is a limiting case of a lemma in Section 18 of Chapter 13 (Part 
which completes the proof. 11 [2, pp. 221-2221). and so it is unnecessary to give a proof here. 

Entry 3 (p.  334). Assume that p(z) is analytic for Re z > 0. Let cr be real with Entry 4 (p. 335). Let p(z) be analyticfor Re z > 0. Assume rhat 
e 

V < la1 < I .  Suppose that 

lim Iq(x f iy)le-"? = 0,  
r+m . - 

uniformly on any finite interval in x 2 0. Suppose also that 
00 V ( X  + i y )  

exists for each nonnegative number x and tends to 0 as x t e d  to a. Assume also 
rhat the intenral below cnnveraes. Then 

exists for all x 2 0 and tends to 0 as x tends to oo. Assume rhar  he integral below 
exists. Then 

where CN.", is a positively oriented rectangle with horizontal sides passing through 
f i N and vertical sides passing through 0 and m .  We apply the residue theorem. 

cos(nz) + cos(na) = 2cos i n ( z  + a ) ]  cos ($n(z - a ) ] ,  

the integrand has simple poles at 2 = 2n + 1 f a! for each nonnegative integer n. 
Shaightforward calculations give 

q(2n + I f  9)  
R~n+~zto = rr sin(na) 

uniformly for x in any compact interval on [0, m). Assume thal 

exists for every x 2 0 and rends to 0 as x feruls to co. Then, provided that the 
integral below exists, 

tlence, by the RSldUe meorem. 
Proof. For positive integers N and m, let CN,,,, denote a positively oriented, 

2i 
(q(2n + 1 + a) - ~ ( 2 n  + 1 - a)). indented rectangle with horizontal sides passing through f i N and vertical sides I(m,  N) = - 

sm(na)  bwM a 
t > u  
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centered at the origin and lying in the left half-plane. Applying the residue theorem and with vertical sides passing through 0 and 2m. The indentations are semicircles 
F+ ., F -  S . 6 * .  . - L, ,~  ~ I I U L , , ~ ,  UI radmst,u -= t -= I ,  a t ~ j  1 , 1 s j s r n ,  
in the upper and lower half planes, respectively. Thus, observe that 

# .-, 
we find that 

where C,., = CT, U C;, is a negatively oriented circle of radius 6 and center 

Letting N tend to co. then letting rn tend to oo, and imoking our hypotheses, we 
,.. ,.. 

2 j - 1 , l  I j i m .  
Applying Cauchy's theorem. we find that 

- ,, 
Hence, using (5.2) in (5. I ) ,  we deduce that 

Entry 6 (p. 335). Let q ( z )  be analyric for Re z 2 0.  Suppose rhar Thus, from (6.1), 

hm Iq(x 3~ 1y)le '" = 0, 
p.00 

uniformly for x in any compact inrerval on [0, oo). Assume thar 

nt / 

2 C p ( 2 j  - 1) = lim 
j = l  

r-0 

Now let N tend to oo, then let m tend to oo, and use the given hypotheses. Hence, 

JO 

exists for every x 2 0 and tends to 0 as x tends to oo. Then, provided thar the 
integrals below exist, 

Since 

Proof. For positive integers N and m,  let Ci.,, denote the positively oriented 
and +i N 
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we find that We now set 

1 Po0 

,(x) {i tan (f KX) + 1 + 1 - i tan ( i n x )  } d x  

I ,  - - 
0 

Also, 

branch of zR is taken. Ubserve that ~ ( z )  has a simple pole 
at z = 2xik/B, for each nonzero integer k, and also has a singularity at z = 0. 
Except for the singularities on the imaginary axis, ~ ( z )  satisfies all the remaining 

ses cf f  f ie  Abel-mna summation theorem, Entry 1 .  However, because 
of the singularities, principal values need to be taken for the integrals appearing 
in the AM-Plana formula. We thus will proceed with the necessav calculations 
in applying Entry 1 and make [he necessary modihcations to accommodate our 
function (p(z), defined by (7.1). 

First, 
Putting (6.3) and (6.4) in (6.2), we complete the proof. e n i ( n - ~ ) / ~  e -n r (n -~ ) /2  

n -1  - - 
The first two formulas on page 269 arc remindful of the Abel-Plana summation 

xn-  I 
formula, but, in fact, a stronger version of this formula is needed, because the - - - 

- ,, (2i s in ( in (n  - 1)) +2 is in (px  - i n ( n  - 1))) 
m y  L, 

axis or in the right half-plane. x n - ~  - - 
(e'Pr - l)(e-lPx - 1) (2i C O S ( ~  n n )  - 2i COS(/?X - hnn)) 

E ~ Y  ' v'-m (1) 
- 

p - l i  
Then - - (cos(inn)(l - cos(&x)) - sin( inn)  sin(Bx)) 

1 - cos(8x) 

= xn-'i  (cos(;xn) - sin(inn)cot(f fix)).  

Thus. 

m X ~ l - ~  

- sin ( i n n )  PV - I e2nx - ] 

where PV denotes the principal value of the integral. 

as in the proof of Entry 6, except that now 

cot(fpx)  dx. c/.Zr 
, , 

Recall that (Gradshteyn and Ryzhik [1, p. 370, formula 3.41 1 ,  no. 11) 

~ ( 2 )  Hence, from (7.2) and (7.3), 
e ~ Z n r z  - 1 

is integrated over c:,,,,~,, where now the right vertical sides pass through m + 
i, where rn is a positive integer. Furthermore, the semicircular indentations of 00 x " - ~  

. .  . r i 1  < r < m Q n  - COs(~nn)r(n)(‘o + sjn('nn)P~ f -- 'p @c p. J~ eLnx - I ' 
the left vertical side, we need a semicircular indentation at the origin, with the (7.4) 
upper quartercircle being pan of c~,,,,~, and the lower quartercircle belonging We now calculate the contributions from the poles. First considera pole 2 n , k / f i ,  
?a 6- . . 

e 
N . ~ + I / T  " "N.m+l/2' 2 F > u 
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in the right half-plane. For k > 0 ,  we thus need to calculate 00 kn-I 
I \ -- 

t C6S( -~ ln )  - - 2 lim l in~k / f i+ l r  z"Idz sn & eak - 1 '  \ 1.y) 

'-+a 2niPIB-ic (ePz - l)(e-2niz - 1) Multiplying both sides of (7.9) by and rearranging, we complete the proof. 
(2nikffl + teiO)"-'ciei0d@ 

= hm (e2nik+flcexp(i0) - l)(e-27~(2rrik/,9+c exp(i0)) - 1) Entry 8 (Formula (2), p. 269). Let x z 0 and - 1 < n i 2. Then 

since ajl  = 4rr2. Second, we examine the contribution about -2niklb fork > 0. cos(f n n  + 2nx) - e-2'7x cos(ann) 
We thus need to calculate + k r r ( ~ & ) " - ~  

cosh(2rrx) - cos(2nx) 
-Znik/p+r< 

(8.1) 

lim / zn-'dz 
6-0 -21r,k/fl-ic (eoz - l)(e2"lz - 1) 

F-n Proof. We apply the Abel-Plana summation formula of Entry 1, but modifications 
are necessary because ot poles. Let 

(e-2nik.t&exp(rH) - 1 ) ( ~ 2 n r ( - 2 n i k / f i f r e x p ( i i l ) )  - I) 

n ( -2n ik /~)" - ' i  - - - 
~(~4n 'k lB - 1) 

alt/2klt- I Observe that q ( z )  has simple poles at z = x&exp((ni + 2nik)/4), 0 5 k 3. 
- (-i)n 
- (7.6) When k = 0 ,3 ,  the poles lie in the right half-plane. 

2/PL(euk - I ) '  First, a straightforward calculation shows that 

Recall that, ~n the proof ot Cntry 6, we needed to take €he difference of the integals 2itnf' cos($rn) 
over Ci, , ,  and C, ,,,. In modifying the proof of Entry 1, we need to calculate  it) - p(-it) = 

t 4  + 4x4 ' 
(8.2) 

the difference of (7.6) and (7.5). To that end. 
7 

an/2kn-1 ( - i ) n  an12kn- 1 i n  a"f2kn-' C O S ( ~ K ~ )  Second, setting r = x u  4 2 ,  we find that 
- . (7.7) 

2/jn/2(e~k - 1) + 28"/2(e"" @~"i2(~"k - 1) m 

Lastly, we examine the singularity at z = 0. Since Re n > 2, it is easy to see Ju 

that thecontributions of the two quartercircular indentations tend to 0 as their radii 
tend to 0. 

Hence, on the right side of (1. I). we must add, by (7.7), the additionalexpression 

In conclusion, by the modified form of ( l . l ) ,  (7.4). and (7.8), 

by, for example, the calculus of residues or tables (Gradshteyn and Ryzhik [I,  p. 
340, formula 3.241, no. 2)). Therefore, by (8.2) and (8.3). 

Returning to the proof of the Abel-Plana summation formula, or to the proof of 
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of the poles of Let 
zn-l zn - 1 

d z )  = - + -. 
z + x  z - x  

7 

at z = xd2exp(ni /4)  and ot 

at z = x a e x p ( - n i / 4 ) .  Denoting these residues by R' and R", respectively, we 
find that 

(X,/3ew4)n+l ienin/4(x J2y-2 
R' = - - - 

4(x&eui/4)3(e-2ni~fiexp(ni/4) - I )  4(eZnx(l-') - 1) ' 

and, by a similar calculation, 

and 

2kn 
d k )  = -* - (9.3) 

for each positive integer k. 
We now indicate thealterationsthat we mentioned above. For positive integers N 

and m, let c:,, denote the positively oriented indented rectangles with horizontal 
f ;PJ . . 

R" = 4 ( e 2 ~ ~ ( ~ + i )  - 1) ' 
through 0 and m + f The indentat- 

in in the upper and lower half-planes, respectively, and semicircles C,+ and 
m Q y  t h e w  we obtain on the right side of (1.1) an additional 1 
contribution of n > 0,  the limits, as E tends to 0, of the integrals aro"nd these &arterc&les equal 

e n i ~ ~ / 4  e-nin/4 0. The union of C: and C; is a negatively oriented circle of radius c centered at x. 
2ni(R1 - R") = :(xh)"-" (.. ,. i ,  . : ,  V & w n h t l l n  . . L \ e * ,  8 , , e " . " - 1 , ' 6  . , 3 ,  

- 

formula equal to 
2e2"" cos(2nx + i n n )  - 2 cos( inn)  

1La 
zn-ldz I' zn-ldz 

;z6Jc- (e-*"'~ - 1 )(z - X) jc- (e2ni~ - I )(z - x)  

= - lirn (X + ce'")"-'cie'ed~ 
cosh(2nx) - cos(2nx) 

Hence, using @.$Emk@.5j m a (1.1 1, (8.1) @ 

complete the proof. 
- lxi1n-l - - ((i cot(nx) - I )  + (i cot(nx) + I ) )  

- - - K x ~ ~ - ~  cot(nx). 

Hence, using (9.2H9.4) in our modified Abel-Plana summation f- 
find that 

dz - nxn-' cot(nx) 
k = l  k - z - x  
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= nxn-I tan($rn). (9.6) - n X n - ~  I 'n n x r t - l  -- (-1y . +  * 

Putting (9.6) in (9.5), we readily deduce (9.1) to complete the proof. 
eLar - 1 em' - 1 

- 2nxn-' cos(;nn) 
I A  x h~ n a m ,  . . en8 let 0 

- 
< n < 1. Then (10.5) 

Using (10.2&(10.5) in our modified Abel-Plana summation formula and divid- 
ing both sides by 2, we anive at (10.1) to complete the proof. 

m zndz + 2 s i n ( i n n ) ~ V  1 (eirX - 1)(z2 - x2) 
Entry 11 (Formula (21, p. 268). Let p(z) be an entirefuncn'on. Ler CN denote a . . 
oosrtwelv or  *;A/ affsr 
its vertical sides passing through 2N + 1 and -2N, where N is a positive integer. 
Assume that, for ,3 0, 

Proof. As in the previous proof, we apply the ~bel-Plana summation formula 
under appropriate modifications. 

I ~t Jim _ .  I ( I  1.1) 
~ ) C ( Z ) V ( Z ) ( ~ A ~ ) - ~ ~ ~  = 

N+oo JCN zI'(qz + 1 1  sln(;nz) 
? t t - I  zn - l  

d z )  = -+ -. 
z + l x  z - l x  where <(z) denotes the Riemann zeta-funcfion. Then, ifa, B z 0 and C@ = n 2 ,  

Then, by elementary calculations, 

and 

.. . 

where B,, j 2 0, denotes the jth Bernoulli number. 

SL" 

d k )  = - (10.3) k2 + x 2 '  
Proof. We integrate 

for each positive integer k. Also (Gradshteyn and Ryzhik [1, p. 340, formula 3.241, 
no. 2] ) ,  for 0 < n < 1, 

around the contour CN. Observe that f ( 2 )  has simple poles at z = 1, because 
((z) has a simple pole at 7 = 1, at z = 2n, for each nonnegative integer n. and at - - .  

z = -2 i  - I, for each nonne-dve k e r  . N a t e t h a t a t 7  7n - 
application, we take quartercircular indentations around the origin in the two rect- when n is a negative integer, because ((2) has a simple zero at 7 = 2n (Titchrnarsh 
angular contours. By the same argument as in the proof of Entry 9, we get contri- [3, P- 191). We next calculate the residues. 

First. 

of radius E ,  C: and C;, in the right half-plane about the poles z = f i x ,  respec- 
tively. On the "right side" of the Abel-Plana summation formula, we then obtain & d l )  RI = - 

2JB ' 
(1 1.3) 

contributions of 

-" ( - i x  + te'e)n-lEiei0d8 + lim 
r - ' J O  

/ d  :!-LK+'ean(LBU 
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by (0.2). Fourth, using (0.3), we find that where n is apositive odd integer, and B, , j > 0, denotes the jth Bernoulli number. 
1 ? c ? n  - 
~ . > > - J P  f , Y ,  

( - l ) J + ' n ~ ( - 2 j  - l)(p(-2j - 1)(2@)~j+' agree with (13.1). R - 2 j - ~  = 
2(2 i ) !  I-(- j + 4) . a ,  . " '. 

(- 1 ) J f i B 2 j + z ~ ( - 2 j  - l)(- j + a)(- j + - - .  (- i ) ( 2 ~ ~ ) ~ ' + '  
- - 2931. 

2(2 j)! (2 j + 2) Ramanujan writes the next entry in terms of a function (P "defined" by 
- 45&;+2bo(-f~ - ljP"!' - (1 1.6) " 

(-l)"(x)n 
2 ( j  + I)! r t z )  = 

zn . (14.1) 

the residue theorem, using our calculations (1 1 .3H 1 1.6), letting 
n =O 

N tend to oo, and employing (11.1), we find that This series does not converge for any finite value of z, and so (p is not well defined. 
We will therefore find a function 9 which has an asymptotic expansion, as z tends 

&id[) 2 h j t t d - 2 j  - 1)BJ+"' 
-?y(O)+- - = 0. to co, given by (14.1). Several functions may have the same asymptotic expansion, 

2 J B  ,=, 2n! /Jn j=o 
2 ( j  + I)! but the function 9 defined below will be shown to satisfy Ramanujan's claim. 

Letting n = j + 1 in the latter sum, multiplying both sides by -201-'I4, using the 
-.>Q 

hypothesis 4 = n 2 ,  and rearranging, we complete the proof of (1 1.2). r (z )  := (pk, x) := z ( 1 4.2) 

Entry 12 (Formula (S), p. 269). I f  n is any positive integer, then where x is any complex number. Now, 

Applying Watson's Lemma (Olver [ 1, p. 7 1 I), we find that, as z tends to oo, 
- -  

Entry 12 was communicated in Uamanujm's [16, p. 
"4 bv C. T. h e c e  111 in 1928. The first proof in print, however, 

d z > -  . (-l)^(x)n 

appears to be by M. B. Rao and M. V. Aiyar [ I ]  about four or five years earlier. E. n=0 ZR 

Grosswald [2] and the author [61 have also found proofs. which agrees with (14.1). 

Entry 13 (p. 273). Ifn is an odd positive integer, then 

where 

Entry 14 (Formula (I), p. 276). Let y(z, x )  = (p(z) be defined by (14.2). Then 
for 0 < Re a c I ,  and any complex number x ,  

Proof. Using (14.2) and inverting the order of summation and integration by 
absolute convergence. we find that 

v20 = - V 2 4 =  
2310' 1 47 

Proof. This entry is a sequel to Enmes 25(i), (ii) of Chapter 14 (Part 11 [2, P. 
293]), where only the first two cases are presented. All six evaluations above can 
be deduced from the general tormula (rart 11 p , p . 29' 3, q . (~2. '- 3jl) 
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Thus, (14.3) is equivalent to  he formula 

We now temporarily add the restriction, Re x < 0. Then 

formulas in this series have no relation to these five formulas. All five formulas 
involve the Bernoulli numbers B,. For each of the next five entries, we precisely 
quote Ramanujan, even though his convention for Bernoulli numbers is different 
from ours in (0.1). We then determine those values of n for which the proposed 
claim might have validity. For each formula, there is a sequence of values of n for 
which the result is classical; in most cases, the theorem can be found elsewhere in 
Ramanujan's notebooks. After discussing the classical case. wex&mdakBa- 
manujan's claim for those values of n for which Ramanujan's claim is completely 
new. We lastly, in each case, prove the new theorem. 

Proofs of Entries 15-19 were first proved in a paper with P. B a k  [ 11 

by a well-known representation for { ( s )  (Titchmarsh 13, p. 181). Employing the 
runcnonn 5 tz) 111 ( l W ,  . . 
that we are required to prove that 

"where 2. 5, 10, 13, . . . are sum of squares of numbers that are prime lo each 
other." 

where R e x  < 0. In Ramanujan's convention all the even indexed Bern-= . . 
Using the generating function (0.1) for the Bernoulli numbers and lnvenlng fhe in contrast to the usual definition in (O.l), and so we have inserted absolute value 

iQr 
D 

R e x  i OandO i R e a  < 1, It appears to be difficult to discern the pattern in the numerators on the right side 

-I-x  f% Bn(2natYd a . ,.-.. - .  . - .  . 
of (15.1), but a natural pattern will emerge in the proof below. If n is a positive 

I ,  a, = u, ma so (13 .  I )  cannot be valld, as the lctt s ~ d e  ot 5 n! (15.1) is positive. Numerical calculations indicate that (15.1) is apparently false 

- - 
if n = I, even if we assume that BI = i, instead of - from (0. I). We thus 
-jm appatendy intends n to be an even posltlve Integer. 

Letn = 4m + 2, where m is apositive integer. Then (15.1) reduces to the claim 
- 1 n a  
- 

17aU13a - .y) 
w 4 X I  #=I \"'.I.\ (15.2) 

1 nu " (- I)"-' 5(2n)a2" - - -- +-+C Z n - x  
2x 2(x - 1) ,,=I Indeed, (1 5.2) is correct. To the best of our knowledge, (1 5.2) was first proved by 

, 7 )  u p  ( 1 4 6 )  far 0 < R e a  < 1 and 
J. W. L. Glaisher [ l ]  in 1889, although an equivalent formulation was established 

. ,. - m 1881 'b A. Hunvitz 111, in hrs thesis. Moreover, (15.2) is found in Section ; ; : ; - ' 6 y t i c  continuation, we find that ( 1  4.3) holds for all Complex 
13 of Chapter 14 in Ramanujan's second notebook [9, p. 1711. For proofs of other 

x .  generalizations of (15.2) and for references to the many proofs of (15.2) that can 
L r 

L. I see our paper [67 and book IZ, pp. 26 1-2623. on pages 277-278, Ramanujan records five enigmatic f o m u k  all of the same In concluding our discussion of (15.1), we remark that the instances when 
type and each apparently arising from Eisenstein series. 'lk?se fol?Tlulas are llurn* n = O(mod4) appear to be the only ones remaining for which ( 1  5.1) may be 
h 

C ImePest, lor In mese cases a curlous 
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infinite series appears on the right side of (15.1), and there are no comparable 
results in the literature. 

Before we state Theorem 15.1 it is necessary to provide a discussion about 
solulions to 

Proof. First, 

solutions of (15.3) into three classes. First, suppose that c # d and cd # 0. Then 
each solution (c, d )  of (15.3) generates eight solutions, namely, 

f (c, d), c ,  d f (d, c), f (d, PC). 

The case c = d = 1 generates four solutions, namely, 

+ ( I .  1). &(I. - 1 ) .  (ii) 

There is one further case, namely, c = 1, d = 0, which generates the four solutions 

where uk(n)  = Ed,,, dk.  Now if n is an integer with n >_ 2, and if Im(r) > 0 
(Rankin [ I ,  p. 194, eq. (6.1.4)]), 

where the prime I on the summation sign indicates that the tern with c = d = 0 
is omitted from the summation. Thus, by (15.5) and (15.6). 

g k4"-1 B4m B4m g, 
- 1 

t e2xk - 1 (ci + d)4m ' (15.77 
k=l  8m lCirn .,kW 

(r.d)=l 
... 
(PI Let tan-' z denote the pnnc~pal branch of the inverse tangent relation. i.e.. 

We shall say that the solutions (c l ,  d l )  and (c2, dz) of (15.3) are distinct if they 

set of four solutions in (ii), or the same set of four solutions in (iii). 
Recall that solutions (c, d )  of (15.3) exist if and only if the prime factors of L 

a r e ~ ~ + f , ~  
the first power (1. Nivcn, H. S. Zuckerman, and H. L. Montgomery [ l ,  p. 1641). 
Although not needed in the sequel, wc also recall (C. H. Hardy and E. M. Wright 
[I,  pp. 241-2421; Niven, Zuckerman, and Montgomery [I,  p. 1671) that if r(L) 
denotes the number of representations of e as a sum of two squares, then 

where e is defined by (1 5.3). Since the sum on the right side of (1 5.7) converges 
absolutely, we can rearrange the terms in any order. So, we group terms according 
to increasing values of l .  

, . , , . . . 
111-(rn), described prior to the 

statement ofTheorem 15.1. For fixed c, d ,  with c, d > 0, the eight terms in (15.7) 
for case (i) equal, by (15.8), 

2 2 2 + + 2 + (ci + d)4m (-ci + d)4m (di + c ) ~  (-di + c ) ~  

Of course, in (15.3), we have imposed the restriction gcd(c, d )  = 1. = 4Re + 
(ci +Id)& (di ; c ) ~  

Theorem 15.1. Let m he u posrtive Integer. I nen 

= 4L-2m (COS (4m tan-' (c/d)) + cos (4m tan-' (djc)) 

= 81-2" cos (4m tan-' (cld)) , (15.9) 

where the sum on the right side of (15.4) is over all integers C > 2 representable 
by (15.3), and where for each l ,  the sum is ulso over all distinct solutions (c, d )  

We now show that 

Observe that the four terms in curly brackets on the right sidc of (15.1) arise 
from fl5.4) wneen c , d  = 1. 1: 2.1; 3 .  1.3.2.  ~~~~b. 



430 Rarnanujan's Notebooks, Part V 37. Infinite Series 43 1 

Observe that For other generalizations of (16.2). see our paper [7] and book [2, pp. 294-2951. 
c  c - d  If n = 0 (mod 4), (16.1) is new, and we state a precise version of this in the 
- + - 
d  c + d  = I ,  next theorem. 

tan (tad (;) + m-I (S)) = , - -  c f c - d \  - 

d \ c + d )  Theorem 16.1. Let m be a positive integer. Then 

Hence, 
- L e k ~  - e-'" 

k= l  

2 cos (4m tan-' (3)) \ 
e2rn eight rerms in case (i) equals (16.3) 

8(- 1)'" e-2m cos 4m tan-' - ( (3). 
In case (n), the sum ot the tour t ems  equals 

where the sum is over all even positive integers e > 2 that can be represented by 
(15.3), and, for each fired e, the sum is also over all distinct odd solulions (c ,  d )  

4(- 1)" 
?zm ' (15.14) Note that the second and third summands on the right side of (16.1) arise from 

me terms w ~ t h  c  = 3, d = 1 and c = 5 ,  d  = 1 ,  respectwely, ~n (16.3). 
In case (iii), the sum of the four tems equals 

4. (15.15) Proof. First, 

Using (15.13)-(15.15) in (15.7). we deduce (15.4). 

7 ,  dl" n l d  d 

(16.1) Second, we repeat the argument made in the proof of Theorem 15.1 with the 
added stipulation that the indices in the Eisenstein series be odd. We thus find that 

As before, it appears that Ramanujan intends n to be an even positive integer. 
If n = 4m + 2, where m is a positive integer, ( 16.1 ) reduces to the evaluation 

sinh(kn) - -  
,-- , 

k= l 

This result is due to A. Cauchy [I,  p. 3621 and is also found in Glaisher's paper 
l p e r  [7& 

1 2 cos (4m tan-' (s)) 
= 4(-1)" 

e2m 
, (16.6) 

(c.d)=l I 

where the summation on the right side of (16.6) is over all even t' > 2 that are 
representableby (15.3), and where, for each fixed t', the sum is also over all distinct 

p. 3371 for a list of several authors. If n = 2, (16.1) and (16.2) are false. In fact, Third, we need an analogue of (15.6). where in the Eisenstein series on the right 

( - l ) k k  1 side of (15.6) we sum only over odd c and d .  To that end, 
-- - 

k = ~  sinh(kn) 4 n '  2 =e 2 1 

a result also due to Cauchy (1, p. 3611. See the author's paper 17, p. 3371 for F,d=-OO + 4% r=l c,d=-co ( C ~ T  .t dr)2n 
~ . . d  odd (c-.d)=l 

c,d Odd 
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and 

w 
- - , 2-2", I where - 

~ . d = - ~  (CZ + dl2" .  (16.7) 1 ,  if k  is even, 

rdk, = [ if 41kk 
otherwise. 

(( . d k l  
c.d odd 

x2(k) = 

I Then Since. from (0.2) and ( 16.9), 

, 0, if k is odd, 

1 

c.d odd we conclude from (16.7) and (16.10) that 

where 

m(&~,+&/2)(1+2 - 2 n )  , 

a?. ! ! k ! .  4L 
(16.9) 

- 
we deduce from (16.8) that 

- 
-(z2" + l h t t - l ( k / 2 )  (16.12) 

00 - + f k a z n - l i k / 4  + 02,-~(kj ,  i f k  = 0 (mod 4). c (c,  ; ,)21z 
c.d=-a0 
c.d oJJ 

We now return to the definition of f2,,-I ( k )  given in (16.5) and relate it to the 
definition of hZn-] ( k )  above. 

M First suppose that k is odd. Then k/d  is odd for all divisors d  of k. Hence, 
2{(2n)  + Dzn 1 ~ z , ~ - ~ ( k ) e ~ ~ ~ ~  

I=I fz,,-l(k) = C ( - l ) d - 1 d 2 n - 1  = C d Z n - I  = azn-1 (k) = hz,-l (k), 
..,. rn d l  

by (16.12). 
Second, suppose that k  -- 2  (mod 4 ) .  If k / d  is odd, then d  is even. Thus, 

00 

- - , fb - , (k )  = - d2"- 1 
rL1 

k= 1 dlk 
d even 

00 - c {xz(klaa, ! @ / 2 ) ! 1  + 2 - I " !  Write d  = 2 d l .  Then - 
k= I f h - l ( k )  = - x ( ~ d ~ ) ~ - '  = -22fr-1 d v - l  = -22n-1a2"-~ ( k / 2 ) .  

- X ~ ( ~ ) U * ~ - I  ( k / 4 )  - 02"- I (k)2-2") e x J k r ,  W I  IP  4 IW 
(16 1%) 
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Since k = 2 (mod 4). it follows from the standard product formula for o,(k) Entry 17 (Formula (14), p. 278). 

Thus, by (16.12). 

h 2 ,  (k) = (-z2" - 1 + 2*"-' + I)CQ,,-~ (k/2) = -22"-1a1,1- 1 (k/2) = f 2 , , - 1  (k), 

by (16.13). 
Third, suppose that k = 0 (mod 4). Then, 

= - d2"-' + d2"-' = I (k) + UZ,~- (k/2). 
0 c i l j k  

As before, Rarnanujan evidently intends n to be even. Thus, set n = 2m. If 
m $0 (mod 3) and m > 1. then 

This result was apparently first established in print by M. B. Rao and M. V. Aiyar 
in papers published in 1923-1924 [l]. [21. Thus. even the special case (17.2) was 

~ - - -  . ,  

Define the integer a 5 2 by 2" Ilk. Then by the aforementioned product formula 
first proved by Ramanujan, although he never published a See also Berndt's 

(I \  paper [6,  p. 157, Prop. 2.81, which also contains some generalizations of (17.2). 
"',,-I \'.,, If m = I ,  (17.1) and (17.2) reduce to the claim 

--. . . 

Now (17.3) is false. In fact (Berndt [6, p. 159, Prop. 2.1 3]), 
M . .& !. 

On the other hand, from (1 6.12), when k - 0 (mod 4), = -- I + L ,  
k 24 k& 

which was also first established by Rao and Aiyar [I]. 
Thus, it remains to prove (17.1) for n = 0 (mod 6). 
Before stating Theorem 17.1, we need to offer some remarks about the solutions 

of 

4'- '72 - ,$ +&, . , -  - 
We consider three cases. 

First, suppose that c # d ,  cd # 0, and that (2,l) docs not appear in the list 
mmediately below. Then each solution (c, d) generates 12 solutions, namely, 

by (16.14). (1) 
In conclusion, for all k we have shown that hZn-l (k) = fzn- 1 (k). Using this *(c, d) ,  f (d, c), f (c-d, c), f (c, c-d), f ( d , d - c ) ,  f (d -c,d).  

fact in (16.1 I), setting r = i and n = 2m, and combining (16.1 1) with (16.4). we Second, for .!? = 3, there are only six solutions, because, for example, if c = 
m a  mat a .  - & d - 1, then c - d = d ,  and SO (c, d)  and (c,  c - d )  are not distinct. The six 

solutions are 

(111 1 +11.7\, -,-, - - . 
Third, for e = 1, there are again only six solutions, namely, 

and (16.15). we complete the proof. (iii) + ~ ( 1 , 0 ) ~  f (0, I). *(I,  1). 
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cd . . 
are not both simultaneously in any of the three solution sets given in cases (i)-(iii) value in case (i). This sum of 12 terms equals 
above. 

Those integers t that can be represented by (17.4) have the representation 
2 2 
& + ,. .. + 2 

(CW + d)um (dm + C y  ( (c  - d ) w  + c p  

where a = 0 or I, the primes p, are distinct and have the form 3 k j  + 1, and a, is Observe that 
a positive integer, 1 5 j 5 r (Niven, Zuckerman, and Montgomery [I,  p. 1761). 

cJS d J S  +- 
number of integral solutions to t = cZ - cd + d 2 ,  then by a theorem of Dirichlet ) + tan-' (g)) = 2 d - c  2 - d  =-a. 
[ I ] ,  3cd 

1 - 
(2d - c)(2c - d )  

r ( 4  = 6 ( d ~ . d O  - d2.3(0) ,  
Thus, 

where d, .3 ( t ) ,  j = 1,2, denotes the number of divisors of .! of the €om 3k + j. 
n 

= -- + jn, 
Theorem 17.1. Let m be a positive integer. Then 3 

t4 (- ,)k- I k h -  1 
Bhnl Bhm for some integer j. Hence, = - + (-1)"- 

e n  C= I 6m 4m arg(cw + d)6m + arg(dw + c)~"' = 2kn, 

1 
for some integer k .  Therefore, ( c ~ + d ) - ~  and ( d ~ + c ) - ~  are conjugates. Using 
(17.4) and (17.7), we find that the sum (17.8) equals 

0 . 7  
t?. - I 

where, for each fired e ,  the sum is also over all distinct solutions (c ,  d )  of ( I  7.4). 

9 .  L K I / ~ ) ,  

)) + cos (bn tan-' ( (C - dl& 
c + d  

+ cos (6rn tan-' ( ( d  ;:1;/S))} . ( 1  7.9) 
. .  . 

By a calculation similar to one above, we find that 
XI-t  

.,At, 

(CW + = e3#' exp (1 7.7)  

for some integer j. Hence, the sum in (1 7.9) equals 
where .! is given by (17.4). We shall group terms in (17.6) according to increasing 
values of t .  This rearrangement is justified by the absolute convergence of the 

1 2 t - S m  (6mlno-, ( -- cJJ \ \  
double senes In ( T I . 0 ) .  \ 2d - c 

( 1 7 - I  



438 Ramanujan's Notebooks, Part V 
37. Infinite Series 439 

ÎnrnPntlNows that Differentiate both sides with respect to r a total of 2n - 1 times to obtain, after 
some rearrangement. 

d + c  R 

\ I 

)=-%+jn, 00 

v'%d - C) (-])k(2k + 1)2n-le~ir(2k+1)/2 

6(-  I)" 3 - j m .  (17.12) M 01 

x F ; ( - l ) i + k ( 2 k  + 1)2n-lenf(2j-tl)(2k+I)r/2 

F~~ case (iii), an easy argument shows that the six terms total J=O k=0 

6 (17.13) 
2 " ~  (- 1)1+~-1 

&;i - !1n-I (7~ - ])I - r ' - 
' I '  \n I 5 ,-ern ( (2 j  + l ) r  + 2k - 1)2n(18.1) 

Using (17.11)-(17.13) in (17.61, we find that 
Note that the summands (-  I ) i fk - ' l ( (2 j  + 1)r + 2k - 1)'" in (18.1) are invariant 

- -- - upon the replacement of j by - j - I and k by -k + 1. We also observe that the 
1.- 1 double sum on the left side of ( 1  8. I )  can be rewritten in terms of Thus, we 

may rewrite (18.1) in the form 
00 

C(- 1)'cr2,-1(2r + ~ ) e " ' ( ~ ' + ' ) ~ ' ~  
r 4 

he sum is over all e 2 7 that can be represented by (17.4), and where, w h e t  (- ~) j+k  
for fixed l ,  the sum is also over all distinct solutions of i 1 7 . v  
(17.5) now follows upon simplifying (17.14). 

( ( 2 j  + 1)s + 2 k  + 
,-, 7" 

- 
Formulas (10) and (12) arise from a different Eisenstein series. 

- 1 2-2n )((2n) 

by deriving an analogue of (15.6). An alternate proof may be obtained by using 
g n  series of level 4 (Schoeneberg [I ,  pp. 154-1 571). 

M (-])]+A 
X 

Lemma 18.1. Ler Im s > 0, and let n be a positive integer exceeding I. Then Upon using Euler's formula (0.2), we complete the proof. 

Entry 18 (Formula (lo), p. 278). 



440 Ramanujan's Notebooks, Part V 37. Infinite Series 441 

1 that 

e (-llk(2k + l)h-L 
= 0. 

k =0 cosh ((2k + l )n/2]  

This result was first proved by Cauchy [ l ,  pp. 313, 3621. Ramanujan (21, [lo, 
p. 3261 offered (18.3) as a problem to the Journal ofrhe Indian Mathematical 
Society. In Section 14 of Chapter 14 in his second notebook [9], Ramanujan 
recorded (18.3) as a corollary of a beautiful, more general theorem (Part I1 (2, p. 
2621). For references to the many proofs of (18.3) and statements and proofs of 
more general theorems, see the author's paper [6, pp. 176-1781 and book [2, pp. 
261-2621. 

The next theorem gives a precise version of (1 8.2) when n = 2 (mod 4). 

Theorem 18.1. If m is a posilive integer, then 

by Lemma 18.1 with t = i and n = 2m + I .  The sum on the right side of (18.5) is 
similar to the Eisenstein series in (16.6). The only differences are that the power 
of (ci + d) is 4m + 2 instead of 4m, and that the series above contains the extra 
factor of (- 1)[E+d)/2 in its summands. 

We now consider cases (i)-(ii), as we did in the proof of Theorem 15.1. 
The sum of the eight terms in case (i) equals 

- - 4i(- ~ ) " ‘ + ~ ' / ~ l - ~ ~ - ~ ~ m  (exp (-i(4m + 2) tanW1(c/d)) 

- I  ( A  ,*,\ 1 
c., 

- 4i(- l)(c+d)/2e-2111-1 - - (sin ((4m + 2) tan-'(cld)) 

1 + sin ((4m + 2 )  tan-' (dlc))} 
j G i - 2 C  € pm+l 

(18.4) - - - 8i(-l)(c+d)/2e-Zm-I sin ((4m + 2) tan-'(cld)) , 

where the summarinn on the right side of(18.4) is over all even positive integers by (15.10). Using (15.12), we find that 
t > 2 that are representable by (15.3), and where, forfied e, the sum is also over 
all distinct pairs (c,  d) sarisfying (15.3). - 1  ( c  - d \ )  

\ c + d l j '  

nnght side IS over an evcn positive integers e > 2 that 
- - i2h+2 h + 2  - (2 - (18.5) can be represented by (15.3h and where, for each fixed O, the sum is also over all 

distinct solutions (c, d )  of (15.3). The theorem now follows after a small amount 
(c.d)= 1 

d odd 3 
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Proof. By a calculation like that in (18.5) and by Lemma 18.1 with 7 = iJ?,  we Entry 19 (Formula (12), p. 278). 

2 cos (n tan-I (&/2)) 
- . . .  , 

/A 12 (19.1) 

R, 2 (-1 \(c+d)/2 

As before, we assume that Ramanujan intended n to be an even positive integer. = - i2m(2fm - 1 ) s  (19.6) 
If n = 6m, where m is a positive integer, then we deduce from (19.1) that 8m c,d&m ( c i a  + 

. 

(c.d)=l 
'.,d odd 

( - ( k  + I ) "  = 
I 

(19.2) 
r I  Now, 

L=O cosh ( ( 2 k  + l ) n d 3 / 2 t  
(ci& + d)-h = e-"' exp ( -2mi t a n - ' ( c a / d ) )  , (19.7) 

The evaluation (19.2) was first achieved by Cauchy [I ,  p. 3 171. Ramanujan re- --.. ,.- 
corded (19.4 as part or Entry q u i )  or ~ n a p ~ r  17 of nls-m acco ' g to increasing values of &. 
two proofs of (19.2), see the author's paper [7, Corollary 7.61 and book 13, pp. The sum of the four terms arising from (19.4) equals, by (19.7), 
14&141]. For references to other proofs, generalizations of (19.2). and further 

w I \ ( - c + ~ w z  
results of t h ~ s  sort, see the last two cited references. 

Before stating Theorem 19.1, we need to say a few words about solutions to 

- (-l)(c+4/2 
9 - - 41 Im 

Each solurion i c ,  a)  of (p, ( ( c i a  + d ) e )  

- 
(19.4) 

- -4(- ~ ) ( ~ + ~ l ~ e - ~  sin (Zm tan-l(c,h/d)). 
c d f (-c, 4. (19.8) 

We shall say that ( q ,  d l )  and (c2, d2) are distinct solutions to (19.3) if they Thus, frorn (19.6) and (19.8), we complete the proof of Theorem 19.1. 
belong to different sets of four solutions given by (19.4). We remark that the 
number of positive odd solutions (c, d) to 4n = 3c2 + d2,  where n is odd, equals 
d~.n(n) - d2.dn) (L. K. Hua [ I ,  P. 3091). 

C that h e  uigonomeuic sums on the right 
sides have quite different shapes. The first three terms in (19.1) evidently arise 
frorn the values c, d = 1, 1 ; 1.3; 1 ,5,  respectively. However, we note that 28 has 

sy calculations snow that the 
first two terms on the right side of (19.1) agree with the first two terms on the 

(-1)~(2k + I ) ~ ' ~ - '  right side of (19.5). However, there is a discrepancy between the third terms. This 
MI cosh 1 (2k + l ) n & ? )  discrepancy exists if we take either term arising from the two representations of 

28, or if we take the sum of the two terms, from our sum (1 9 5). 
(- 1 )(c+d)12 sin (2m tan-.' (cfi/d)) We shall now establish an alternative representation for the sum on the right 

B2nr = -(Pm - 1)- c side of (19.5). This will give a rrsult which is "close" to that of Ramanujan and 
2m e even (C/4Im (19.5) perhaps indicate where Ramanujan erred. An elementary calculation W w s  thac 

where the sum on the right side of(l9.5) is  over all even positive inregers e which 
can he represented by (19.3), a d  where, for eachjxed e ,  the sum is also over all 
distrnct soiurions (c,d) of( M . 3 j . 
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and so Ramanujan's statement of Entry 20 does not contain an equality sign. 
Kamanujan next offers two puzzhng transformations for doubly exponential 

series. We shall state them exactly as Ramanujan wrote them and then reformulate 
them. 

for some integer' k. Thus, If a@ = 27r. then 

cos ( ) sin (h tan-' (<:+LC')) 

Thus, we obtain "ha l f  of what Kamanujan probably L, d - 

1 ,  1; 1,3; 1,5,  the first term on the far right side of (19.9) yields precisely the 
trigonometric functions given by Ramanujan in (19.1), except for an additional 
factor of 2 in the second and thlrd terms in 09.1). For c = d = i ,  ti~b a d  

199) vanishes. F a  c. d = 1. 3, a simple calculation 

shows that the first and second terms on the far right side of (19.9) are equal, while 
for c, d = 1,5, the second term does not equal the first term. 

Entry 20 (Formula (15), p. 278). I f n  is a positive integer, then 

where B, , j 2 0,  denotes the j th Bernoulli number. 

where 

R n 2 
w(B) = cos B l o g P - @ - - - B + . . .  . (21.2) 

@ sinh(nb) n 4 1 . 2 8  

Second, if rra = n/2 ,  then 

where 

In (21.1), y &notes Euler's constant, and, in (21.2) and (21.4), B,, j 2 0, 
th B 

all even indexed Bernoulli numbers are positive. - .  
'I'he dehnltions of q ( p )  and p(p) glven In (21.2) and (Z1.4), respect~vely, are 

certainly enigmatic. Appearing in the arguments of the trigonometric functions 
are apparently asymptotic series as fl tends to oo. Thus. the definitions of q(B) 
and @ ( p )  are imprecise, and so Kamanujan's claims are unclear. Nonetheless, 
we shall show that (21.1) and (21.3) are correct, if (21.2) and (21.4) are properly 
interpreted. 

'I'he work on Entry 21 wh~ch fonows was done jointly with J. L. Hafner [21. 
We begin by defining functions G(B) and B(@) by 

hf. We shall easily show that Entry 20 is equivalent to a result of the author Then (Whittaker and Watson [ I ,  pp. 252-2531, as p tends to m, 
(6, p. 163, Cor. 2.221, namely, 

02 k6n-1 
T-' n q .  - k6" - -- (20.1) B6r 

k k x J j  - 1 ' 12n sin2(knp) 12n' k (-1) e and 

where is a positive integer and p = exp(2ni/3). By a straightforward cakula* 
I 1 

G(B) .- 1 + 139 - 57 1 
tion, ... 

12ib 2881y2 51840(ip)3 2488320pQ (r1.6) 
sin2(knp) = 1 2 ( 1 - cos(2nkp)) = i (1  - (-llk cosh(kn./?)). 

. . Ramanujan less explicitly gives thc asymptotic expansion for B(B) in the w u -  
Using <21.2) (21.4). 
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We now state rigorous formulations of (21.1) and (21.3). and then immediately 
show that Ramanujan's aforementioned claims are consequences. 

Entry 21 (Formulas (4), (S), p. 279). Let n ,  a, and B be positive with a/? = 2n. 
Then (21.1) holds, where 

Thus, (21.2) and (21.7) are in agreement. The argument showing that (21.4) and 
71. 

P m f s  of (21.1) and (21.7). First, 

Thus, the proposed identity may be written in the equivalent form 

us /? tends to 00. k = l  k= l - - -.-.  ., . ~ e t  n ,  a, and p beposltive wim ap = nl~. lnen ( r r . ~ )  no~as, wnere second, we apply the Poisson summation formula (~~tchmarsh 12, p, tCQ to Ole 
function 

Re {n-'ar(iB + 1 ) )  
(71 UI) r 

e - 70-li - 1 
- - 

m 

f (&-. - 1) + (,-.C + e-n.-'a - I )  
k = l  / 

m 

(21.11) 
+ - /G ,,, I B 

cos p log - - p + j ae ' - "  - 1 
\ n Comparing (21.9) and (21.1 I), we see that i t  remains to prove that 

B ,, - - (2L3) - 00 ,-m 
n " 4 ) ( 1 2 , 9 '  j j '  -Y - logn + 2)dkB)  = f ( x )  cos(kj3x) d x .  

k=l 
as ,tl tends to oo. (21.12) 

Observe from (21.10) that f (x) is even. Setting u = e x ,  we find that 
We first show that Ramanujan's definitions (21.2) and (21.4) are compatible , oo 

with the far right sides of (2 1.7) and (21.8), respectively. As B tends to m, 

B II ,/3 lop - - .6 - - - B ( B )  - n 
U 
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Since (Part I [ 1 ,  p. 1031) 

say. Setting t = l / u  in Ir, we dcduce that I:, = - I ! .  tlemc+ 

e-"" sin@ log u )  du 

we find that 
Hence, I = J (p) = (p(P), by (2 1.7). This compleles the proof of (2 1.1). 

Lastlv. from (21.5). 

Using (21.13) in (21.12). we find that it suffices to prove that 
- - p e - n f i / 2 h  - [ p M b  log (B ,n ) - f i )~ (~ , \  

00 00 w 

= f(x)cos(kBx)dx. 
I 

(21.14) v a 
k= I ?Ei Jo  Hence, the second equality in (21.7) follows, and the asymptotic forrnula follows 

Set 

- By (z1.14), lt now surhces to prove fhat I 
- .  - @) = (piF), where (p(F) is ciefined by 

(21.7). Letting u = ex,  we find that 

by using (21.6). 

Proofs of (21.3) and (21.8). First, 

Integrating by parts, we find that Thus, the proposed identity (21 3) can bc recast in the form 
1 

e-"' - l e - " l u  
\ 

sin(b log u) d u  
u2 

n / f m  - - - e-" sin(@ log u )  d u  - - sm(p log U )  du 
20 0 0  1 u2 

('71.13 
Next, we apply the Poisson summation formula for Fourier sine transforms 

(Tirchmarsh (2, p. 661) to the function 
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= f (-I)* lw /(x) sin((2k + I)px) dx. (21.16) 
k =O 

We recall that 

!' 

Thus, we have shown that I ( 8 )  = +(/3), by (21.8). This completes the proof of 

0 < x, 
Using (21.16) and (21.1 7) in (21.15). we find that it suffices to prove that 

. , 

The remaining two claims in (21.8) follow as in the proof of (21.7). 

( L ) ,  p. m. Let, as usual, v ( x )  = I "(x)/ 1 7 ~ ) .  Ihen, cf 
- 

1 I n cot(nx) n log l2sin(nx)l , + 3 d 2 ,  
, A X )  

Set M 

- 2n C e-2n"" 
1 . - . - . - . - f (x) sln(bx) d ,I=I "-3. (22.1) 

By (21.18), we now see that it suffices to prove that I(@) = 1 / / ( / 3 ) ,  where 3 ( 8 )  is 
defined by (21.8). 

hv n- tha~ v . .- 5 J m  t-hrng cntry8 of Cnaprer 3C(Pm ~ v '  [4, p. 514t), we obtain a formula for 
I 

I = 1" (e-ne' - e-'Ir ' + I )  sin(8x) dx - - 
Euler's constant y ,  which is equivalent to (22.1 ), namely, 

B 

1 \ - 
e-"I' + i e - " i u  cos(p log u )  du  

+ 2 E  
n log in4 - 

u2 
- - 

n=l n 2  + e n  - 1 2 s. sinh2(~t t )  
L - n [ -,,, -- 1 +,\ - - 

\ t e  ) - l )  ul'  

where we set u = I / r .  Hence, X= I (22.2) 

In collaboration with J.  M. Bonvein and W. Galway, the author originally proved 
m.2) by showlng that the derivatives of both sides of (22.2) equal 0 and then letting 

say. Letting t = I/u in 12,  we easily find that I2 = 11. Consequently, x tend to co to show that both sides of (22.2) are equal to -y. Shortly thereafter, 
D. Bradley [ l ]  found a more natural proof by working directly with the double 

e-"' cos(P log t )  dt senes on the right side of W.n, and thercfore we shan give Bradley's elegant 
proof. Bradley has shown that Entry 22 has several interesting consequences. In 
particular, Rarnanujan's famous formula for 5(2n + 1) (Part I1 [2, pp. 275-276, - m u y  r~(i)j) rouo - "  .. - ws as a corollary. 
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Proof of Entry 22. We begin with the partial fraction expansion from Entry 3 of Using the Laplace transforms 
Chapter 30 (Part IV [4, p. 35911, 

I" e-kf 
1 an(nr) dt  = and L"e-kr  k n2csc2(nx)  1 k2 + n2 C O W )  dr = - - - + I ?, ,,z + 7s;j - */(x + 1) k2 + n2' 

W A,,* 

w 2nx3 
and the well-known Fourier series (Gradshteyn and Ryzhik [ l ,  p. 46, formula 

4kx 
+ 2 (e**k - 1)(x2 - k * ) 2  

- 1.44 1, no. 21) 
k=l sinh2(xk)(x4 - k4). 

gg 

(22.3) c O s ( y k y )  = - log 12sin(ny)l, y real, 

By the product rule for differentiation, 
144 0 

d n ~ 0 t h ~ ' )  n 2  csc2(nx) n2cot(nx)  III \LL.UI, 

and 
A aIr)p13-&cot(nx) - n - + - log ~ 2 s i n ( n x ) ~ c s c h ~ ( n x ) .  

2sinh2(nx) 2sinh2(nx) 2 dx 

Hence, we can rewrite (22.3) in the form 
II 1 1 d n c o t ( n x )  dn log l2s in(xx) l  

$'(x + 1) = - - - + - + -  + -  
3x 2x2 271x3 dx e2".' - I dx 2sinhZ(xx) 

Using this in (22.4) and integrating both sides with respect to x,  we deduce that where the inversions in the order of summation and integration are iustified bv 

n 1 1 n cot(nx) . n log 12 sin(nx) 1 
*(x + I )  - - - 3 1 ° g x + 2 x - 4 n x 2  e 2 " " - I  ; 2sinh2(nx) 

where C is a constant of integration to be determined and 

absolute convergence. Substituting (22.7) in (22.5), we find that 

IT 1 1 n cot(nx) R log l2sin(nx)l *(x + 1) = C + - logx + - - - 
3 + x 4nx2 + e2*' - 1 2sinh2(nx) 
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terms in (22.8) vanish as x + +m, it suffices to show that Entry 23 (Formula (4), p. 281). For each positive integer n, let 

Set x = N + 4, where N is a positive integer, and write 

I \ 

log 1x4 - k41 log 1x4 - k41 

sinh2(nk) = ( t z f i  ' + JE<II<.I  +c) k > x  sinh2(ak) 

where Im r r 0. Then, i f m  is a positive integer, 

4 logx + log(1 - k4/x4) 
r > n  

- any integer n greater than 1, 
- sinh2(nk) k 5 f i  

k 5 f i  
sinh2(n k)  

(2n + 5) (2n - 2) n-1 

+ (4x 1011) 0 ( e - ~ ~ ~ )  + 0 (e-3n*J2 1 24(2n + 2)(2n + 1) n I-= I ( ) + - + I .  (23.1) 

(We remark that the notation S, has a meaning in Ramanujan's paper 171 different 
+ 0 (e-~") from that in the notebooks.) By a theorem of A. 0. L. Atkin 111, EPn+2(i) = 0, 
) . . 

Now, by Stirling's tormula, as x m, 

*(x + 1) = logx + 0 0 1 ~ ) .  

Employing (22.10) and (22.1 I) in (22.8). we see that 

n n log 1x4 - k41 
*(x+ I ) - - l o g x + - C  . 

3 2 smh2(nk) 

as x tends to +m. However (Bemdt 12, Prop. 2.26]), 

--. 
Uslng (22.13) in (22.12), we find that 

Thus, when r = i ,  the desired result follows. 

It is interesting that Ramanuian undoubtedly discovered the theorem, SWfZ (I) = 
0, more than 50 years before a proof was published. 

I ne next m e  -8 m 
Since the details of the proofs were not completely given by Rarnanujan, we do so 
below. The constants c l  , cz, and c3 below were not explicitly given by Ramanujan - - 

in the notebooks. 

Entry 24 (Formula (S), p. 281). For euch positive integer n, 

Proof. Let 

where cl is a constant such that p ,  ( I )  = 0. Thus, 

n 
$ix + 1) 

- p,(n) - pl(n + 1) = -(n + l)I/' - in3/2 - $n1l2 + $(n + 1))/2 + 

-: + 
as x tends to +m. Thus, the limit (22.9) holds, and the proof of Entry 22 is 

- I t I 2,3/2 1,,1/2 , 2 &  t 1 ~ 3 / 2  complete. 2t1& I l J  3 I- 2" I 3 1 " 1  * J  
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- - . .  . - e~ery w e r  IL F m  
1 [ I ,  p. 1561, cl = - { ( 3 / 2 ) / ( 4 n ) ,  and so the proof is complete. 

where cz is a constant chosen so that c p ~  (1)  = 0 .  A somewhat laborious calculation 
xhmthar  (p3tn) - pj(n + I )  = 0 for each positwe integer n.  Ihus, by lnductron, 
m ( n )  = 0 for every positive integer n. Hence, 

!6!, p. 28U, For each positwe integer n.  
. .  . which is the formulation given by Rarnanuian in 161. Using Entry 24 above. we 

3 
deduce that 2 k 3 ~ 2  = - - [ ( 5 / 2 )  + ;n5l2 + ;n3l2 + In11z 11 

k=l 16n2 1 C k5I2 = c3 - --<(3/2) + J;;($n" +a2 + a ,  + 
k = l  6 4 ~  

I " l a ,  - - C J " + - ~ ( ~ + J G T F D ] - ' .  
, = I  224 k, 

BY Entry 1 of Chapter 7 (Part I [ I ,  p. 150]), c3 = C(-512). By the functional 

a(n)  = 2 * 3 / 2  - C2 - - 1 112 - 1.112 equation (0.4) of ~ ( z ) ,  c3 = { ( - 5 / 2 )  = I 5 [ ( 7 / 2 ) / ( 6 4 n 3 ) .  Using this in the 
in A 

k = l  equality above, we complete the proof. 

Entry 27 (Formula (3, p. 282). Let 
K=U 

where cz is a constant such that ( ~ ~ ( 1 )  = 0. By the same sort of calculation as in 
1, a I . . \  n L 

(27.1) 
9 2 ~ )  - m n  t 1) - .  v 7 , v 2 t r o  - v nu1 " r,=U ' ' ' 

every positive integer n. From Patt I [ I ,  p. 1561, c2 = - 3 { ( 5 / 2 ) / ( 1 6 n 2 ) ,  and so 
the proof is complete. 

where, in the latter representation, Ix I < 1 .  Then, for every real number x ,  

n -- ( ( ~ ( 1 )  - (p(e-n"12)) - 2x tan-' ( e - x x / 2 )  
Entry 26 (Formula (7), p. 281). For each positive inreger n ,  n  

-7 
+ J n + k + l \  . 

An equivalent formulation of Entry 27 is given by Ramanujan in his paper 
[S, eq. (12)] ,  [ l o ,  p. 411, where he writes that (27.2) is "very easily proved by 

Proof. Set diffcrcntiating both sides with respect to x." It seems unlikely that Ramanujan 
n discovered (27.2) by this means, but we do not have a better proof and proceed 

2 - 3  , 1 2 , L,\ 'i- L S ! ~  - Q - & l -  
'fJ3(") = L 17" 2" 24") 

k = l  

Proof. Let f (x) and g ( x )  dcnote, respectively, the left and right sides of (27.2). 
v e m i a t i o n ,  
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and 

series converges uniformly for all real x .  But (Whittaker and Watson [ I ,  p. 1361) 

by setting x = n/12. Accordingly, we find that 

(p(2 - A) + ; log(2 + h) 

Hence, f ' ( x )  = d ( x ) .  Since f (0) = 0 = g(O), the proof of Entry 27 is complete. = I I ?$?(I) + acp(l) " = $&,(I). 

Entry 28 (Formula (4), p. 282). We have Thus, (28.4) has been proved, and it remains to prove (28.5). 

where 

which is Catalan's consfunf. 

To prove (28.5), let f (x) and g(x) denote the left and right sides, respectively, 
of (28.5). Then 

since the differentiated series converges uniformly on any compact subinterval of 
(0, n/2). Also, 

ee 

gl(x) = - log(Un x) = 2 C c0s(4n + 

Proof. Set x = (2/7r) log(2 + 8) in Entry 27. Then if S denotes the left side of 0 < x < n/2, 
,I=O 2 n + 1  ' 

(28.1 ), we find that 

1 
by afamitiar bouner senes development (Gradshteyn and Ryzhik [I,  p. 46, formula 

- - '  -1 1 7 ~ g  1 - 1  - - 
\ 2 + & 1  

' 
where c is some constant. Letting x = n/4, we find that 

Setting u = n /  12 in the double angle formula cos(2u) = 2cosZ u - 1, we find 
- . m j l 2 )  - 4vf2 - v5 a m t t m t n / l ~ )  . - 

By (27.1), c = 0. Hence, (28.5) has been proved. 

Now in [S, eq. (7)], [ lo ,  p. 401, Ramanujan briefly sketched a proof of the equality Entry 29 (Formula (lo), p. 286). I f  - 1 < x < 1, then 

Using (28.4) in (28.3), we deduce that 

4 s = -cp(l). 

Since ~ ( 1 )  = C ,  the proof of (28.1) is complete. 
Lastly, we provide details for the proof of (28.4). Ramanujan claims that (28.4) 

sin(4n + 2)x 
= (p(tan x )  - x log(tan x), 0 < x i n/2, (28.5) 

W.1) 
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Proof. By analytic continuation, Entry 27 is valid for all complex x with 1x1 < 1. Entry 30 (Formula (ll), p. 286). Let cr s 0 and 0 < B i I ,  with 
6" 

t 
log (tan ( a n ( l  + p ) ) )  = ;nu. 

a. x 2  I(- 1)"(2n + I )  log I - =') i 2 Then 
n=O 1 uun I 1 1  / 00 

4 C ( - I ) " ( ~ ~ + I ) I O ~  
= - (q(1) - cp(e-n'"/Z)} - 2ix ~ a n - ' ( ~ - " ' ~ / ~ ) .  - n=O 

I 1  
.. . 

Taking the real part of each side, we deduce that lrap = - + C(-1)"(2n + l)log 1 - - 
00 , , x2 ) n=o 

" ). ( (2n f (30.1 ) 
- - 

L - "'b 
n=O ( 2 ~ t + 1 ) ~ /  

4 O0 (-1)'' =-x- ( I  - cos { i  (2n + I)nx 1) - 2 Re (ix tan-' (e-n'X'2)). 
* n = ~  (2n + 112 (29.3) 

Now 

Proof. Observe that both sides of (29.1) are even functions of x ,  so that we can 
replace x by -x. Thus, by Entries 27 and 29. 

.. - 

-2Re (ix tan-' (e-"iAf2)) = x Re log 

= x Re log - 4 - - - I  L-nCt/Z\ 
K J 

= x log - log tan -n(I + B )  u 
Using (29.4) in (29.3), we complete the proof of (29.1). 

To prove (29.2), which iseq. (12) in Ramanujan's paper [5], [lo, p. 411, we first 
note that the right side of (29.2) equals 

Now from Ramanujan's paper [5,  eq. (4)1, [lo, p. 401, 

(p(x) - q(- l /x)  = in logx. 

Hence. 

With f (x) denoting the lcft side of (29.2), we see that f (0) = 0 = g(0). Thus, it This -. 1 ). 
suffices to prove that f  '(x) = gl(x). Now, by a straightforward calculation with 
the use of (27.1) and (27.3), Entry 30 is equivalent to eq. (17) of [ 5 ] ,  [ lo ,  p. 411, which Ramanujan stated 

I , " ,  (" in") n x  

without proof. He also [41, 110, p. 3291 submitted this formula as a problem to 
n x  sec2 - the Journal of the Indian Muthemafical Society. The proof of (30.2) was only 

- - - - briefly sketched b y m a n u j a n  in [5). The editors of his Collected Papers [lo, pp. 
4 tan (7) 2 sin { fn ( l  - x) }  3363371 supplied a proof in more detail. 

rn - . ..a . L  n x  - antry 3l (Formula m, p. 285). For x > 0, let - - - = -2x C lJ IUI + I )  
= f l ( x ) ,  

2 cos(:nx) n=O (2n + - x2  -1)"(2n + 1)'sech { in(2n  + 1)) 



462 Ramanujan's Notebooks, Part V 37. Infinite Series 463 

~ n i s  is a particularly beautiiul result. ~amanujan evidently did nol possess 
a complete proof, for he recorded the result (in abbreviated notation) as "The 
difference between the two series (ap  = n2/2) F(a )  and F(B)  is O?" As we shall 

u . - . . 7  . - .. 
see, upon examlnlng our proor below, (zn + 1)' can be replaced by (Zn + lJ4mtSI 
for any nonnegative integer m. 

Hence, applying the residue theorem to the integral off  ( z )  over CN , employing 
the calculations (3 1.3)-(3 1.6), letting N tend to 00, and using (3 1.2), we deduce 
that 

Multiplying both sides by na2 /8 .  we mive 9t (3LI) to 
ITOOI. L e t  

f (z) := 
z 3  

(cosh(az) + cos(az))cos(f nz)  cosh(inz) '  

Observe that f (z) has simple poles at z = 2n+ 1, (2n+ I ) i ,  (2n+ l )n  (1 f i ) / ( k ) ,  
for each integer n. 

Let ( C N ) .  N L 1, denote a sequence of rectangles having vertical and hori- 
zontal sides and centers at the origin. We shall choose the rectangles so that, as N 
tends to co, the sides tend to co but remain at a bounded distance away from the 
poles o f f  (2). It is then easy to see that 

f 
lim f (2) dz = 0. (31.2) 

N-= c., 
We apply the residue theorem. By straightforward calculations, for each integer 

n, 

2(-1)"(2n + 1)'sech ( in (2n  + 1 ] 
fb+~ = - x (cosh ((2n + l ) a }  + cor ((2n + I)a)] = R-'2'+"7 (31.3) 

- "(2n + 1)'sech ( in (2n  + l )}  
RO,,+I),  = - 2( I )  

n (cosh ((2n + 1)a)  + cos {(2n + 1)a))  
= R-(2n+l)i. 

(31.4) 

If we divide both sides of (3 1.1) by /I2 and let a tend to co, and therefore let p 
tend to 0, and replace (2n + 1)' by (2n + 1 as we may, for any nonnegative 
integer m , we deduce that 

(- 1)"(2n + 1)4"'+3 

cosh (;n(2n + I ) )  
= 0. 

This result is due to Cauchy [ I ,  pp. 313, 3621 and is a special case of another 
theorem of Ramanujan (Part I1 [2, p. 2621). 

Entry 32 (Formula (3), p. 288). Ifa, p > 0 with ap = n2/4 ,  then 

m (- 1)" cosh ((2n + 1)B) cos ((2n + ])/I) -2z (2n+ I ) c o s h ( f n ( 2 n +  1 ) ) ( c o s h ( ( 4 n + 2 ) ~ } + c o r ( ~ n + 2 ) ~ ) ) .  

- ( - l ) n ~ Z i ( l  + i)(2n + l ) j  sec ( t ( 2 n  + 1)B(1 + i)) sech ( i ( 2 n  + I)B( l  + i ) )  - 
naz(i  - I )  cosh ( i n ( 2 n  + 1 ) )  

for each integer n. Let ( C N }  denote the same sequence of rectangles as described 
in the proof of Entry 3 1 .  

We now calculate the rcsidues o f f  (z). Fim, 

Furthermore, we see that Second. by an easy calculation, 

2(- 1)" 

n(2n t 1) (cosh ((2n + 1)a) + cos 1 (2n + I  )a!)) = R-(2n+1) 
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Thud, by straightforward calculations, Proof. Let 

( -1)" COS(crZ) 
f ( 2 )  := 

R[2n+1)ni(1*0/(2a) = - n(2n + I)cos((2n + I ) ( T ~  + i)Bl C O S ~  + 1)) z (cosh(az) - cos(az)) cos( tnz)  ' 

(32.4) - = R-(Z~+I)Z; ( I* , ) / (~~) .  for each integer n, and at z = nn(&l + i)/a, for each nonzero integer n. Let 
By (32.4) and an elementary calculation, {CN) , N 2 1, denote a sequence of rectangles having centers at the origin and 

R(~n+l)ar(~+l)~(~cr) + R(2n+l)ni(l-i)/(h) 
mas WmIdS boo. TI,\, rt.cliulgles art 

also chosen so that the sides remain at a bounded distance from the poles of f (z) 

- - 4(- 1)" cosh ((2n + I)@) cos ((2n + I)@) 
- as N approaches oo. 

cos n(2n + I) cosh { $ r V n  + 1)) i h ((b + z)Bl + -1) of j ( ~ )  . -I, . 
(32.5) n2 1 

R o = - - -  
we  now apply the residue theorem to the Integral of f (z) over CN. It is easy to 8a2 2 '  

(33.2) 

show that Second, for each integer n ,  

lin f(z) d~ = 0. (32.6) 2(- 1)" cos ((2n + l )a]  
N+w cTv R2n+1 = - 

n(2n + I) (cosh {(2n + I N )  - cos ((2n + I)@)) 
= R-(2n+1). 

Hence. from (32.2)-(32.61, 
Third, straightforward calculations yield, for each nonzero integer n. 

( - I ) n  
t l  

*(- 1)" cos ( n n ( f  1 + i)) 
4i iq* l+f i la  = - L n:oy~+l)-~~ ' -?")) N. 

27rin sinh(nn)cos { n b ( f  I + i ) )  "-mf '+IJ '  

(-1)" cosh {(2n + 1)B)cos ((2n + I)@) Using (33.4), we find that 
4- 7 v ]  + a% . (1411 + 2Ml3 

2 coth(nn) s~n(n/J) smh(nm 
R*nn(~.tr){n + Rirtx(-t+t)/a = (33.5) 

If we let cr tend to oo, and hence p tend to 0, in (32. I ) ,  we find that 
for every positive integer n. 

Lastly, we apply the residue theorem. It is easy to show that 

which is a special case of another theorem ot Ramanu~an, Eney 15 ofclraphr34 
(Part 11 [2, p. 2621). 

If we let /3 tend to m, and therefore a tend to 0, we find that (32.1) yields the 
well-known evaluation 

Entry 33 (Formula (4), p. 288). IfaB = 7r2/2, where ar, B > 0, then 
02 (-1)" cos {(2n + 1 ) ~ )  + - - -  K n 3  

n=O 
-(cosh ((2n + I ) a )  - cos {on + I )a)) 32u' 

Thus, by (33.2). (33.3), (33.3, and (33.6), 

If we let a tend to 0, and therefore p tend to oo, in (33.1), we deduce the 
result 
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p s ,  - 1 ne ainerence between the senes 
- 

Ramanujan begins page 3 12 by stating two series identities involving the Mobius 
M . , n -  - sln(nL e men offers a g e n e ~ m w n l c n  contains tne previous two ' + 

neb. O:) a n  I f: (-')"B4ff+2"+' ,, 
4,1=, (2n + I)! (2n + 1) '  results as special cases, and which is an analogue of the Poisson summation for- 8~ 

n = l  mula, with p(n)/n as coefficients. We first formally state Ramanujan's general 
Stirling's formula, fhe series on mwnlw. We tlnen show ma1 the two examples fonow from the general claim. Next, 

the right diverges for all O # 0. Most likely, Ramanujan realized that the series numerical calculations show that Ramanujan's two examples are false but that the 
diverges and stopped here, or that he proceeded formally and could not evaluate errors are numerically very small. Lastly, we indicate how G. H. Hardy and J. E. 
I . .  . 

uIb I -1s do not appear to have evaluattons ~n closed L~mewooa correctea ~arnanujan's claims. 
form. Note below that Ramanujan has a (possible) misprint in the first expression In our calculations below we employ the prime number theorem in the form 
of the quote above. This entry should be compared with formula (3) on page 274 CzI p(n)/n = 0. Perhaps Ramanujan used a stronger, but incorrect, version 

ot the prime number theorem, whlch would account tor the excellent numen- 
cal agreement in the two applications. As we saw in Chapter 24 (Part IV [4]), 

Entry 34 (Formula (I), p. 289). Formally, Ramanujan made several errors in deriving approximations to z ( x )  that involve 
A n ) .  

sin(n28) I .$ (- 1)nB4n+2e2n+l 'I'he & hr- 
- - 

47r 5 n(eznx - 1) 4 5  (2n+ I ) !  (2n + 1) mula which can be applied to series with p(n) as the coefficients. However, it 
is considerably more complicated than Ramanujan's claim. Similar arithmetical 

"Formal Proof". Apply the Poisson summation formula (Titchmarsh (2, p. 601) 
to 

,,-, . sin(x26) 
A .- 
I x ( e 2 n ~ - I ) '  

Note that f (0) = 8 / ( 2 ~ ) .  Hence, 

Then 
- 

+ 2 /(a sin(x2@) cos(2nnx) dx. 

o x(e2Rx - 1) (34.2) 

Entry 36 (p. 312). u p  > 0, 

Now, by Entry 16(iv) of Chapter 13 (Part I1 [2, p. 220]), 
Proof based on Ent ry  35. Apply Entry 35 with ~ ( x )  = 1 /(x2 + I). Now, by 
contour integration or tables (Gradshteyn and Ryzhik [I ,  p. 445, formula 3.723, 
n o  21). 

T- 
Note that the inversion in order of summation and integration has not been justified. 
Indeed. the series on the far right side of (34.3) diverges. Putting (34.3) in (34.2). 
we complete the "proof." 
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Proof based on Entry 35. Replace a and p in Entry 35 by f i  and @, respec- 
tively, so that 

- I a-somo - - 
2 

f each series via Marhematica. 
(37.1) we find that 

n=l n=l 
n 

03 

, - I k  . = -0.1600806325.. . 
where crf? = 47r2. Let p(x) = exp(-x2). Then ,=I ((2 + I )  

6) f i p - d / 4  and 
- [ #-x2 p , .  -- - 

2 
02 

Jo 
1 

= -O.l6OOSO6298. . . . 
Thus, by (37.1), 

k = l  

- -- 
(51)!<(52) 

< 4 . 0 3 X  I' I 

l or these calculations show that (36.1) is fals e for D = 1. 

We now numerically examine Entries 36 and 37. If 0 < p < 1, 

where we have used the fact that xz, p(n)/n = 0, which is equivalent to the 
pnme number meorem. 

Also, by a similar calculation, 

Thus, Entry 37 may be rewritten in the form 

Setting p = 1 and summing the first 50 terms of each series above by Mathe- 
matica, we find that 
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and If we set ~ ( z )  = 1 / ~ ( i [ z  + I)), replace p by a, and again ignore the second 
series on the right side of (38.2), we deduce (37.2). To see this, we first note that 
if n is odd, cp(-n) = 0. If n = 2m is even, we observe that 

Since the series are aiternating, and since 

1 
< 6.45 x and 15;(":l'zu , < 5.85 x 10-16, 

3 '  1 

we conclude that (37.2) is false for p = 1. 
Now, in fact, during his stay in Cambridge, Ramanujan told G. H. Hardy and J. 

claim, Entry 35, in their paper [ l ]  (Hardy [3, pp. 20-97, especially pp. 57-63]). 
Assuming that all of the zeros of ( (s) are simple and that the series on the far right 
side below converges, Hardy and Littlewood proved that 

Hence, (37.2) readily follows. 

Entry 38 (p. 312). Let p(z) denote an entirefunction, andput 

where p is anyfired nonzero complex number, and where { (z) denotes the Riemann 
zeta-function. For simplici~, assume that each nonreal zero of C(Z) is simple. Let 
Cn denote the positively oriented circle of radius N + $ centered at  the origin, 
where N is a positive integer. Suppose that 

where the latter sum is over all complex zeros g of ((s). arranged according to im M ~ J C  / f (z) dz = 0. (38.1) 

increasing moduli. Thus, Ramanujan's claim in Entry 37 must be altered by the 
latter expression on the right side of (37.3). This is then another instance where Then 

Qf{dr! 00 - (-l)n(p(2n + 1)@++1 - w (- 1)"d-n)  /2n  \" 
= l r  - 

Hardy and Littlewood also briefly address the more general formula in Entry W n + l )  n=l t n! ((n + 1) ( p ) - -  ... - .  . 
53. Although they do not glve a complete proot, they clearly demonstrate mat 

R 
Ramanujan's claim must be modified by a similar sum over p. 60(p)pP 

+ 5 cos($rp)<'(p)' 
(38.2) 

Returning to (37.3). Hardy and Littlewood [I, p. 1611 showed that the estimate 

where the sum on p is over all nonreal zeros of {(z) arranged according to in- 
creasing moduli. 

as p tends to m, where c is any positive number, is equivalent to the Riemann Roof. We apply the residue theorem to the integral in (38.1). Observe that f (2) 
hypothesis. has simple poles at z = 2n + 1, for each integer n, at z = -2n, for each positive 

Titchmarsh [3, pp. 1861871 also provides a proof of the corrected version integer n, since 5-(-2n) = 0 (Titchmarsh 13, p. 19]), and at each nonreal zero p 
(37.3) of Ramanujan's Entry 37 and briefly mentions (37.4) (with the exponent 6 of { ( z ) .  By a straightforward calculation, for each integer n ,  
unfortunately missing) as well [3, p. 3281. We are very grateful to Richard Brent 
for correcting some inaccuracies in our discussions of the past two entries in an 2(-l)"cp(2n + l)pZ"+' 

R2n+1 = - (38.3) 
earlier version of this chapter. nC(2n + 1) 

4 r t - l  . .  . - 
\\'-J, . , 

cover Ramanujan's heuristic arguments, since Hardy and Littlewood's approach z + 2n (-l)n(2n)2n+1 
is through contour integration. lim - = (38.4) 

~ + - 2 n  <(z) n r ( 2 n  + l ) t (2n + 1)- 

latter series on the right side of (38.2). Hence, 
If p(z) rn 1 and we omit the latter series on the right side of (38.2). we obtain ( 2 ~ r ) ~ " + ' ~ ( - 2 n ) ~ - ~ "  

R4, = - .. - 
n(zn)!C(zn + 1) 

(38.5) 
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Lastly, for each normal zero p of C(z) ,  a simple calculation gives Then 

Thus, applying the residue theorem, using (38.3). (38.5), and (38.6), letting N tend 
to ao, and employing (38. I), we find that 

where the sum on p is over all nonreal zeros p of ((2) arranged according to 
increasing moduli. 

m 
v(-2n) 

Zn 
p(p)pP Proof. The proof fo l l~ws  along the same lines as the proof of Entry 38. The 

+2C((2n+1)(2n)!  n= I (F) + F c o s ( f n p ) < ' ( p )  = 0 ,  (38.7) funclion f (2) has simple poles at z = 2n + 1, for each nonnegative integer n, at 
z = -2n, for each positive integer n ,  and at z = p ,  for each nonreal zero p of 

where the sum on p is over all nonreal zeros p of ((z) arranged according to 5 ( z )  Note that the zero of cos(;nz) at z = 2n + 1 is cancelled by the zero of 
increasing moduli. Now, by the functional equation (0.4) of ((z), I /  T( i (z  + 1)) at z = 2n + 1 when n is a negative integer. A simple calculation 

yields 
5(-2n - 1) = 2(-1)n+1(2x)-2"-2r(2n + 2)3(2n + 2). 

N . ._ 9.u 1 - 
R2n+l = - L' I' 

+ I ) p  ' 
Using this in the second sum in (38.7), we deduce that 1r<(2n + I)n! ' n 1 0 .  (39.3) 

function, for each positive integer n, 

(2n)2n+Lrp(-2n)p-2n 
- 2(-l)"q(-2n) /T\~" 

n r ( - n  + i ) r ( 2 n  + 1)<(2n + 1) f i n !  r(2n + 1) \ p )  ' - 
(JY.4) 

A P(P) pP For each nonreal zero p of <(z), we easily see that 

+ ? co~($np)<y& (38.8) m - 
% = 

(P(p)pP 

~ ( & I P  + ~ D c o s ( ~ n p ) t ' ( p ) '  
(TY.>) 

The first two series on the right side of (38.8) can be combined into one series, 
and since I/((]) = 0, the proof of (38.2) is complete. Invoking the residue theorem, using (39.3)-(39.5). letting N tend to m, and em- 

ploying (39.1). we conclude that 
In Ramanujan's formulation of Entry 39, the latter series on the right side of 

(39.2) does not appear. -- 2 (-I)"p(2n + l)p2n*l 2 (- l)"(p(-2n) f n  1'" - 
I T =  {(2n + l)n! . J n  2 t ( 2 n S  l)n! \PI 

Entry 39 (p. 312). Lei p(z) he an entirefunction, and put 
(P(p)pP = 0, 

f (z) := 
v(z)pZ + 5: n:b + I , , c o s ( + P ) t W  

where the sum on p is over ail nonreal zeros p of c ( z )  arranged according to 

where p is unyfived nonzero complex number, und where [ (2) denotes the Riemann increasing moduli. The last equality is equivalent to (39.2). 
zeta-function. Assume, for simplicity, that all nonreul zeros p oj(-(z) are simple. 
Lei CN be the same circle us in  Entry 38, and assume that Entry 43 (p. m). F i r  each positive integer n, 
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Proof. The following proof is due to R. Sitaramachandrarao [I]. Thus, by induction, 
P 
r u r a r l y r l o n z e r o  a m a  posltlve integer n,  dehne 

n I 
d a , n )  = 1 + 2 r  ,_,,, ,. - - 

& = I  ( u K )  
1 1 3 

Then it is easy to see that 
(2n + 2k + I ) &  

. - 

2n I 4n I '" 1 
9 ( 2 , 2 n )  -rp(4 ,n)  = 1 + 2 x  7 - - Thus, it remains to show that 

A .  d p l l  3 r L k=l k=n+I k=2n+l 1 1 

1 
tan-' ( ) + tm-l ( ) 3  

- -- 
4#< 1 + 2 

(2n + 1 ) &  (2n + I)& 
1 \ \ 

k=2n+l ' k=n+ '  A k=2,1+1 " + tan-' 
(4n + 1)A 4n 

1 - - (41.3) 
'U . 1. (40.3) 

k=2n+l k = n + l  " k=n LK t ' 
Putting (40.3) in (40.2).  we obtain an equality that is easily seen to be equivalent 
to (40.1). 

In the entry immediately following Entry 40, Ramanujan proposes an equality 
between two finite sums of inverse tangent functions, 

n / 1 \ n 

tan-' 
k= 1 

that this claim is false, in general. 

a n  posrrive integer n ,  

tan-' +tan-' 

4 8 "  + 4) 
= tan-' 

3(4n+ l ) (4n  + 3 )  - 1 

= tan ' 

= tan ' 
/&(2n + 1) (1 + 3(2n + ]I2) 

9(2n + - 1 

by another application of (41.2). Thus, (41.3) has been proved, and the proof is 
complete. 

Proof. We induct on n .  For n = 1, (41.1) is trivial. 
Assume that (41.1) is valid. We thus will prove that (41. I )  holds with n replaced 

by n + 1. Recall that, for0 5 x y  < 1, 

tan-' x + tan-' y = tan-' 

On pages 334, 335, 340, and 341, Ramanujan offers four related claims about 
products of certain alternating series. In particular, on page 335, he asserts that 
"a: - &'a2 + (&,as + a t )  - (&!a4 + 2e& + . . .  osclllatRfi pi - 
u* + as - - . . * ( ~ / 2 )  lim,,, nu:. For example, 
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oscillates between Then, as n tends to oo. 

a n d -  -*mre~ me Klemann zeta-junctron. 

1 1 1  ---  Proof. Define, for x r 0 and n , 1, 
I; 

\%'I V L  4 J  I 1 1 
P(x) = - - - - 

We state this claim more precisely. Suppose that, for 0 5 x 5 1, f (x) has the x a ( l - x ) p  x0 (1-x)B + 1 (42.2) 

[xn. where a, > 0 .1  < n < ao. Let 
g(x) denote the power series obtained by forming the Cauchy product of f (x) 
with itself. If L := limn,, nai exists and is finite, then the even and odd indexed 1 1 1 

6 n b )  = 
1 

xO(n - x ) @  n@xO na(n - x)B + .,+P. (42.3) 
partial sums of g(1) tend to f 2(1) + (n/2) L and f 2(1) - (n/Z)L, respectively. In 
particular, if a. = 1 /,h, then the even and odd indexed partial sums of g ( l )  tend Note that 

2 7 

to [ ( I  - J--1 + n/2  and ( ( I  - J z ) ( ( ~ ) ]  - n/2,  nspectively, where f g:j)(x) = - 1 0 )  - 
denotes the Riemann zeta-function. The case when L = 0 implies that the series 

na+,+j' (:)* j 20. 

g (  1) converges. In the case when L = +co, P Since. for j > 0, 
indexed partial sums diverge to +m and -m, respectively. 

I 
~ ( ~ - j + l - a  1, I o < x i s ,  

On page 340, Ramanujan states a generalization of the foregoing result for the p ( x )  = 
kth power of f (x L where k is any . .  . O((l  -x)-J+'-P), ; 5 x < I ,  

341, Ramanujan offers a similar theorem for the product of k (possibly distinct) uniformly for x in the given ranges, it follows that 
altematingseries C ~ l ( - l ) n - l a . ~ ,  xzI (-I)"-lanz,. . . , ~ ~ , ( - l ) " - ' a . r  un- 
der the hypothe-'-la,.:~l,.~. . . n,,..-~-- O c  r ~ ! 7 .  

on page 334 is the special case k = 2 of the last claim. g ( J ) ( ~ )  = (42.4) 
-We shan prove K a m a n u j a n ~ u n d e r  appropriate assumptions. Our , n / 2 ~ x < n .  

results are possibly not as general as Ramanujan intended. Slightly stronger theo- 
rems can undoubtedly be established at the cost of additional technical details in We now apply the Euler-Maclaurin summation formula(0.5) to g,(x). Recalling 
the proofs. (See the remarks following our proof of Entry 42.) c h h i d e n O t e S  

Ramanujan's results are quite remarkable for their explicit description of the n- I n- I 
behavior of the partial sums of certain alternating divergent series. We know of no &C.) dz + -&(I)  + -b& - I)+ -R--(&.% 
other comparable results in the literature. k=l J I 

The results in this section first appeared in a paper by the author and J. L. Hafner 
r * ,  

where 
L L J .  

We begln with a simple lemma concerning the asymptotic behavior of acertain 
finite sum. 

Lemma 42.1. Let a and p denote conrtanrs with 0 c or, /I < 1, 
I \ ' -  / 

as n tends to OQ, by (42.4). (Note that the notation R, has a meaning here different 
from that in (0.61.) Using (42.4) and (42.6) in (42.5), we deduce that 
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Recalling the definitions (42.2) and (42.3) of rp and g,, respectively, and setting Lemma 42.2. Lel k 2 2, let at, a*, . . . , a k  be constants such that 0 < a k  5 
uk-l ~ . . . s a ~  i 1 n n d a l + a 2 + . . . + a t  ? k - l , a n d [ e t n = a 2 + m +  

. . + a k  - k + 3 .  Then yk > 1 and there exist constants bkj and Bk, such that for 
e a ~ h j , l s j i 3 ~ - ' - 1 , c r ~ + a z + . . . + a k - k + I  c p k j < l a n d  

where we have used the classical integral representation for the beta function. 
Hence, by (42.7). as n tends to oo, 

as n tends to co. 

Now, from the definitions (42.1) and (42.3), we deduce immediately that Proof. Naturally, we induct on k .  The case k = 2 is just a restatement of Lemma 
42.1 with cw = o r l  and p = a2 (assuming p 5 a). In this case, we have b21 = 
C P Z L  ~ 2 2  = nw, pzl = @ I ,  pz2 = n2, and y2 = a2 + 1. 

Suppose that Lemma 42.2 is valid with k replaced by k - 1, where k  - 1 2 2. 

n- I  1 I n - l  

k=l - - 
Then for some constants bk-1,,, pk-l. j ,  with 1 I j 5 3k-2 - 1 and 0 == a1 + 
a 2 + - . . + a k - l - k + f  <pk-1,, < l m d y k - I  = a z + ~ ~ + - . . t ~ k - ~  - k + 4 ,  
it follows that 

Recall (Part I [ l ,  p. 1501) that for any complex number r f - 1, as n tends to oo, n - I  - f - - 
n ck(n) = 

, . nr+l , ttr , & BZkr( r  + ~ ) n ~ - ~ ~ + l  & - I  r ( k  - 1 - @ I  - - . . . - - nk)"~faz+".+ar-l-k+2 
- - 

(4~. i@) 
t = ~  " + r + I + 2 + & ( 2 k ) I  r ( r  - 21 + 2)'  31-2-1 - b~.-1 ,  . f  1 1 1 1  

where Bi ,  j 2 2, denotesthe jth Bernoulli number. Employing(42.8) and(42.10) 
in (42.4). we conclude that 

Applying Lemma 42.1 a total of 3k-2 times, we deduce that 

which completes the proof of Lemma 42. I .  
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Proof. Let 0 i z < 1 and suppose that N is a positive integer. Then by Lemma 

, - 

Here the set {bkJ : 1 5 j 5 3&-' - 1 )  comprises the numbers 

n=k n=N 
and, for 1 5 j 5 3k-2 - 1, 

3 I m 
v .  n ( - 1 l f l z n  - .-.,* - .-. - k-1,j)l ( 1  - a k )  

bk-l , jL 
+ c o  

- I -  bt-l.J<(ak). 
~ L n a , + ~  

, = I  n=N 
r ( 2 -  P ~ - I , ~  - ak) 

N-1 
t o  v, .a , \ 0 ,  - - rk(-1lNzN , ,,, , - 

-1 [ P ~ J  ) is composed of the numbers - IJck(nn 1 I ql) + V (  

+ a2 + . -I- uk - k + 2, f f k  (with multiplicity 3k-2), Pk-,.j + a* - 1, and n=k 1 + z  (42.13) 

&-I.,, where I 5 .i 5 3'-' - I .  Lastly, we observe that as N tends to oo, uniformly for 0 < z 5 1. The term o(1) arises from the fact 
that the series ~ ~ P ( - z ) n / n @ k l  converges uniformly on 0 5 z 5 1 .  Letting z 

y k = a z + a ~ + . . . + a ~ - k + 3  
tend to 1 - in (42.1 3), we see that the left side approaches Sk, while the right side 
alternates like - 

N - l  

We are now in a position to state and prove one form of Ramanujan's assertion as N tends to oo. The proof is now complete. 

on page 341 in his second notebook [9] .  Our result is the special case of the general 
We next state a simple corollary of Entry 42. claim to which we referred in the introductory paragraphs of this section, when 

an; = n-a, and lim ,,,, nk-'a,la,z.. .a,k = 1. ., I I ~  *tY 1 111 1 / : / L new 
L.11 l. I - I n ,  I 2  J 2 n' 

the even and odd indexedpartial sums of (42.12) tend to 
Entry 42. Let k 2 2. Suppose that q , a2, . . . , crk are constants such that 0 < 
c c k 5 a h - 1 < . . . < a 1 < 1 a n d a ! + g 2 +  ... +q S, + f r k ( l / k )  and Sk - i r k ( l / k ) ,  

dejned by (42.11). Then the even and odd indexed partial sums of respectively, where 
k st = (-ilk { ( I  - 21'k)<(l - l /k ) ]  . p(- 1 lnck (nj (42,121 

n=k In particular, if& = 2, the even and odd indexedpartial sums of (42.12) tend to 

tend to Sk + i rk and Sk - i r k ,  respectively, where s2 + n / 2  and S2 - n j2 .  

respecriveiy. Sk = ( - l ) k ( l  - 21-u' ) [ (cu,)( l  - 2'-a2))t((u?). . . (1 - 2 ' -~k)~( rnL)  

and This corollary is an immediate consequence of Entry 42, when, for k = 2, we 
recall that r(k) = fi. Note that this last case is the example that we mentioned 
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where tends to zero, rz, 6: = 00, and E ,  satisfies the relation 

6 k  = E n  + o(c,'), (42.l6 

uniformly for fi  5 k 5 n ,  as n tends to CQ. For example, we can take 6, = 

Define, in analogy with (42.1 I ) ,  c2(n) = c(n) = C,":: akan-t. If n is even. 
then 

k even k kven 

~- --- 
Thus, by (42.16) and (42.17),  

k even k odd 

n - l  n-1 

- Ek p Cktn-k 

k even k even 

- - [n) $ ~(n), 

c(2n)  - c(2n - I )  = anr,  + o ! ~  2 

and hence 

In light of the remarks above, it seems to be very difficult to determine the most 



484 Ramanujan's Notebooks, Part V 37. Infinite Series 485 

We mote Ramanuian in the next entry. 

Entry 43 (p. 348). eaX can be expanded in ascending powers of ebX - eCX and 
enrlv ea" can be expanded in ascending powers of ebx sin x and hence 

many transcendental equatiom can be solved. 

Proof. We shall employ Rarnanujan's differentiation formulas ( [7 ,  eq. (30)], [ lo ,  
eq. p. 1421, Part11 (2,p. 3301) 

d~ L ~ - M  
q- = - 

dM LM - N 
dq 

, q-=- dN LN - M2 
, and q - =  

dq 3 dq 
(45.1) 

Thus, using (45.1), we first observe that 
1118-1 L2L 

d ( M 3 / ~ ' )  M ~ ~ M  M 3 d ~  
9 = 3q-- -29-- 

Entry 44 (p.  350). Let n be complex, c be real, and b 2 0. Then, i f 0  _< x 5 d9 NZ dq N3 dq 

( I  Ic) tan-' (c/b), 

nee" sin(cx) + 2 2 (e-bx S ~ ( C X )  
enx = I + M2 

C - -  
k=2 

- N3 ( M 3  - N ' ) .  (45.2) 

where Hence, by (45.1) and (45.2). 

n(n + kb) { (n  + kb)' + (zc)'} ( (n  + kb)' + (c)'] . . 
I x ( ( n  + kb): + (I - .Z)?c2} ,17k is even, 

- - - cf (g) + ~"141' ($) $ (M3 - ~ 2 )  4 
See P m  I [ I ,  pp 309-3101 fwaproof .  

3 

At the top of page 352 Ramanujan writes. "If an nth degree series can be 
expressed in terms ot R and N only, &en 

can be expressed in terms of M and N only." The degree of a series is vaguely which indeed is only a function of M and N (and not of L), as claimed by Ra- 

defined in Chapter 15 (Part 11 [2, pp. 32G3211). The identity of the function . . u 
manujan. 

is not divulged. However, L, M, and N are undoubtedly the k~sensterrrserres 
L(q),  M(q), and N ( q )  defined at the beginning of Section 4 of Chapter 33. Al- Corollary (p. 352). We hove 

though the meaning of Ramanujan's claim is unclear, he gives a two line "proof' of 
his assertion. But, Ramanujan's "proof' appears to have only a shadowy m- 

d ( L 4 / M )  2~~ -- - - and d ( L 6 / ~ )  3LSM -- - 

tion with his claim, and so we shall let the next entry encompass what Ramanujan 
dN 3M2 dM 2N2 ' 

sketchily proves. 

tintry 45 (p. 332). Let f b 
M"I4 f ( M ' / N ~ ) .  where M and N are the Eisenstein series mentioned above. 

There is a misprint in the notebooks; Ramanujan wrote 3M instead of 3M2 in 
the first equality. It is not clear why Ramanujan used the appellation, "Corollary," 
here. 
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The proof of the second equality in the corollary follows along the same lines. 

Entry 46 (p. 353). For Re a > 0, 

where we applied Gauss's theorem (Bailey [ I ,  p. 21, Part I1 [2 ,  p. 251). Thus, 
(46.3) agrees with (46.2). The calculation of R-++, is s imi lz  
is complete. 

Entry 47 (p. 355). Fur Ix 1 i 1, 

Summing these terms by the column-row method (Part 111 [3, p. 11 4]), we arrive 
of (47 1 \ 

(-'In - -R- i (a+" i  (46.2) R i ( a + n )  = - - 

The calculation of the residues on the right side of (46.1) is more difficult. NOW 
R, denotes the residue of a pole ol on the right side of (46.1). We have 

Proof. The left side of (47.1 ) may be written in the form 
j !  (a) ,  

w m  

-,. . . (x2 + (a + k I Z )  
n=0 m = l  

( k  + n ) !  (ah+,, (x2 + (a + n)') 
- Arrange the terms in the array 

: I 16 CB + n, r= i (o+n)  



488 Ramanujan's Notebodts, Part V 37. Infinite Series 489 

Entry 48 (p. 364). For 1x1 < 1 and positive integers n 2 2, the polylogarithm then 

X k' 
x k  ex/' = I ~ - O O  lim e-"' fi (1 + ?) . (49.2) 

~ i , ( x )  := C -;;. k = l  
k=l 

This result is also found on page 370 of Ramanujan's lost notebook [ l  I]. As we 
Then, for x ? 0 ,  shall see, Ramanujan's assertion is incorrect. In our corrected version below. the 

Proof. Trivially, (48.1) is valid for x = 0. It therefore suffices to show that the Proof. Recall that, for 1x1 c n (Gradshtep and Ryzhik [ l  , p. 42]), 

derivatives of both sides of (48.1) are equal. 
00th * - 1 eZk 2 B2k _2&-l 

1 

we find that we must prove that x k(WA ' 
where Bn, 0 5 n < ao, denotes the nth Bernoulli number. It follows from Euler's ,. mnnula that, tor 1x1 < 1, 

On the other hand, if B,, 0 5 n i oo, denotes the nth Bernoulli number, and 
jx j < 1, Cne right side of (4.2) equals, by (6.1 j, 

00 
For 1x1 i 1, the left side of (48.2) equals nx2coth(nx) = x + 2 ~ ( - 1 ) ~ - ~ [ ~ 2 k ~ ~ ~ + ~ .  

I nx l m B ,  7 - - ( 2 n x ) "  = - which is easily seen to be equivalent to (49.3). 
1 3  ? , , I  

n=O " '  

, 

by Euler's formula (0.2). Thus, (48.2) has been verified for 0 5 x < I .  Thus, 

co k = l  
- . - 1 n 2 n  1 ) ~(LII-UPO~ replacing x by t and integrating over (0, x )  for ~x I -= 1, we find that 

n=I 

(48.1) has been established for 0 5 x -= I .  But both sides of (48.1) are analytic 
for all complex x with Re x > 0. Hence, by analytic continuation, (48.1) is valid 

" - * / V. 

In notation slightly different from that of Ramanujan, he claims on page 365 
+hatif 

Now suppose that (49.2) were true for Ix 1 < 1. Then 
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where the inversion in order of summation is justified by the absolute convergence and is divergent when the left-hand side is greater than the right side when any 1 is 
of the latter double sum. Keplaclng x by x-, we ueuuce mat replaced by 1 + 6. This statement needs some clarification. First, the series on the 

right side of (50.5) is finite for each n and persists as long as the iterated logarithms 
(49.4) remain positive. Ramanujan evidently had in mind a test for the convergence of 

(50.2) when a, 2 1. If for n sufficiently large, (50.5) holds, then Ramanujan 
Comparing (49.4) with (49.3), we see that Ramanujan's claim is equivalent to claims that (50.2) converges. On the other hand, if one of the numerators I in the 
asserting that, by (49.1), series on the right side of (50.5) is replaced by 1 +E,  for some fixed number c > 0, 

and if there exists a subsequence a,, tending to oo for which the left side of (50.5) 
is greater than or equal to the right side with one of the numerators I replaced by 

t2  coth t dt = 0, 
1 + t ,  then Ramanujan claims that (50.2) diverges. 

which is obviously false. 
In connection with the Lagrange inversion formula, in Chapter 3 Ramanujan 

studied infinite exponentials 

An easy calculation shows that Barrow's theorems (50.3) and (50.4), even in 
the monger form when the inequality < in (50.3) is replaced by 5, are contained 
in Rarnanujan's assertion (50.5) with the right side of (50.5) truncated after the 
first term. 

1 111 Papep I l l .  
(Part I [ I ,  p. 771). L. Euler [I], [2] was evidently the first person to seriously We shall establish a version of Ramanujan's claim for complex a,. So that the 
examine (50.1), and he showed that (50.1) is convergenr if and only if e-' 5: a  5 exponentiation is unambiguous, we assume that the sequence of complex numbers 
elle. SZl 

Upside down, on page 390, Ramanujan offers a theorem about the convergence 
of the more general infinite exponential 

afl . (50.2) 

in [ l ,  p. 771, many authors have written about the convergence of (50.2). and an 
entensive bibliography on such results is contained in A. Knoebel's comprehenslve 
survey paper [I]. Most authors assume that (a,] is a real, positive sequence and 
establish convergence when e-' 5 a ,  5 elle,  for n sufficiently large. D. F. 
Barrow [I] appears to have been the only one to venture outside t h ~ s  ~nterval. 
Writing a, = ellP + E,, , where t, 2 0, he showed that (50.2) converges if 

,I/e 
lim e,nL < - 

n - c e  2e 

is well defined. We first give the following test for the convergence of ( E n )  for 
complex exDonents. 

Theorem 50.1. Let {a, } and ( E,, 1 be given by (50.6) and (50.7). reu.pectively. Set 

(in = elbnl , n ? l ,  (50.8) 

anddef ine IE , t ,n  - > 1 ,  b y @  { F,, ) r- 
( E n )  must converge us well. 

and diverges if Th? . . 
 el/^ 

lim cnn2 > -. (50.4) from Barrow's theorem for real exponents a,,, 1 5 a, 5 el1', and Theorem 50.1. 
n-rm 2e To state Badman's results concerning Ramanujan's test for convergence, we 

Furthermore, writing a, = e-C - E , , ,  where c, > 0, he proved that necessarily introduce the following notation for iterated logarithms. Setting xl = e and 
lim,,,~, = 0 and that lim,,, n * ~ , ,  = 0, for some q z 1 ,  is a sufficient -It.%, I . ( i  . .- ~ t ~ \  k , .- . - 
condition for convergence. For complex a,, the most general result is due to W. J. 
Thron [ I ]  who proved that (50.2) converges if la,l < elt' for n sufficiently large. we recursively define xk and Lk, for k ? 2, by xr := cr'-1, and 

We now state Ramanujan's claim on page 390. He asserts that (50.2) is conver- 
gent when 

x 1 xk. 

Entry 50s (p. 390). Let (a,, ) and ( E ,  1 be dejinedby /50.6)and(50.7), respectively. 
lr l . .  . 
\&"I c p  no, s u n  that jbr att 
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n l no. and (50.13). 

1 1 
In-1~. . . .  - ntc- - , I . _ . . _ . . . - 

L ( n L  ( n L ~ ( n ) ) ~  I n L l ( n ) L ~ ( n ) ) ~  L - 1 3  A L I .  . . J r An 

1, then [x,, xn+l, . . . I  also converges for each n 1 1. Denoting the limit of 
1 +...+ [X,,X,,+~, . . . I  by el+"., weobservethat Yn L -1 and that 

. . . 
e l+Yn  = [ x n , e l + Y n + ~ ]  = e(l+x.)ern~l 

(50.9) 
Thus, we deduce (50.13) with equality, and this completes the proof of the lemma. 

Entry 50b (p. 390). Let ( E n )  be defined by (50.7). where the sequence (a,] is 
real, a, > 1, for every integer n ,  and 

for n 2 no, for some positive integers ko and no, and for some c > 0. Then the 
infinite exponential { E n )  diverges. 

The next two lemmas are the primary ingredients in the proofs of Entries 50a 
and 50b. 

We first set some convenient notation and establish three useful lemmas. The and 
first lemma reduces the principal case of our problem to an equivalent problem 

1 + X: = ( 1  + ~,k)e-':~ 1 ,  (50.16) 
u 

I n  

X2 
where e j ( n )  is defined in (50.11). and where k 2 0 and n 2 2 are any integers 

[ X I ,  ~ 2 , .  . . . X n 1  := X I  and [x l ,xp  . . . . I  : = x ? .  for which the right sides of (50.14) and (50.15) are defined. Then there exists a 

Also set sequence qfirnegers (nk 1 such rkar, for n 2 nk, 

1 1 
eo(x)  := - and en (x )  = , n z l .  (50.11) c,k < x,k < c;+l. (50.17) 

r 

Lemma 50.2. Let {x,),  n 2 1, be a sequence of real numbers such that x, > 1. Proof. Let k 2 0 be fixed. For brevity, set Tn = T,!' and X, = Xt. By (50.14) and 
Define another se~uence {X,}, n > 1, by (50.1 1). T, = 01:!I /n)  < 1 .  forn > m, -c . . 

1 +X, that the implied constant is dependent on k .  For such n ,  we can expand the right 
xn = exp (_) . (50.12) side of (50.16) in a Taylor series about 0 and so find that 

Then [ x l  , xz, . . . ] converges if and only if there exists a sequence { Y. ) , n L 1 ,  1 + X, = (1 + ~ , ) e - ~ + l  
\ndnfrcrr r V .  I - n <  1 - - (1 + Tn) ( 1  - T ~ + I  + $(T,+I) '  - , ! ~ ( T , ~ + I ) ~  + Ok(n-4)) 

1 + Y,, (1 + ~,)e'"+' (50.13) I = 1 + Tn - + fUn+1l2 - %T,+I + I ~ n ( ~ n + ~ ) 2  - A(T,+I)' + O ~ , ( R - ~ ) .  
w. 18) 

P m f .  Since xn > 1. the sequence [x I ,  xz, . . . 1 is monotonically increasing. Now, by (50.14) and (50.1 1 ), expanding T, about n + 1, we find that 

- 
In - ' n + l  - ' n + ~  FJ.19) 
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for some number c, such that n i .$ < n + 1. Note that assuming this, we have, for each e 2 n;, 

k k j k k 

x.!!,(n) x e i ( n ) ,  
hm [x:, . . . . ,I = [x:. x$+, . . . . . x,, lim I,:+, , xi+,, . . . , x ~ ] ]  

T,'+, = x e;(n) = - (50.20) m - r w  m-do 

n - - r .  . 1 
J-" I .. - - x:, . . , x:, el+ll+l 

k .I i 
T;+, = C e ; ( n )  = - (e;(n))' + 1 (e ,  (n)ti(n>)' - - e ~ + ~ :  

J=" \ / 
by (50.24) and (50.16). To exhibit the existence of such a sequence In ; ] ,  we first 

(50.21) observe that, by (50.24), Lemma 50.2, and Lemma 50.3, any infinite exponential 
[,.k ,.k 
~ - n ' . . n + l )  "' 

b ;,, 
and the statement of Lemma 50.3. Denote the limit of such an infinite exponential by 

Then (50.25) will follow if we can show that 
k 

T;" = Eey(6 - 1) = ~ , ( n - ~ ) , .  (50.22) s," = T:, (50.26) 

Substituting (50.19)-(50.22) into (50.18) andsimplifying the resulting expression, 
we find that 

1 1 
1 + X,, = 1 -Ti+, - ;(T"+I)~ + - + 0 k  - 3n3 (rt3 log n) . 

for all n > n; 2 nk. 
To this end, we define, for integers k 2 0 and n 2 nk, the numbers t$ by 

L , ,L .- " -  - 
n a n .  

We will deduce (50.26) from the three inequalities, 

k , I \  

= ~ C e ~ ( n ) + $ + o ~ ( ' )  
,=o n3 log n 

and 

1 / 1 \ 

= C $ + - + O ~ ( ; ) .  (50.23) where n; is suthclently large, where in the case k = 0 ,  Lo(x)  = x .  Indeed, assume 
3n3 n3 log n that (50.26) fails fork = 0 and some n z nh. Then, by (50.29), t: z 0 ,  and so, 

T h u s , h n  
. . 17). and this completes the proof of Lemma by (50.30) and (50.14), we find that 

I Q, 150.23'1hs (50. 

L m  I d T  
... 

. .- k k ]a rpye&,y2Ju 

n 
Moreover, let xt be dejined by for some m n ,  where m is sufficiently large in terms of 12. But, by (50.27), 

this implies that S: c 0 ,  which contradicts (50.28). Thus, (50.26) is valid with 
k 1 +x: 

x,, = exp (T) . (50.24) k = 0 for all n L nh. Proceeding by induction on k ,  assume that (50.26) holds up 
to k - 1. Assume, to the contrary, that (50.26) fails to hold for some k > 0 and 
n > n;. By the same argument as used above, we find that Then 

for some m z n that is sufficiently large in terms of t;. This, together with (50.27) 
and (50.14) shows that 

Proof. We begin with the observation that it suffices to show that there exists 
a sequence ot integers (n;  J such f iat (J6Paa) is valid for each n > - n 
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We use (50.35) twice. First. by (50.35) and (50.34). 

l for m > n ? nj:, where n; is sufficiently large. Now, by (50.14) and (50.1 I ) ,  

and so 

. . 
by (50.17), (50.15), and (50.24). Recall that Euler PI, 121 showed tkatthernfmrte 
exponential with constant exponents el/' converges to e. This fact, together with 
(50.32), yields (50.28). 

To prove (50.29), we first observe that, form > n 2 nk, 
. k 

[x:. x:,,, . . , . X:I -= [x i ,  . . . . x i .  ew-+1l = e"". 

bv (50.24) and (50.16). Hence, S: 5 T,k, and so (50.29) holds by the definition 

m-1 m-l k k m - 2  
K-1. V V , .  ,, F l- a , ,  , 

1 1  - - L C l v  cjtx) 
f=n I =n j=O 

PIr , - u . 4  - L \ L j + l F  -L)--j+~ln-L)) < 
j=O J=O (50.36) 

Hence, by (50.1 1). 
I ,  

. . 
&& 
I l l  . = t - e h  - I). ~ ~ 3 7 )  'zproof of (50.30). we first observe that, by the definitionof S: and (50.24)7 for any integers m z n 2 n;. We now reiterate the argument above but this 

r X k  e ~ + ~ : + l ]  = e(l+~:)eS:41. time using (50.37) instead of (50.29) on the right side of (50.35). Employing also 
1 " '  J (3-, and the inequalities h i k  (1712 < I, 12 <k I / i ,  we find that 

Hence, S/ satisfies (50.16) with T: replaced by S: . We now fix k and write S, , T,, m-'  1 + tntk(i)/2 
a d  @ T!. and t.k, respectively. From our last observation it follows that rm > tn n 1 + 1 1 7 .  1"tk(l)/2 

(1 + ~,)e-~"+ '  = (1 + ~ , , ) e - ~ " .  i = n  \ i=n  \ ' 7 ' ;  / /  
I I 

Substituting S,,, = Tm - rm and m = n, n + 1 into the last identity, we find that > L exp (x (ftnek(i) - 6) 1 \ 

By (50.29), (50.28). (50.14). and (50.1 I ) ,  

Hence. 

provided that n 1 n;, where ni is sufficiently large. Using this bound on the right 

,. , . 

Hence, for any integers m > n ? n;, 

fhrm z 
large. Thus, (50.30) is established, and the proof of Lemma 50.4 is complete. 

Proof of Theorem 50.1. We assume at the outset that an # 1, for each n > 1 ,  
for otherwise both [ a ~ ,  a2. . . . ] and [&I, cjZ. . . . ] converge trivially. Fix a positive 
Integer n and. for any complex number 2 ,  set 

d 

and 
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For each m > n, which is valid for 0 5 r 5 1. Applying (50.44) to the right side of (50.43), we 
f - A  r h - r  

. , 
Setting 

and by (50.39) and (50.42). Observe that w > 1, since a, # I ,  and so a, > 1. 

U) := [(in+lq ( i n + 2 , .  . . 3 &I. 

we find, upon estimating the right side of (50.40), that 

Moreover, 

I[al,az, ..., a,,] - [ a ~ , a z , .  . . ,a , ] (  = 

and 

.- . 
k 

I P I  I ;f;(lbn+11[8n+2vdn+3,. . ., dm]) = w - 1. 

where c?+' and nb+l are defined in the statement of Lemma 50.3. Setting C, = 
c$+', we find that, by (50.15), (50. l 1), and (50.9). 

f (1 + (U - I)t)d(l + (U - 1)t) 

1 + loglogc, = log(1 + C,) = C, - :c,2 2 + o(c;) 

(50.46) 

Hence, by (50.6). (50.8). (50.41). and (50.42), we obtain the inequalities 

Theorem 50.1 now follows from (50.45), (50.46), and the Cauchy criterion for ,- L 
1 f ( I  + (U - 1)t)I dt.  

Proof of Entry SOa. By Theorem 50.1, it suffices to consider real exponents 

Thus, by (50.38), (50.6), (50.391, and (50.8), a,, > 1. In such a case, [a 1, a2, . . . , a,] is monotonically increasing, and so it 
suffices to show that it is bounded. Define the sequence (c,) - (c$+ I ]  by 

for n > no, sufficiently large in terms of k ~ ,  as we may assume. Therefore, for 
n 1 no, we have an 5 c,, , and so 

Thus, it suffices to show that the infinite exponential [c,,,, en,+, , . . . ] converges. 
By Lemma 50.2. this. in turn. is equivalent to the existence ofa seouenceS.. u - - 
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no ,no  + 1 ,  . . . ,  such that Sn > -1 and Lemma 50.5. For M,  N 3 no,  

1 + s, r (1 + ~ , , ) e ~ " + ' .  

But, by Lemma 50.3. 

M 

T: 2 log (F) . 
n=N+I k(M) 

exponential [al, az, . . . ] is convergent. Then, since a, > 1, so is [a,, a,+l, . . . I  
convergent for any n 2 1. Denote the limit of the latter infinite exponential by 

Define also a sequence (A , )  by 

a, = exp - 7 7 7  

h f .  From (SO. 1 I) ,  we observe that 

Thus. 

Since e , ( x )  = L> ( x ) / L i  (x) is decreasing for x 2 no, 

Thus. 
me pmor, R a- n 2 no. 

~r 
For such n ,  it follows immediately from (50.10) that A, > 0 ,  since a, > el1'. S t ~ ~ M * d x = ~ l o g  
Moreover, by (50.48), (50.  lo), (50.1 I), (50.  IS), and (50.17), ,=o L i ( x )  j=o 

for n ? no, where no,  which depends on k and c ,  is sufficiently large. Thus, 

where x$ is defined by (50.24). Therefore, by the definition of S,, and Lemma 
50.4, we find that 

and so the proof is complete. 

Recall from (50.18) and (50.49) that 
- ,. 

I + A,  = ( I  + ~ , , j e - ~ - '  C an a I + A,, = ( 1  + J,)e "-I. (5 

Thus, from (50.52) and (50.54). 

For brevity, set T, = T$, X, = x$, 

Bn = A, - X , ,  and R, = S,, -T, > 0 ,  (50.52) 

by (50.51). By (50.50), (50.23), (50.15). and (50.1 1). 

Since &.+I 1 0 by (50.52), equality (50.55) first implies that 
Bn ~2 + f r l t ( n )  - X? = ) c l k ( n )  - 1 3n3 + 0, (I) n' log n > f . e t ( n ) ,  

4, Bn 
(50.53) 2 -  

l + T ,  I f X " '  

The remainder of the argument in Bachrnan's paper [ I ]  is incorrect. We are and then, with the use of the inequality, 
very grateful to A. Hildebrand for supplying the following elegant argument to h 

log(l + x  + h )  - log(1 + x )  5 - I + m  , x, h > 0 ,  
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secondly implies that 38 

A 
1 + Xn + Bn Expansions 
1 I V  

<- -I- An R,, - B, = e-T"+l R,, - B,,, 
- l + T n  

where, in the last inequality, we used the fact that R,,+I 2 0 from (50.52). and 
where, in the last equality, we used (50.54). Thus. 

Iterating this inequality, we find that 
R > R  eL~+T"t2  

- - 
n - n+Z 

+ Br,+lern+'e 'm~2 + Bnei"+' 
One of the primary areas to which Ramanujan made fundamental contributions, 

k... but for which he received no recognition until recent times, is asymptotic analysis. 
Asymptotic formulas, both general and specific, can be found in several places 

rn 

.,Rn+,ne%+l+-. +b-, + 1 B ~ + ~ - ~ ~ L + ~ + - . + T ~  in his second notebook, but perhaps the largest concentration Iies in Chapter 13. - Several contributions pertain to hypergeometric functions, and an excellent survey - -  - 
of several of these rewlts has been made by R. J. Evans [ I ] .  The unorganized 
pages in the second and third notebooks also contain many beautiful theorems in 
asymptotic analysis. This chapter is devoted to proving these theorems and a few 
approximations as  well. 

On pages 270-273 of the second notebook, Ramanujan examines some related - - 
eT"+l.t-.+L, > 

hypergeometric functions. Some of these results were established in a paper with 
ntries 2-8 contain accounts of Ramanujan's findings described on 

~ , > > C l , ( n +  j -  1). In Entries 12 and 13, Ramanujan determines the asymptotic behavior of some 

]=I 
multivariate exponential series. These results are in the spirit of several theorems 

Since rn > 0 is arbitrary and since CF, &(n + j - I )  diverges, we have reached In Entry 16, Ramanujan derives the asymptotic expansion of 
the desired contradiction, and so the proof is complete. 

00 - t ) r~ (n+ l )  
2xi - 17' - 

\ l  + t )  n=O 

as t tends to 0 + . A complete description of the asymptotic expansion of this false 
theta-function involves Euler numbers. All of the coefficients in Ramanujan's 

Galway [ I ]  using a formula from Rarnanujan's lost notebook [ l l ] .  
Entry 17, which can probably be generalized, gives the asymptotic expansion 
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nality, respectively, of the discrete Hahn and discrete Charlier polynomials. The When x = 1 and 0 = 0.4681 1, the right side of (1.1) should approximately 
results are quite remarkable, for no one had previously realized that Ramanujan equal 0, if kmanujan's claim is correct. Since 

must have, in essence, discovered these orthogonal polynomials. 
Entry 23, which can also undoubtedly be generalized, provides an asymptotic logIog(2.46811) = -0.1015315, 

formula for a certain Larnbert series as x tends to 0. 
We quote Ramanujan in the first entry of this chapter. 

the right side of (1.1) to seven decimal places is -0.0000001. which justifies 
Ramanujan's claim in (1.3). 

in some "empty space" further down the page. With an American interpretation, 

.+ 1 
130489 quadrillion = 1.30489 x lo2'. However, in the United Kingdom and areas 

-- (1.1) 
L k = 2  klogk ."I5. The~ehe, 

Ramanujan claimed that 1.30489 x terms will give asum exceeding 5. This 
x = m ,  e = i ;  3 (1 4 is in agreement with work of Hardy 12, p. 611 and R. P. Boas Jr. 11, p, 2443, [2, 

x = 1, B = 0.4681 1; (1.3) p. 1561 who showed that 1.3 x loz9 terms are required to exceed a sum of 5. See 
also Part I [I, p. 3281. 

130489 quadrillion terms to get the value ofj. (1.4) 

We are grateful to R. P. Brent for showing us the advantage of log log(x2 +x +8) 
17, p . . (L- 1 .5, d (1 \-.7h 

to f (x) = 1/(x logx), we find that, for some constant c, Some of Entries 2-8 below, recorded on pages 270-273, are not approximations 
or asymptotic estimates, but since all the results are connected and asymptotic 

as x tends to co. From Entry 14 of Chapter 7 (Part I [ l ,  p. 166]), Entry 2 (formula (I), p. 270). For p > 0, 

i.e., the constant c in (1.5) equals 0.7946786. On the other hand, observe that 

l o g ( x 2 + x + 8 ) = 2 1 0 g x + l o g  Proof. Let S denote the double sum on the right side of (2.1). Then 

as x tends to co. Thus, 
1 

(& - j)! 

l l . 1 )  

Now log 2 = 0.6931472, and 0.101 - - - .  
(1.6) and (1.7). the constant terms in (1.1) and (1.5) are in agreement. We also see 
that if we set 8 = 3 in (1.7), then the first three nonconstant terms in (1.5) and 
(1.7) agree. Thrs then proves K a r n m j m k m a T h  fl - .  I ) 
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w-0 . . to show that f the double finite sum on j and m. Inverting the 
order of summation, we find that -- n 1 0. (2.6) 

k (-l)"+ J 
-m 

e ( k  an - j)! ( j  - m)! Multlplymg both sides of (2.6) by ( I ) " n ! ,  we see that p.6) is eqnmaterrt iu 

. , -- 

n u s ,  in view of (2.1) and (2.4), it remains to show that 
nt series. At any rate, we next establish Ramanujan's 

Entry 3 (p. 270). Let 1 5 k c Ipl, where k is an integer and p is any complex 
O o d n  > 1. defiae 

k + ~ - n  / " - I \  

where wc have employed the binomial theorem and inverted the order of surnma- %(m. k )  := ( - I I~- ' ( "  m - r  ' ) s ( r  + n - m , r  + l), (3.1, 

tion. Comparing the coefficients of p" on both sides of (2.5), we see that it softica 
- 
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1 where s (a ,  b), a ,  b 2 1 ,  denote the Stirling numbers of the fist  kind. n e n  show that 
m 

x(-1)"'- 's(r  + i + 1.r + 1 )  
14 m - r  

Thus, using (3.3) and inverting the order of summation, we find that 

is the coefficient of t i  in the expansion of 

By the generalized binomial theorem, fork < Ipl, 
1 - 1  

-, {m) (m + i ) !  
-. 

\ - I  

[ e f  - I } \ r )  m! 

Thus, the sum in (3.6) is the coefficient of t i  in the expansion of 

w k- l  1 k-1-1 =xkmxF c ( - 1 ) " - ' s ( r + i + l , r + I )  
m=O r=O r=O 

Entry 4 (Formula (2), p. 271). For each p 2 - 1,  define 8 = 8, by 

complete. 
Lastly, from (3.5) and (3. l), we see that it remains to show that the inner sum 

m < b  - 
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Proof. Multiplying both sides of (4.1) by (p + 1) and then setting p = - 1, we 
find that 

Thus, 

which is in agreement with Ramanujan's claim. 
second, letting p tend to 0 in (4.1 ), we find that 

Hence, from (4.3), 

Since (k j (k + 1))' - 1 je monotonically decreases to 0 and has a value at k = lo6 
7 

that is less than 2 .  lo-', we deduce that 

Hence, 

Returning to (4.2) and using the value of S calculated above, we find that 

= 0.413696, 

Soiving for @, we find ha t  which agrees with Ramanujan's calculation. 

&=-- 23 = 0.006912, 
10 - = Z  We have calculated S to more accuracy than needed to establish Ramanujan's 

claim. However, it seems to us that a calculator or computer is necessary to cal- 
which again is in agreement with Ramanujan. culate S to the precision needed to determine 81 to the accuracy indicated by 

The case p = 1 is more challenging. Letting p - 1 in (4.1), we see that Rarnanujan. So, we wonder how Ramanujan computed S. 
The proof that 8, = $ is considerably deeper than the previous calculations. 

We show later that this result follows from Entry 7. 

Solving for 0,.  we find that 

determination of S. 
Write 

- 

Then 

Entry 5 (Formula (3), p. 271). Let 0 < p < a .  Then 

where, for n 2 0. 

CO r ( n + k + I )  
un(a) = r, , ,,,+:,,, . .\ . 

k = o ( a + K r  I t K t L )  

Furthermore, for n 2 1, 

~ , - ~ ( a )  - un(a + 1) a - - - 
u,,(a) - un(a + 1) n 

Proof. By the generalized binomial theorem, for Ipl c a ,  
where co 

(a + n)"- '  
CO 

1 
106 

P 
n+ 1 

A = Y M ~  and B =  7 Mk. n =O (a + n ) ~  (1 + - 
k=~ k=106+l \ a + n /  

We are grateful to W. Root who calculated A and found that 
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from which (5.1) follows. 
First h f .  Recallha the definition (3.3) of the Stirling numbers s (n ,  r ) ,  we find 
that 

Thus, from (5.2) and (6.2). 
(XI n 

u.(a)  = ( - - l ) ' X ( a  k =o + k ) - n - 2 E ( n  r=o + l , r  + 112 ( -  1lr-j  (k + air-laJ 

Entry 6 (Formula (4), p. 271). Let u, (a )  be defned by (5.2). Then as a tends to 
CO. 

By the Euler-Maclaurin summation formula, (0.5) of Chapter 37, as a tends to 
m, fo rRes  > 1. 

00 

t3s.a) - E ( - I ) ~  Bm(m + s  - 2)!ar-s-m 

m=O m! (s - l)! 

where B,, m z 0, denotes the mth Bernoulli number. Employing this asymptotic 
expansion in (6.3). we deduce that, as a tends to oo, 

Inverting the order of summation on j and m in (6.4). we are led to the inner sum 

(m + n  - r)!  
(1 + n  - r ) !  
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~f 0 < m i r. where The coefficient of a-4, if n > 3, is equal to 

r 2 1 ,  then the sum above equals 0. Extracting the term for m = 0, we find that, 
from (6.4). as a tends to 00. 3! (n - 3)! 

-s(n+ l , n - 2 )  
(n + I?! 

n (n - r)! r !  -n+r- ,  
u,(a) - x ( - l ) " + ' s ( n  + I, r + 1) a 

( n  + I)! n + l  
r=O = { I S ( " i 1 ) + 2 0 (  ) + 6 c i 1 ) }  3! (n-3) !  (n + I)! 

m (m + n - r ) !  ( 1  - mh a - n + r - m - l  
(- 1)" - We employed MACSYMA in (6.5) to calculate the remaining coefficients as 2 : ! ( n - r + l ) ! ( n - r + 2 ) ,  m=r+l (6.5) polynomials in n. We then collected terms to write Rarnanujan's coefficients as 

polynomials in n to verify that the polynomials agree for each coefficient. The 
We now calculate the coefficients of a-", 1 5 h' 5 8. coefficients of a-5 ,  and a-' are, respectively, - .  - .  rlrst, me coemcrent of I ju @ 

in agreement with (6. I). 
For the remainder of the calculations, it will be convenient to use the following 

I l e  on PW 

+ 924(n ; 1) + 120(n : I ) )  5 !  ( n  - 5)! 3n4 + 2n3 - 7n2 - 6n 
152 of Jordan's book [ 1 I. - - 

96 
For n > 1, the coefficient of a-* equals 

(n + I?! 

and 

If n = 0, the series in (6.5) also yields for the coefficient of a-*. 

n - 2  2 n 1 - - + - = - + - .  - 
' *-'-"I 8 I ' " . 

4 3 4 6  h@ - ?& 
- " 224n2 + 140n + 96 

For n = 0, 1, we obtain the same value. - 
4032 

For the remainder of the calculations, we assume that n 1 N - 1. In each case, 
t h c  same formula for the coefficient of also holds for 0 5 n 5 N - 2, from The coefficients of s(n + 1, n - 6) are not found in Jordan's book [ I ] .  Thus, we 

an examination of the double sum in (6.5). used (6.6) and (6.7) tocalculate the needed coetxcients. 1 heretore, the coefficient 
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of ap8  euuals where B, denotes the rth Bernoulli number, we may readily calculate the coeffi- 
cients. With the help of MACSYMA, we easily verified Ramanujan's coefficients 
of a-N,  1 5 N 8. 

/ 8 I \  / , 1, 

Entry 7 (Formula (S), pp. 272-273). Let a, p  > 0. As p tends to oo, 

1 1 J L  

This completes the proof. 

where P2, := P h  ( p ) ,  n 2 I ,  is a polynomial in p of degree n - 1. In particular, 

Although our first proof is a natural one, Ramanujan's formulas for the co- 1 
c S ( p )  = ,, " 

employed by him. In our second proof, calculations lead to coefficienls in the 
form given by Ramanujan, but the calculations are even more difficult to perform 

1 P  
P4(p) = - + -, 

30 6 

1 P  5 f 2  P d p )  = -+  - +-, 
Second Proof. For n 2 0 and a + k > 0, 42 6 18 

Using also (5.2) and inverting the order of summation and integration by absolute 
convergence, we find that 

where we have used the generalized binomial theorem and set Moreover, for n 1 ,  

Applying Watson's Lemma (Olver [I. p. 71]), we deduce that 
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Lastly, for n 2 2 and n even, 
4- p 45p2\ - - 

(-1)n'2-LPn(p) + \42 ' 12 ' 72 ) I + 0 (-) 
- B, + !n + I)B-p + ( ( n  + l ) ( n  + 2) n(n  - 1) 

Bn - - 
p7(1 + 2/p)' 

p2 
p6 

- 
3 

.9 
L 56 771'7 / I \ 

- - - -+- - -+= 
(n  + l ) ( n  + 2)(n + 3) p2 3 p ' 3 p 4  45p5 + 
, LB Campadng (44land (434 we complete the ~roof .  

( n + l ) ( n + 2 ) ( n + 3 ) ( n + 4 )  n 2 ( n 2 - 1 )  
180 

B" - 36 &-2 Proof of Entry 7. From Entry 5 and (6.8), for 0 c p c a ,  

n(n - I)(n - 2)(n - 3)  + " (-2p)" 
120 S(a, P> = C - &,(a) 

(n + l ) (n  + 2)(n + 3)(n + 4)(n + 5 )  
n a  n!  

+ 
2700 

3, 
- - 1 (* - - e-ur - , . d t  

n2(n2 - I)(n + 2) Z P  Jo 5 tn + ( 1  - e-'Yt '  - 
270 

BIZ-2 

- 
(7.3) 

where BLj  > 0 ,  denotes the jth Bernoulli number and where P2,! ( p )  has degree (7.4) 

n -  I , f o rn  > 0 .  
Referring to the definition of S(a,  p) in (7.1), we see that S(a, p) represents an 

Before proving Entry 7 ,  we shall show that the case 8, = 5 of Entry 4 follows analytic function of a and p for Re a z 0 and Re p > 0. Likewise, the right side . . 
from Entry 7. or (1.4) is anafytic for Re a r 0 a n m e  p > 8. Tha;-tryarmtyticconrrmratru~~, 

(7.4) is valid for all a and p with Re a > 0 and Re p > 0. 
Completion of the Proof of Entry 4. Let Multiplying both sides of (7.4) by -e2", we see that (7.1) is equivalent to the 

1 - e-P\ asymptotic expansion -- rN7) 
P 1 1 "  e-(u+p)r 

In Entry 4, Ramanujan is claiming that, if the rational function within the large 2~ 
af I /p  wheo 6 = i, then the first five 

terms coincide with the asymptotic expansion of A(p)  in powersof l / p  as p tends as p tends to 00. Smce the hrst term on the right s ~ d e  of (1.3) is equal to 

to oo. Expanding this rational function in powers of l l p ,  we therefore must prove e-(n+~)rdt 

1 2 16 56 3712 
A(p)  - - - - + - - -7 + - +.. .  ' (4.4) the asymptotic expansion (7.5) is equivalent to 

p p2 3p3 3p 4SP5 

as p tends to oo. 
17 1) 
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Let us now defme the polynomials Pzn (p), n 1 1, by the expansion Hence, 

We therefore shall prove that the polynomials P2,(p) have the properties enunci- w5 = 2w4 + 2t(w4/4)' + w3t2,  
ated in Entry 7 .  

A w wdkd that Pz( &(DL ..., P&) are in- and 

deed given by the formulas displayed in Entry 7. Second, we remark that it is easy 
to see from (7.8) that the polynomial P2, ( p )  has degree n - 1, n ? 1. w6 = 2~~ + 2 t ( ~ ~ / 5 ) '  + w4t2 .  

N 1 . .  . 

SYMA, we can readily verify that each of the coefficients given by Ramanujan in 
, It 1 < 2 ~ .  (7.9) (7.3) is correct. 

n=l Lastly, we prove (7.2). Replacing p by I / p  and r by r J f i  in (7.8), we find that 

Equating coefficients of t2" ,  n 1, we find that Pz,(0) = (- 1 )"-' B*,, as claimed 00 ( - lIn Q 2 n ( ~ ) ~ z ~ ,  
by Ramanujan in (7.3). ~ X P  ( w ~ / P )  - 1 = 2 c (2n,! (7.16) 

- Next, differentiating (7.9) with respect to p and setting p = 0 ,  we tind that 
where Q2n ( p )  := pn-' Pb( l / p )  is a polynomial in p of degree n - 1. Thus, the 

( - l , .P; . (o)p = .' 
, (7.1 1 )  coefficient of pn-"' in & ( p )  equals the coefficient of p"-I in Q 2 , ( p ) .  

a .. 
ILn)! 4 Now, by (7.7), 

and 

(7.13) In particular, 

Since the coefficient of pm, m ) 0, in the Taylor series of Pn(p)  about p = 0 
equals ~,'")(O)/rn!, we can calculate the coefficients of pm on the right side of 
(7.32 for 1 < h < 5, by equating coefficients of t2" on both sides in each of 
the foregoing five equalities. These calculations are facilitated by observing from - - 

(7.7) that 

- 2B2t2 - t 2  
W,", 1 ,  - 

2 6 ' 
Thus, from (7.16), 

Equating coefficients of rZ", n > 1, on both sides, we find that 

as claimed by Ramanujan. 
Next, by (7.17), 
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(2n)! (Zn)! n(n - 1 )  
- where 

@-2'360(n - Z)! 2 . @ n !  LO ' k 

which again agrees with Ramanujan. A ~ = C ( - I ) ~ - J ~ ( . T + I C )  
by (7. la 

(7.23) 
i=O 

Thus, from (7.16) and (7.18)-(7.20), 

and where thefunctions C,,, ( x )  (defined in (7.32)) have the estimate 

C,(x) = O ( X [ ~ ' * ] - ' ) ,  (7.24) 

u&-~(O, r)uZy(O, t )  uk- ' (0 ,  t)upp(O. t )  + 
(k - I ) !  

The arbitrarily small positive number S is fixed throughout the sequel. Observe , (2n)! - (7.22) w o t i c  
expansion, In vlew of (7.24). Note also that 

can be replaced by x + b in (7.22), for any constant b. Thus, for example, if the 
+ sign of a is reversed in the denominator of (7.21), then Cm(x) / (a  + ~ / 2 ) ~ + '  is (k - I ) !  

Thus, equating coefficients of t2", we find that 

as claimed by Ramanujan. 
The remaining two coefficients recorded by Ramanujan are similarly calculated, 

and we omit the details. (We used MACSYMA to effect the calculations.) 

We now return to the task of establishing (7.6). We would like to employ Wat- 
- 9 1 

a completely new procedure seems necessary. We prove a very general theorem . - 
(Theorem 7.1 below) from a paper by the author and R. J. Evans [2]  that includes 
(7.1) as a special case. 

. . .  , . 
If r = s = 1, the leading sum on the right side of (7.22) equals I / x .  Funher- 

more, assuming the validity of (7.22), we conclude that 

q., (zn) . - 0 ,  if rn is odd, 

( (- 1)" Pz, ( p ) ,  if rn = 2n is even. 

Before beginning the proof of Theorem 7.1, we need to define several functions 

Consider the confluent hypergeometric function 

This function is related to U ( s ,  s + r ;  z), the conflum h y w  
of the second kind, by 

positive real p a r t s . ~ o t e  that when r = s = 1, T ( 2 p )  = S(a, p ) ,  where S(a, p )  ! 
is-. 

- ,-. , 
Define 

where $71 < W? z < f n (see, e.g., Olver's book 11, p. 257, eq. (10.09)~ or N. N. " r ( n  + S )  (a + n)"-' 
T ( x )  := x- (7.21) L&edev's book (1. P. 270, eq. (9.12.4)]). In many texts (e.g., Lebedev [I,  p. 263]), "=, n! ( X  + a + n Y t S  ' I U is designated by UJ. As z + oo with ( argzl _i 271 - 6% we have 

expansion (Olver [ I ,  p. 2561) where r is a fixed positive integer. and a and s are fixed complex n u d w s  with ~ 
1 
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Since r is a positive integer, U (s, s + r ;  z) can be expressed as a Laguerre p l y -  
nomial (ErdClyi [2, pp. 188-189, eqs. (/), (l4)J). 'lhus, 

k=O & 

For brevity, write, for t 2 0, 

where absolute convergence justifies the interchange of integration and summa- 
tion. The sum on n in (7.34) equals (1 - e-')-m-", and so 

where w is defined in (7.29). 
Recall that T(x) is defined in (7.21) for Re x > 0. Assuminn for the moment 

C , ( X ) = ~ ( ~ ) ( O , X ) ,  R e x > O ,  (7.32) where absolute convergence justifies the interchange of summation. Note that (5.1) 
in Entry 5 is the case r = s = 1 of (7.37). 

where the superscript rn denotes the mth denvative wl€h respect t o t .  Put (7.35) in (7.37) to deduce that, for 1x1 c lal, 
We remark that in the case r = 1, 

(-x)" r ( m  + s )  Lrn 
T(x) = - e - a ~  t r-iwm+s dr 

m-, m !  I ' l m + s + r l J o  

M 

s z = [ e - d  R e s  > 0. 

This follows from (7.31) and the formula (ErdClyi [2, p. 136, eq. (IS)]) 

Define, for each integer m 1 0, 

Note that Um(a) generalizes the function u,(a), defined in (5.2). From Euler's 
integral representation of the gamma function, 

Thus, 

Urn = dt, (7.34) 

. . nange or l n r e g r a r l o n e d  'by mso rn 
convergence. By (7.25) and (7.38), for Ix 1 i lal, 

As 1x1 + m with IArgxl 5 in -6, -wx + m w i t h  in + 6  5 arg(-wx) 5 
7 
fn - b .  I'hus, by ( I .&)  - ( I  .II(), the Integral In ( 1 . 9 )  IS convergent and analytlc 
in each variable a ,  x in the right half-plane. From (7.21), T(x) is also seen to be 
analytic in each of a ,  x in the right half-plane. Thus, (7.39) holds for all x with 
Rex > 0. 

The proof of Lemma 7.2 below makdmw u s e n f F a a m  (1 

Riordan 11, p. 361, S. Roman [I]) 

when: the sum is over all integers kl , k z ,  . . . , k, for which 
- L .n I /:,, - 

-1 5 u v  1 2 6 2 f b g  
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andwherek = kl +kp+.. .+k, , ,  

dk d' 
h p ( z )  = -h(z ) ,  and g, := gl ( t )  := -g( t ) .  (7.42) 

dzk drl 

Lemma 7.2. Fix an integer N 2 1. As x -t ca with ( Arg x 1 5 in - 6, 
and so 

N 
gi = O( t ) ,  foral loddi  2 1 (7.50) 

(7.43) and 

g, = 0(1), for ail j 2 1. (7.5 1) - - -  
unifinnly for I in IU, 1 I .  

Since g(t) 5 0 for 0 5 t 5 1, 

Proof. Let 0 5 r 5 1 and n 1 0. We shall obtain uniform estimates for the nth 
derivatives of each factor (-t) '- I ,  w s ,  e"'1-w+1f2' , and U(r ,  s+r ;  wx) of f (t ,  X )  
Ill ([.31) -l )niztns rule. 

First, for each n 2 0, 

d" , - ,,,-I - O( ,L  (7.44) Combining (7.49)-(7.53), we see that 
dt" ' -' 

7.  

since r is a positive integer. Next, by (7.30). we find that, for each k 1 0, 
d n  ex(l+l/2-**) << 1 lxlkl+k2+ ..+knrkl+k3+ - 
dt " 

w = O(1). (7.45) << ~Xt~k,+k~+.--lXlkz+k~+- d l k  << ( ~ 1 ~ ' ' ~ ~ ~  x I =U lxl l i  . 

,) - 7 s  
(7.54) 

- - - " .  . 
The result now fonows from (7.44, (7.46), (7.48), (/.54), and Le~bniz's rule. 

d" - - w' = U(1). 
drn 

17.w 
P m ~ f  of Theorem 7.1. By (7.26) and (7.39), 

For lArg z (  5 $n -6 ,  V( r ,s  + r ;  z) is analytic(0lver (1, p. 257, eq. (10.04)]), T ( x )  = A(x) - B ( x ) ,  (7.55) 
and so we can differentiate (7.27) (Olver ( 1 ,  p p . v . - ,  
fork 2 0 and lzl suficiently large, where 

J , - - u s ) ( W  - 0 1  r - I ( -  , 5 { [  - -a , ,  
m+ f ~ ( r . 3  + r ;  z) - ~ ( r )  J~ ' 'I1' - '7 '+r '  (7.56) 

dzk m =0 
and 

ndeduefrorn(7 - .45) 
get) 

and (7.47) that, as x tends to oo with lArg xl 5 kn - 6, 

rw 
e-a l ( -~ ) ' - lwse - "~ ( r ,  s + r ;  wx)  d t ,  (7.57) 

d" 
-U(r, r +s;  W X )  = O(X- ' ) ,  (7.48) where in -= arg(-wx) < in. 
dl" We first examine A ( x ) ,  which yields thc dominant part of the asymptotic ex- 

uniformly for 0 5 t 5 1. panslon of I (x j .  Using (7.37 in \ I .%), we find that 
A final application of (7.40) with h(z) = eZ' and g(t)  = 1 + t / 2  - w ~ i c l d s  r(,~) r-l 00 

= A x  = ( - l ) k ( s ) k ( ~  - r )  [ e'",+' (-uI)~ ( - ~ x ) - . ' - ~ d t  
0 0  ~ ( k , .  k 2 . .  . . k.)g,'g: . &"xu'+ " , ( 1  . 49) - e \ I  - k=o JO 
2." ur- 

where the sum is over all integers ki satisfying (7.41), wherc the coefficients 
B(k1. k 2 ,  . . . , k,) are independent of x, t ,  and-where g, is (7 "7 ..tL . 
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Again, by Lemma 7.2, 

e-l(u+a/2) OV) 
where we have expanded (e-' - l)& by the binomial theorem. It follows easily f o - 
from (7.58) that - 

r - l  

in agreement with (7.22) and (7.23). 
1 7  I*\ / 7  1 1  \ /7 C 2 \  - I I 4 - L J .  \ I + J I J .  \ r . J J I .  

and (7.57), it remains to show that 

By (7.27) and (7.31), 

f C r .  x ,  << ex~l-l"+"2' '-1 r w."(wx)-~. 

and so 

uniformly for I z 1. Since, for I 2 I, we know that 1 - w < - i ,  it follows from 
17.60) that 

In view of (7.59) and (7.61), it remains to show that 

This completes the proof of Theorem 7.1. 

We show now that Cm(x) possesses an asymptotic expansion in descending 
powers of x. 

A s i n t h e p r o o f 7 . 2 ,  w e w e b )  - - 
ing Leibniz'srule with formulas for the nth derivatives of (-t)'-', ws, eX('-W+'12), 
and U(r, s + r ;  wx) .  The nth derivatives of (-I)'-' and wS at t = 0 are constants. 

for the function@) in (7.49); ~ ( 0 )  - 0, . . ~f 
ex('+r/2-w) at t = 0 is, by (7.49), a polynomial in x. It remains to show that the nth 
denvatlve of U (r, s + r ;  wx) at r = U has an asymptotic expansion in descending 
powers of x. By (7.40) with h(z) = U(r, s + r ;  r )  and g(t) = wx, we find that 

Integrating by parts N times, we find that for some constants Ek. Usmg the asymptotic formula (7.47) in (7.63), we obtain 
the desired result. 

N-1 f(m)(O, - f (m)(l, X)e-(n+x/2) 
--l(a+r/2) : I ,  ,\ 

If s is a positive integer, we can deduce the stronger result that Cm(x) is a 
- 

(a + x/2)'"+' Laurent polynom~al. To see this, note that when s is an integer. 
m=O 

m I II k 

by (7.28) with r and s interchanged. Thus, U(r ,  s + r; z)  and its derivatives with 
respect to z are Laurent polynomials in z ,  and the result follows from (7.63) as 

Y u ( r ,  dtn s + r ;  WX) 

bh- 
Thus, to provc (7.62), it remains to prove that After stating (7.3), Ramanujan provides what is evidently a hint for proving 

I 
e-r(a+x/2)f(Nl(t, df = o ( ~ N / ~ - ~ - I  

(7.3). However, we have been unable to use Ramanujan's advice in establishing 
). (7 73. $three . . ' 9 4' . 9.  

JO 

1=0 k = O  2 =X 

= & X k L ~ ( r ,  s + r ;  z) 
dz' 

(7.63) 
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Entry 8 (p. 273). Let n be a nonnegarive inreger and suppose rhar 0 c p c a .  

o \a + n (a + n)-  >(a + n y  

p2 
5 

+--... + . . .  
om., L a I a \ 2  

L. . \ U 1 r .  \u , r . ,  

- e2p 
-- (a + n)2 exp ( tn  - 1) log ( I  - L) - tn + I) tog ( I  + L ) )  h.3 

a + n  a + n  for y:-! I l k  as n tends to w, but he expresses the asymptotic expansion in 

- e2p p2 P ' p4 
exp (n - 1) -- - - - - - - powers of l /m instcad of I / n ,  where m = i n ( n  + 1). We cannot find a "natural" 

- 
- (U + n)* ( ( a n 2(a +n)' 3(a + n)' 4(a + n ) 4  method to produce such an asymptotic series. Therefore, we take Ramanujan's 

-, 7 .! expansion, convert it into powers of I/n, and show that it agrees with Euler's 
- . . ,  P ' +-.2-+... well-known asymptotic series for a partial sum of the harmonic series. 

3(a + n)3 4(a + n)4  

2p4 
Proof. Write + T '  

p4 2nps p6 4 - - 4 - - . . .  

' 2(a + n)4 S(a + nIS ' 3(a + nI6 I 
This proves the first equality in (8.1). 

I f  A(a, p ,  n )  denotes the expression in large parentheses on the far right side 
above, then 

a 4 + 5 a z  + t 2a * 

( a + n)4  (a + n)3  
--, 

v9(Far-m - - + Ib, W e n  ~~apasrtoleurteger 
. .  . 

Then as m approaches m, 

n- l 

(a - p + n)"-' 
- e2p ,  - a+ I - 

tu 1 I' 7- ' 4  I P 
I + -  

a + n  This conclu&s the proof. 

exp(A(a, p.n)) where y denotes Euler's constant. 
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4 - 1 16 
+ --.., . A )  . .* + Theorem 10.1. As x tends to oo, n n  + I rtf5-n + 1) 

8 . 1 9 1  + 64 .29  8.2833 F(x) := - - - (10.1) 
00 logn ~ ~ o g x  

- - 
45045n"n + 15015n7(n + 1)' 36465n"n + ,,=, n2 + x 2  2x ' 

256. 140051 +... . 
+ 8729721n9(n + (9.2) 

Using Mathemarica, we expand log(l + l /n)  and (n + I)-\ 1 5 k 5 9, in powers 
of I / n  and collect coefficients of like powers of I/n. We then find that (9.2) can 
be put in the shape 

On the other hand. from a result of Euler found in Entry 2 of Chapter 8 (Part I 
[I.P. 1821), 

Proof. By partial summation, 

Letting N tend to oo, we deduce that 

since, by Stirling's formula, 

~ o ~ ~ ( u + ~ ) - - ( u + ; ) I o ~ u - ~ + o ( I ) ,  - 

as u tends to oo. Using (10.3) in (10.2), we find that 

r [ ( t  + ;)log1 - t + 011)) 
d t  

(rZ + -x2)* 

int, from elementary considerations. 

Entry 10 (Formula (13), p. 284). The property of thefinction 

Ned, from Gradshteyn and R y z h i k m .  564, formula 4.231, no. 81, 

log(xu) 2 n log x n log x 
u2+Idu=-(1+~DI-$$dU)=- x x , (10.6) 

and the inlegral 

(10.7) 
Kamanujan did not 
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Putting (10.5)-(10.8) in (10.4), we complete the proof of (10.1). 

So that we may find an asymptotic expansion of the integral in Entry 10. we 
first establish an analogue of Watson's Lemma (Olver [ l ,  p. 7 I]). 

is continuous and bounded on [k,, m). Let L, = sup ,m,,,, I F,(t)l. Then, for 

J k m C  ' J k ,  

Lemma 10.2. Suppose that 
dl 

CO 

f O )  x a n t n !  (10.9) 
n=l 

m-tnppmda-0. Thm2,asx ~ r o o o ,  
An elementary calculation shows that, for x sufficiently large, 

" arm! { ( n  + 1) 

n - l  

- .  . . 
provraea that the integral convergesJor x suffmently large, where ( ( 2 )  denotes Thus, 
the Riemann zeta-function. 

M exk,n - 

- . (10.12) d t  = Lmn 
Proof. Let IJk, e A ' - 1  I 

m - l  

-f (t) := f ( t )  - r a n t n .  

Then 

Taking (10.10)-(10.12) together, we deduce that 

as x tends to oo, which c o m p m o f  oT thdemm. 

Theorem 10.3. As x rends to oo, 

The integral on the right side converges for x sufficiently large, because the cor- 
responding integral with f,,,(t) replaced by f ( r )  converges for all x sufficiently P m o C  Wnte 
large. t dt 

As t tends to 0, f,(f) = O(tm). Thus, for some positive constants k, and K,, (eAr - l ) ( t / ( 2 ~ )  + 1)'  

Hence, 

we may apply Lemma 10.2 with f (0 = t / ( t / (2n)  + I) to deduce that, as x tends 
to 00, 

Let X be avalue ofx for which the integral on the right side of (10.10) converges. rn . _~..  @ . . .. 
Now x - 'n! ~ ( n  

5 '-'An)n-lXn+T 
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h f .  Set 

Here, y denotes Euler's constant. Ramanujan evidently intends ( I  1 . l )  to be an 
asymptotic formula as x tends to 0 + . Clearly, a 1. 

In 1907. Hardy [I ,  p. 2831, f4, p. 160) proved that Then. for a = Re s r 0, 

(We have corrected a sign error in Hardy's formulation.) The first three terms on 
the right side of (1 1.2) are identical to the right side of (1 1.1). By Stirling's formula, By Mellin's inversion formula, 

the latter senes on the right side of (1 1.f) cmv- - : x < m. 
(1 2.2) 

Entry 12 (p. 307). Leza, b > 1. Supposefirther that 

Let 

~ ( s ) x  -S 

for every puir of nonzero integers m, n.  Then, for x z 0 ,  I M s T  := d s ,  (12.3) 
(1 - a-.')(I - b-I) 

a, 1 1 

C e-unbmx = 
---- 

logalogb 2loga 2logb nr.n=O 
where Cm,T is a positively oriented rectangle with vertices at af iT  and - M * i  T, 
where T > 0 and M = N + i. where N is a positive integer. We choose T = 
T,, n 2 1 ,  tending to oo so that 

ITn loga - knI ? ~ / 3  

and 
- 

ITn logb - knl z nP, 
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To calculate the residue at 0, we use the expansions 
+- 1 - a t r ~ i / l o g b  ' 

I (z' <) (=+&+- s 2 + . . . , ( 1 2 @  r ( ~ ) = - - y +  - + -  X -  
(12.14) 

s 12 3 12 6 

1 I (-s loga) --- 1 -- 

'"I 
1 loga 

- - + - + - s + . . .  , (12.7) two horizontal sides tend to 0 as T tends to oo and that the integral over the left 
I - a +  ~ l o g a e - ~ ~ ~ ~ ~ - l  s l o g a  2 12 vertical side approaches 0 as M tends to CO, then (1 2.1) follows. 

I I I I L  w ( 1 9 U  - c  - g k i T  
(12.8) 

I I - a - S I z & / 2  and I I - b - " l z & / 2 .  

and 

X-I = 1 - s logx + is2 log2 x - is3 log3 x + . . . . (12.9) 

The expansion (12.6) can be deduced from a well-known formula found in the uniformly for -M 5 a 5 a!. as 111 tends to w. Hence, 
Tables of Gradshteyn and Ryzhik [1, p. 944, formula 8.321, no. 11. After a lengthy ra rb + i ~ > ~ - c a i t n  
calculation, we find that F -  

(1 - a-(b*iT))(l - &-(ofiT)) da = o(l) ,  

log2 x v I 1 
Ro = + log x as T tends to m. 

L b By the reflection formula for the gamma function, 

loga n2 + b y 2  +-+ ( - I ) ~ + ~ R  
log b log a log b r ( - M  + i t )  = 

(12.10) 
Also, for s = -M + i t .  I I - a-S I 2 a M / 2  and I I - b-' I 2 bM/2. Hence, 

The remaining residues are much easier to calculate. For each positive integer pa rl - M +, .,),.M-~I ,- - 
n, (1 - aM-if)(l - bM-11) dr = o(l),  

R-" = (12.1 1) 
n! (an - l)(bn - 1 ) '  as M tends to m. This completes the proof. 

and 
- 

Hence, using (12.10)-(12.13) in the residue theorem, we find that 

2nni  2mni - 2kni - and - 
Ioga '  logb '  log c 

are equal, where n, m, and k are nonzero integers. Then. for x r 0, 

I I +- 
log a log b log b log c + log c log a 

1 1 1  / 1 1 1 \ 
- 

log a log b log c 

, , = I  
Y - - 1 1 I 

I 

2 \ logalogb ' logblogc ' logcloga) 
\ 

( ;;;;) x2"m"0ga 
1 

r -- 

+, - 
12nnil Iozal<T 
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Hence, 

From (14.1), we find that, according to Ramanujan, 

m 1 T-- 
(144) - . - .  

f -  t (1 - bZnr r : l agn ) ( l  - .211xil logo) 
1 % ~  .=-, Beginning with the approximate solution h = A4/4, we solved (14.4) by the 

20 -ve ap~roximations to deduce that 

1 1 I 25 49 439 h = -A2 + -)cQ + -A6 + -k8 + -A" + -hI2 + . . . . (14.5) 
4 43 44 47 48 4'0 

Comvarine (14.3) and (14.5). we find that the two power series agrce up to the 

12loga logblogc 

I f  b = 0,  then 
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Lemma 15.1. Let p be defined by (15. I ) ,  andlet y denote Euler's constant. Then, 
far& > 1, 

1 

$ 
15, and a proof is given in Part IV (4, p. 1261. For another proof, see Nielsen's 
book 11. pp. 3, 111. 

I 

MACSYMA ( 1.45 13692349 

. . 

We tirst give K a m a n u j a n ' s -  otntry 15: It 

Next, applying the Euler-Maclaurin summation formula from (0.5) of Chapter 
QO 

Employing (15.6) in (15.5). we find that 

n bgx 1 
/(r)dt - - 2 Iogx + log 

where f (r) = (e' - I)/  t .  Now, 

constant 4 log p - in the definition of n is replaced by any other constant, the n I D ~ X  

error term is O(l/p).  s = l  f ( t ) d t + m + l o g p + ~  2~ 

Entry IS (p. 318). Ler S be dejiined hy (15.2). and let n = (p + i) log p - & be as p tends to oo. Thus, it remains to prove that 

a positive inreger. Then, as p rends to oo, ). f (Y) 1 
f ( t ) d ~ = ~ + O  - 

t 1 5 3  
-2 . (15.8) 

s = log P + o ( ~ - ~ ) .  Jn logx 'I/ 
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Now, Proof. Setting 2 = u& and apply- 

By the first mean value theorem lor integrals and (1 5.9), 

for some value u such that n logx < u -c y. By the mean value theorem, there 
exists a value v such that u < v c y and 

Entry 16 (p. 324). As t tends to 0 + ,  

where the last equality follows from (15.9), since f' is bounded on (u,  y). Using The function on the left side of (16.1) is not a theta-function but is a false 
(15.1 1) in (15.10). we complete the proof of (15.8). theta-function in the sense of Rogers [3]. In fact, we shall obtain a more explicit 

asymptotic expansion, which enables the calculation of further t e r m  in the as- 
ymptotic series. It is interesting that Ramanujan appended an abbreviation for So as not to interrupt the proof of Entry 16 below with two calculations, we 
"asymptotically" after the series on the right side. We are unaware of any other now set them aside in two lemmas. 
instance in the notebooks where Rarnanujan used this word. U W y ,  he wrate 
"nearly" or "very nearly." 

Lemma 16.1. Ifa  and O are positive and n is a nonnegative integer, then 

Proof. Let - + 
" n . Z2ne-~'/0dZ = !?&!! 
2 2 " ~ !  . 

so that 8 is small and positive. If a > 0 and n is a nonnegative integer, by Lemma 
r 16 7, - - hmkqqdymg Cmchy's theorem, we find that 

Multiply both sides by 2(-1ln and sum on n ,  0 5 n c co. Upon inverting the 
order of integration and summation, we see that the resulting series on the right side 

integral also converges absolutely, and so the inversion is justified. Hence, 

Lemma 16.2. If a and 0 are positive, and n is a nonnegative integer, then Now recall that (Abramowitz and Stegun [ I ,  p. 8041) 
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~ K Z Y  Ej. j 1 (L denotes the jth Euler number. Thus. for Id < nj4. We now choose Q a. - - 

2N+'C2e 
l R ~ l  < - f i  

{ U N  + $1 + f i } ~ ~ + l / ~ .  (1 6.5) 

n=u . ' 
In conclusion, by (16.4) and (16.5). we haveobtained the asymptotic expansion 

where the positive constant CI depends on N but not on z.  If 0 c a 5 1 and 
03 1 - , O + l )  

121 2 n/4 on the contour (-00 + ai, m + ai), hen  7 v( - I )  - 'V ( 1  - +t)''4e (-1)"E2n - (1  + f \  61 

\ l  + t ]  
. ." 

n=O { l - t )  5 22"n! [ l - i ]  'M 

are bounded functions of both a and z .  In particular, observe that displayed on the right side of (16.1). 

cos((2n - l)rr/2 + i a )  = i(-l)%inha, 

where, by (16.3), 

1 ou+oi &., (-l)tlEb L )  
IRNI = - 

- secz - >- 
n =O (Zn)! 

Then 

and 

C2 C W I  - ( r + r u ! 2 , ~ .  - - 
a ~ n s  1-69 le  Proof. We first prove (17.1). After a simple calculation, 

2 ,,2-& 2 .  2 % .  ttlng u = x2!0 and 

evaluating the resulting integrals in terms of gamma functions, we find that 
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(n \3/2 p - n 2 / ( d x )  f l  - + - 2 r 2 j x  \ - - . . .  
\x 1 !- -- 1 ' 

which agrees with (17.2) in the case n = 1. 
- - &+2. Having proved (17.2) for n = 0, I ,  we assume that (17.2) is valid and that it is 

Thus. (17.1) has been shown. also valid with n replaced by n + 1. We shall then use these two equalities and (17.1) 

We are pleased to present M. L. Glasser's proof of (17.2). We induct on n. to establish (17.2) with n replaced by n + 2 .  By straightforward differentiation, 
-2 d ,  U U 

00 
~ n + 2  = -Un + 2 4 dx 

uo = I + 2 x ( - l ) k e - ' 2 . r  = 9(-epx) = tY4(0, I X / K ) ,  1 (n\n+l/z 
k- I -- - # - , z / ( ~ ~ )  i n 2  - - n3(n - l ) x  I 2n + 1 

2"-I \ x l  \ 4 4n I 

2x 
in the notation of Ramanujan (Part 111 [3,  p. 361) and, e.g., H. Rademacher [I ,  p. 
1661, respectively. Now (Rademacher [ I ,  p. 177]), + (2n + l)n(n - 1) - . . .  +?-- n(n - 1) + ...-- n(n - I) +... n2 

2x2 4x 4x n2 

Entry 18 (p. 349). Let 

Then S(x, n)/n has the following successive approximarions: 
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We now want to keep the number of terms, k, constant and choose the points 
I , ,  1 5 j 5 k ,  so that (18.10) is exact for polynomials of degree as hiah as 
possible. We will show that, if the points t , ,  1 1 j -  5 k ,  are appropriately &sen, 
(1 8.10) is exact for polynomials of degree 2k - 1. Then 

where rk- I (r) is a polynomial of degree k - 1. 
Now let ( w k ( t ) } ,  0  5 k < 00, be a set of polynomials with wk(t)  of degree k ,  

which are orthogonal on [a, bl with respect to the measure d a ( t ) .  Then, of course, 
wk(t) is orthogonal to all polynomials of demee < k. Then. by (18.1 1L 

[ f d - ib { (  a t  = [ w t t )  a = 0 (18.12) 
where Ja Ju Ja 

If 
a - - b* - 13 BU(' f i  - - J $ ! 6 n 4  ", - 45n2 + 164). !18.5) 

:= i j , k  := lb W j , k ( t )  d a ( t ) .  (18.13) 

Proof. Let f ( t )  be a continuous function on [a ,  b], and let d a ( t )  be a nonnegative 
measure on [a, b ] .  1 he problem of Gaussian quadrature is to approximate 

191 
'Jr 

by a finite sum which is exact for all polynomials of as high a degree as possible. 
Let a i I ,  < t2 < - . . < tk < b and set 

and we have an exact quadrature formula of k terms for a polynomial of degree 
2k - I .  In general, for an arbitrary continuous function f (I)  on [a ,  bL the Gaussian 
quadrature approximation of (18.6) equals 

and j= I 

WkV) l z j r k .  (18.7) Other representations for A,, given by (18.13). exist; e.g., see G. Szego's book wj.k(t) = 
w; ( t j ) ( t  - f j ) '  11, p. 481. TWO of these representations show immediately that A, > 0. 

T h h  We now apply this theory to f ( t )  = cp(x - n  + 1 + a). Since S w  

k 
of n terms, we want d a ( t )  to be a discrete measure weighted at the integral points 

L { ( I )  := f ( t j )wj .k( t )  (18.8) 0, 1,2, . . . , n - 1. This leads us to the Hahn polynomials, which were introduced 
by P. L. Tchebychef 11 1 in 1875 and which are c l a n . q a m m & t  of , - I  

is a polynomial of degree at most k - 1 such that 

I ,  = f t ,  I 5 j 5 k .  

Now let f ( I )  be apolynomid of degreenotexceeding k-  1. Then f ( t )  = ~ [ ( t ) ,  
since, by (18.9). these two polynomials of degree k - 1, or less, agree at k points. 
Hence, by ( l 8 .8 ) ,  For 0 5 m ,  n 5 N ,  they satisfy an orthogonality relation of the form (A. F. 
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for certain constants c,,, , 0 5 m ,  n < oo. Hence, by ( I  8.13), 
In our application, we want a = = 8, so that the weighrs eqoal 1 ar each 

nonnegative integer k,O 5 k 5 N := n - 1. Thus, wk(t )  = ckQk(t; O,O, N )  A1 = ,/z la-' (f - r2) da(1) 
for some constant ck.  0 5 k 5 N. Although the value of ck is not needed in n 2 -  1 

appkations to Gaussian quadrature, we see &at, by (1 8.1 >), 

( -1 lk(2k)!  (N - k ) !  
Ck = 

/ l . l \? A l l  

We are now ready to calculate the four approximations (18.1H18.4) claimed 
by Ramanujan. 

Letk = 1 .  By (18.7), ~ ~ , ~ ( r )  = 1, and by (18.13). 

and, by a similar calculation, 

n 
A 2 - -  - - ' I )  TI) - - - 

i n 2 -  I JO 2 '  

Thus. by (18.14). the second approximation of S(x, n )  equals 

QI(l; O , O ,  N) = 1 - -. as claimed in (1  8.2). 
1 .  

Third, let k = 3. Then, by (18.15), 
Hence, 11 = N / 2 .  Hence, by (18.14), the first approxirnation to S ( x ,  n )  is 

12r 30tU - 1) 20r(r - I)(t - 2 )  
1 e l .  \ - n l j  \q, - Q ( t ;  o,o, N )  = 1 - + - - - - 

as claimed. 
Second. let k = 2. Then, by (18.151, 

We therefore must solve 

- 

- .  - - . -  . - 
61 6 t ( t - 1 )  

y2u; u, u, m )  - I - - I nese roots are rouna to tx 
N I N(N - 1)'  

We therefore want the roots of 3n2 - 7 
, 2 t 2 = n - 1 ,  and 2 t 3 = n - I +  

6r2 - 6 t N  + N(N - 1 ) = 0 ,  
Thus, 

1 - 12 t - 11 
w1.2(0 = - and wz.z(t) = --a 

nZ - 1 n2 - 1 - , v 5 
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Using(18.16)-(18.19) in(l8.14),weobtainRamanuian'sapproximation(l8.3). 
Fourth, let k = 4. Then, by (18.15). 

We used Marhemutica to determine the roots of Qr(t: 0.0, N) = 0 and found that 

I + - -  4 ( n - ~ ) ~ - ( n - l )  t 3 = ~ ( ~ + , / ~ ) ,  2 t 4 = i ( N - / q ) ,  (1 8.20) 

where a and jl are given in (18.5). For brevity, set A = (a + @)/7 and B = Thus, by (18.13). 
(a - 8)/7. By (18.13). 

*"-I ( I  - [*)(I - t3yJ - t4\ 
t A I  = ) dt 

([I - t>)(tl - t3)(tl - 14) 

I \ - - 
14 f n - '  , - 

, 11 
k + 13 + sp + h 1 3  + er4 + LAP - ~ Z W )  W l )  + 1. ( n -  112+(n- I )  

4 14 ( n 2 (  - 1 (3(n - I) I 
J\ (n - l)n(2n - I) 

- -- - 
2 A /  6 4 ! 2 

-- 
BJA \ 

6 3n2 - 7 \ 

1 4 ( n ( n 2 - I )  n ( a - 8 ) )  
Sa&2 - 1) - -  --- - 

- - (18.17) b \ 24 56 ) 
6(3n2 - 7) ' 

By almost an identical calculation, (18.21) 

5n(nz - 1) 
A3 = (18.18) The calculations of A2, AJ, and A4 are similar, and we find that 

6(3n2 - 7) ' 
14 (n2(n; 1)' - ( 3 ( n  - I)  (n - l)n(2n - 1) 

Lastly. by (18.13), A 2 =  -- 
2 + )  sJ;i 
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1 
- n - 1 - ( ( n  - 1)' - A)n) 

1 

and 

and 

2 1 

Proof. First, in the notation of Entry 18, set n = 7 and u,, = p(x - 8 + 2k), 1 5 
k 5 7. Then J(n2 - 1)/3 = 4, q ( x  - 4) = uz, and (p(x + 4) = u6. Hence, 
(18.25) follows from (18.2). 

Second, letn = 26anduk = (p(x-27+2k), 1 5 k 5 2 6 .   hen ,/- = 
15, (p(x - 15) = u ~ ,  and p(x + 15) = uzl. Hence, (18.26) follows from (18.2). 

u\ 1 / L /  1 1  - 14,-T, 1:- 2 12. 
- - 

10, 

p(x - 10) = UZ. p(x + 10) = u12, and ~ ( x )  = u7. Hence, (18.27) follows from 

,letn = 22anduk = q(x-23+2k), 1 5 k 5 2 2 . ~ h e n d m  = 

(18.24) 17, 

5(n2 - 1) 161 -- - 
8(n2 - 4) - - - 128 

Using (1 8.20)-(18.24) in (18.1 4), we obtain Rarnanujan's last approximation 6(3n2 - 7) 2 .289 '  6(3nL - 7) 289' 

I (18.4). (p(x - 17) = u3, (p(x + 17) = u.za, and (p(x) = ~ 2 3 1 2 .  Thus, (18.28) follows from 

After his four approximations, Ramanujan illustrates his theorem with five ex- 
amples. In all examples he uses a different notation from that of Entry 18. 

. , 

Fifth, let n = 21 and uk = p(x - 22 + 2k), 1 5 k 5 21. Then cr = 1310, B = 

958, 

Corollary 18.1 (p. 349). We have the following approximafions; = 18, 

(p(x - 18) = u2, ( ~ ( x  + 18) = 2420, (p(x - 4 m )  = ~ l l - 2 m .  and 
p(x + 4 m )  = u l l + 2 ~  Lastly, replace u, by cp(a). Then (18.29) follows 

To the best of our knowledge, with the exception of this and the following entry, 
Rarnanujan's notebooks, published papers, and unpublished papers give no indi- 
cation that Ramanujan had any knowledge of Gaussian quadrature or orthogonal 
polynomials. Thus, Entry 18 is very remarkable, for it shows that Rarnanujan must 
have denved some ot the pnnclpal underlying ldeas In these theones. 
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&y ~ ( t )  he conrinuousfor r 1 0. Then thefunction which has r = x as its zero. Since wl.l(t) =- 1, by (18.13). 
a, x" 

O0 xn 
e-' v ( n )  - ,I, = /* da(r )  = e-' - = 1. 

n=O " !  "4 n! 

has the successive approximations Hence, our first approximation equals 1 . (p(x), as claimed in (19.1). This approx- 
imation is exact for constant and linear polynomials. 

( ~ ( x ) .  (19.1) Second 

J-' - 1 2r t ( r -1 )  
2 

C2( t ;x )= 1 - - + - 
2 JiTG X x2 ' 

which has the zeros 

and t l , t z = x + f  f :-. (1  9.5) 

So, by (18.7), 

t - ~ - ; + i J 1 + 4 ~  
~ 1 . 2 0 )  = 

(19.3) 
Jiai 

and 

y [ I ]  first observed that the orinin of these 
approximations is found in Gaussian quadrature related to the discrete Charlier 
polynomials. It is again remarkable that, withno apparent knowledgeof orthogonal 

Proof. We apply the general theory of tiauss~an quadrature outlined in ihe 
of Entry 18. Here f ( 1 )  = cp(r), and the interval [a, b]  is replaced by [0, m). The 
discrete measure is realized at the nonnegative integers and is weighted by the 
Poisson distribution 

The corresponding polynomials are the Charlier [I ]  polynomials defined by (Niki- 
forov. Suslov. and Uvarov [I. p. 351) 

C,(t; X )  := zFo(-n, -1; -I/x), 0 5 n c oo. 

They satisfy an orthogonality relation 

The approximation (19.2) now follows from (19.5)-(19.7). This approximation is 
exact for all polynomials of degree 3 or less. 

for certain constants ckn , 0 5 m,  n < w.  
Next, 

Lintheap- 31 311-1  t u - l ) ( t - a  ---+LA-. 
proximation (1 8.14). x x2 x 

First, The three roots are very complicated, and upon examining (19.3). we see that 

C , ( ~ ; X )  = 2FO(-1, - I ;  -1- - I/X, 
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his approximations would have been exact for all polynomials of degree 5 or . . . . . .  Entry 20 (p. 350). Assume that the product on the lefr side o f  (20.2 1 conve 
e c ~  = x a s o r r e d m e  (p(x) is mono~onically increasing, and ~ ( 0 )  > 0. Then (20.2) is valid, when c is  

interpolation points, because it is the expected value of the Poisson distribution. given (a~~roxirnarelv) bv (20.9) below. . . ,, , . , 
Amazingly, Ramanujan found the proper interpolation points, 

I * J1+12r- Proof. Taking the logarithm of each side of (20.2). we find it suffices to show that 

t 2 ,  t3 = X + 
2 1 

" a 
; ~ o g a  + Y l o g  I + - - - /"" (p-'(ax) 

k )  lngr ' I 
1m 3 i  

so that his approximation is exact for all polynomials of degree 4 or less. It is a & = I  v ( ~ ) / a  ~ ( 1  + x ) ~ *  

tedious calculation to verify that (19.3) is exact for q(x)  = I ,  x ,  x2, x3, x4, and 
we resorted to Marhematica to check the right sides of (19.3) for x 3  and xJ. Thus, 
(19.3) is not a Gaussian quadrature formula. 

Since p(0) > 0 and p(x) is monotonically increasing, 

In his first approximation, Ramanujan actually writes By the intermediate value theorem, there exists a number xu ,  0 5 x, 5 1, such 
\ that 

b0 8 
a 

s a : = x , ( l + & ) = l  lOg(l+-) dx 
k = l c ~ ( ~ )  

as the -mation." Undoubtedly, U denotes a drRerentid operator, and 
so the latter equality is trivially true. However, we have no idea why Ramanujan = la lob (1 + &) dx - LC log (1 + &) dr 
introduced this series of differential operators. Perhaps this provides a hint to 
Kamanujan's denvatlons. = 1, - 12, (20.4) 

In Entry I0 of Chapter 3 (Part I [ I ,  pp. 57-65]), Ramanujan provides an asymp- 
totic expansion for e-" EzO=, (p(n)xn/n! as x tends to 00. As to be expected, the say. By examining the inverse function of log(1 +a/cp(x)), we see that 
form of this expansion 1s qulte dliterent from the approximations given in Entry leal + ~ J / V ( O D  

19. - 

On page 350, Ramanujan claims that 
Setting x = I /(e' - I), we find thac 

('D. 1) 

"when a is very great. The above t h e o ~ m  is very uscful to know." Prior to writing A\ 
.'.I. 

(20.1), Ramanujan gives the special case when n = 2. As might be expected, 
Ramanujan does not give the value of c or any hypotheses about (p. Although the s, = 
form (20.1) was perhaps convenient for applications that Ramanujan m y  have (20.5) 

had in mind, we shall make a simplification. Suppose we let f (x) = (cp(x)/a)" . 
Next, reintroduce a by replacing f (x) by (p(x)/a. After a change of variable in 
the integral, we find that 

Comparing (20.5) with (20.3). we see that (20.3) has been proved with 

loge = -12 + loga. (20.6) 
We shall make the -e . . . . 

(20.2) F o r O s x  5 x ,  5 I ,  

\a/ - l o g ( l + a / ~ ( x ) )  = logs-l~gcp(x)+log(I+(p(x)/a) = loga-log (p(x)+O(llaZ 

at the outset that n = 1 .  as a tends to m. Thus, 

The following theorem is not as explicit as we would prefer, but its formulation, 
duetaLI. .  "71l7\ 

\ I ,  \ . I 1  
I 
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say. Stnce p IS ncreasmg, Entry 22 (p. 351). Let xo, X I ,  x2, . . . he the real roots of(21.1). Then 

xa h r p ( 0 )  5 13 5 x, logp(x,), 

so that by the second mean value theorem for integrals, 

0 j h - r., log y(0) = r log W o d x  = (x. - 6,) log 0 (20.8) 
o d o )  d o )  ' . . .  

for some number L. 0 < I;, < xa. Combining (20.6)-(m!, we d a h u A a  

This completes the proof. 

It seems likely that, in many cases, 

Proof. The real roots of F(x) = 0 are -xo, -XI, -xz,. . . . Then -x,, -x,w, 
-xnw2, 0 5 n < a, constitute all therootsof F(x) = 0, where w = exp(2xi/3). 
Nnw . . - 7 .  

( x  +xn)(x +x,w)(x +x,,w2) = x3 +x:. 

We now apply the Weierstrass product formula. From the definition of F in (21.1) 
and the fact that the infinite product in (22. I) converges, since x, -- n(2n + ] ) / a  
as n tends to m, we easily deduce that F(x) has the representation (22.1). 

The next entry is recorded in Ramanujan's Quarterly Reports and is discussed 

Entry 21 (p. 351). Consider the equation 

Proof. First. 

(-X3)k ,-r + e-iux + ,-w2r . - .- -- - We apply the Euler-Maclaurin summation formula, (0.5) of Chapter 37, to 
- (31 1 )  

k=o (3k)! 3 (1 - , ) (I  - X ~ + ~ ) X ~ ' + I  
f ( t )  := 

where o := exp(2ni/3). Then rhere exist an injinite numberofposirive roots. They (1 + x4+l)(1 + x4+') ' 

I hus, 
inreger. More precisely, if 

M 

h = e-n(2n+1)fi/2 
n = l  J 0 rr U 

then these roots are given by  (23.2) 

n(2n + 1) 1 (b2 13b4 28 .31  49 - 52 .57  Let x' = u. Since - 
2 ( . . + 3 ! . . +  j! I 7! 3 - - 4 x - 4  4~ ' x J  

76 .79884 .91  ,, \ 1 - u4x2 1 + u4x 1 + uJx3 

Lastly, all roots of (21.1) are given by  x, w x ,  and w2x, where x is given by (21.2) 
and w = enp(21ri/3). 

we find that 
8 

- . .  . 
(t - it1 - ;) J , ( t )  dt 



564 Ramanujan's Notebooks. Part V 

( 
4x2 4x 4x2 

x 3 + - + - + -  d u  
1 - u 4 x 2  I + u4x I + u 4 x 3  n 1. 

= d l ) ,  
US Kesults 

(23.3) 
in the First 

as x tends to I -. Setting x' = u also in the first integral on the right side of (23.2) Notebook 
and using (23.31, we find that, as x tends to 1 -, 

Using Muthematica, we find tba~ 

In this last chapter we collect together some miscellaneous results from the 
unorganized portions of the first notebook. Most are from analysis, with some . . 

pmamrv-tonypergeomemc tunctlons. 
We use the familiar notation associated with hypergeometric functions; e.g., see 

Part 11 [2, p. 81. In patticular, for each nonnegative integer n ,  

r ( a  + n) 
(a),, = -. 

r ( a )  
I 4 1 

- + -A log(l+ J 2 ) .  (23.5) Page numbers after entries refer to the pagination of the Tata Institute's publi- 
4 8 4J? 

Using (23.5) in (23.4) and combining the result with (23. I), we complete the proof 
of Ramanujan's asymptotic formula. Entry 1 (p. 72). If 

then 

where Q ( 1) = 0 and. for n 1 1, Q (n) denotes the total number of prime factors 
ofn  counting mulripliciries. 

Proof. By ( l . l ) ,  
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It is easy to see that (- 1)""' is completely multiplicative. Hence, CAI,(-  
is multiplicative. For each pfime p and positive integer n, 

Now. 

Entry 2 (p. 94). Ifn is a positive integer, 

(-l)nn Ih-1) /21 
d x = f -  (-n)k(n - 2k)"-', The remainder of the proof of (3.2) is similar to that for (3.1). 

2"r(n)  '-0 

= 

where the plus sign is taken ifn is even, and the minus sign is chosen ifn is odd. 

1, if n is even, 

Entry 4 (p. 104). Let x and y be complex numbers such thar x/y is not purely 
imaginury. Let (p(z) be an entire function such that 

car (i sin-' (i fi)) = cos (: log (JT~; - fi 
Y' ' 

~ I B "  0,  if n is odd. = f ( G - ) +  ( A )  1 /3 

Hence, by multiplicativity, 3 I I 

= ~ ( J I + x + J ; ) '  + ; ( J I + X - J ; ) ' ~ .  
1, if r is a perfect square, (3.4) 

0, otherwise. 
&ing (3.4) m ( 3 3 ,  we aeduce (3 . I )  - 

Using the equality above in (1.3). we deduce (I .2). Next, Entry 35(ii) of Chapter 11 (Part 11 12, p. 99]), with x2 replaced by -x, 
states that 

In fact, Ramanujan claimed different values for the integral and crossed out  the f (z) := a x  sec ( fnxz)  sech ( f  nyz) { ~ ( x y z )  - (p(-xyz)) 
entry. The evaluation above appears to have been given first by 0. Schlomilch [I] . . ., m l 8 6 & ~ b y o u t ~ b y Q S ~  tends to 0 as z rends to 00. Then 

KeEkiC [l], the integral of Entry 2 is evaluated by contour integration. In 1980, E. 
'I; )I. Wang [ l ]  subm~tted bntry 2 as a problem; solut~ons by K. L. Young and.1; 
M. Apostol and several references to the problem's appearances in the literature 
were given. 

- - 

Entry 3 (p. 94). For 0 < x < 1, 

1 2  1 ~ F I  3 ;  ?; -1) = 
(~l+x + J;;)"' + (m - J;;)I1' 

(3.1) ((P ((2n + 1)ix) - (p (-(2n + 1)ix)J. 
2 m  (4.1) 

and 

Proof. From Entry 35(iii) of Chapter 1 I (Part I1  [2, p. 991) with x 2  replaced by 

Proof. Observe that f (z) has simple poles at z = (2n + I)/X and z = (2n + l ) i /y  
for each integer n. The poles do not coalesce because x/y is not purely imaginary. 
Letting R, denote the residue of f (2) at a pole a ,  we easily find that 

(-'In sech ( 2r ) R ( z n + ~ ) l x  = -- 2x 
r(2n + 

(p((2n + 11y) - p(-(2n + 1)y)1 

cos (4 sin-'(I&)) 
r 

4 1  +I 

and 

- -- - (T':'" sech ( x(2n + 1)x 
R@7+14? {(P ((2n + 1)ix) - q (-(2n + 1)ix)) . - 

LY' L Y 
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w t h l l f i f i n r l h m * m  . . 'sing from the poles f (2n+ I ) / x ,  Ramanujan's expression (6.1) is erroneous. We are very grateful to Richard Brent 

n 3 0, is for pointing out to us that Ramanujan, indeed, is correct. Moreover, he kindly 
provided the proof below. 

- ( I)"= sech 
(n(2n + 1)y 

2x Proof. We shall prove more precisely that the maximum value equals 
(2n + - x2z2 1 101 

+ a n  + l b  '!y, n > 0, 7-- (6.2) 
equals 

1 1 5 2 ~ '  4147*" 

as a tends to oo. Since 
- I 1 y l  . (n(2n + 1)x \ 

\ - /  YZl  s fxh 1 uu / I \ ] / WA --- - 2y ' ( p  ((2n + 1) ix )  - p (-(2n + 1) ix ) t .  1 1 5 i s  4 1 ; 7 k 5 + O ( - ) = - (  a7 1152us I - -  360a2 
(2n + 112 + y2z2 

1 
I - Since f (2) tends to 0 as z tends to m, we conclude from the Mittag-Leffler - 

theorem that 

n(2n + I)y 
(- sech - - 1 

f ( 2 )  = xz r) ,h + 6. - :\, ) Ip((2n + - p(-.n + 1 152a3 + 323.21 + O ( l / a ) '  
n=D 

this would confirm Ramanujan's claim. 
n(2n + 1)x 

(-1)" sech Let f (a) := log r ( a  + 4). By Corollary 1 in Section 6 of Chapter 8 in the 
2 y  

- ryz [p ((2n + 1)ix j - p i -@n  + 1 jixn . 
,I=O (2n + + y 2 ~ 2  1 7 

f l (a)  = logo+ - - - 
Letting z = 1 ,  wc deduce (4.1) to complete the proof. 24a2 960a4 +o($)-  (6.3) 

Further differentiations of the asymptotic expansion of f  '(a) are valid by a general 
theorem on the differentiation of asymptotic expansions (E W. J. Olver [I ,  p. 21 J), 
and we have 

Proof. By Entry 34(i) in Chapter 13 (Part 11 12, p. 237)), for 101 5 n, and 

Replacing 8 by 6, - n in (5.2), we readily deduce (5.1) to complete the proof. 

Entry 6 (p. 120). The maximum value of a"/ r ( x  + 1) is equal to 

a' 'f- I /2 
- - sup - - 

X ~ O  W + 1 )  r ( a  + $1 
Wa),  

,,a-1/2 / 1 \ where 

r ( a  + 4 )  ( l15Zn3 + 323.20) 
(6.11 

a E r ( a  + i)  
H(a) = 

r ( a +  + E ) '  
(6.6) 

"very nearly." 
and where (see Part I1 [2, p. 228]), if the maximum is obtained at x = x(a ) ,  

This entry is the same as Example (i) in Section 25 of Chapter 13 in the scc- 
ond notebook. However, after proving a slightly weaker version of the result in 

1 3 

Pan 11 [2, p. 2281, we unfortunately claimed that the appearance of "323.2a" in 
(6.7) 
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as a tends to co. Now, by Euler's product formula for I%), 

Using (6.3t(6.5), we find from (6.6) that, as a tends to ca, r ( m  + i p ) r ( n  -nz - ip) 

From (6.7). 

2 1 1 6 =--- 
576a2 2560a4 + o (5) 

and Using (7.4) in (7.2) and (7.3). we readily deduce (7.1). 
1 

E 3  = -- 
( 2 4  ) We consider the next result as a formal identity. 

as u tends to m. Using these expansions and (6.7) in (6.8), we conclude that Entry 8 (p. 158). If 

which is the required result in (6.2). then 
r h r w 

Entry 7 (p. 138). Let n > m > 0 and let p be real. Put f i ( x )  = cosx. sinx. for 
j = 1,2, respectively. Then. for j = 1, 2. 

Proof. It is not dimcult to identify I, in terms of beta functions. More precisely 
j), 

1 
11 = -Re (r(m + ip)r(n - m - ip)) 

r ( n \  
(7.2) 

upon using a familiar integral evaluation (Gradshteyn and Ryzhik [ I ,  p. 515, 
formula 3.896, no. 41). This completes the proof. 

The next e n y  is somewhat obliquely stated by Rarnanujan, who used a notation 
peculiar to him (see, e.g., Part I [ I ,  p. 1381). 

- \ ,  

and 
Entry 9 (p. 184). lf Re f i  > Re a, then 

1 r(a + I)  
* - _ _  (7 71 ( $ ( x + B + l ) - $ ( X + o ! + l ) ) d ~ =  

r ( n ) -  
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which proves the second equality in (1 1.1). 
'lo prove the first equahty In 0 1 .TI, we nrst establlsn ageneral transrormatlon tor 

- - 
- - - 

Proof. We havc 3F2(a, b ,c ;d ,e ;  l).Supposethat Re(d+e-a-b-c) z OandO c R e c  c Re e. 
r a 0 r ( ~ + a + 1 ) ,  ., Then, by inverting the order of integration and summation, we find that 

.lo r ( x + p + l ) ' "  , :I 1' p ( 1  - x)e-c-l 2F,(a, b; d ;  X) dx 
- - - 

& (a)&(b)& r ( c  + k ) r ( e  - C )  

Entry 10 (p. 194). For each nonnegative integer n ,  r w e  - C? - - 3F2(a, b , c ; d ,  e; 1). 
Ve)  

0 1 . 3  

On the other hand, by a fundamental transformation for hypergcometric functions 
(W. N. Bailey [I,  p. 21) and by the same argument as given above, 

Proof. This result follows in a straightfornard manner from Entries 29(b), (c), I 

(d) of Chapter 10 of Ramanujan's second notebook (Part 11 [2, pp. 39-40]). * c -  I ( ]  - X ) d + ~ - ~ - b - l  - I 2 F , ( d - a , d - 6 ; d ; x ) d x  

We are grateful to R. A. Askey for providing the proof of Entry 1 I given below. 
00 

- - (d  -a)k(d -b) i  r ( c + k ) r ( d + e - a  - b - C )  

k=o (d)kk! r ( d + e - o - b + k )  
Entry 11 (p. 206). If0 c Re n < inf (Re a + 1, Re B + I), then 

r w  ,n- I  
- r ( c ) r ( d  + e  - a - b - c )  d - a , d - b , c  1 

2-- zFl(a, + B; -XI dx r ( d + e - a - b )  r L L d r d + e - a - b J  
0 I + x  (1 1.3) 

Combining (1 1.2) and (1 1.3), we deduce that 
- 

r ( a  + B - n )  L ( a + B -  L=O a ,  b, c - r ( e ) r ( d  + e - a - b 
7 FZ , - .: 3 ~ 2 1  ;-, , - - 7 -  - 7  

r ( a  - n + I ) r (n )  (a)t(n)k I'(e - c ) ~ ' ( d  + e - a  
- - 

( a  + X)(a + (1 1 .l) 
r w  Now set a =a, b = n, c = a ,  d = a + B ,  and e = a + 1 in (1 1.4). Then 

k=Q r a!,ct,n 1 
I = 

Proof. Let I denote the integral on the left side of (1 1. I). Using Pfaff's transfor- [ a + , 9 , f f + l I  
rnation (Part I1 [2, p. 36, Entry 19]), we find that r ( n ) r ( a  - n + 1) r ( u  + l ) r ( B  - n + 1) [ B , a + B - n , a  1 

( x + l  ) d x .  - r ( n ) r ( u  - n + l ) r ( B  - n + 1) a , B , a + B - n  

W + 1 )  r ( l ) W + B - n + I )  " ' L a + p , a + ~ - n + 1 J  
= x n ( l  + x u  F a ,  a ;  a + @; - 

- 
r ~ a  I R a 1 1 \  3 F2 

Making the change ot vanable t = x /  (X + I ) ,  
which establishes the first equality in (1 1 .I). 

2 FI (CY, (Y; CY + 8; f )  

One might surmise that Entry 11 can be found in integral tables. However, we 

- - are unable to find these evaluations in the tables of Gradshteyn and Ryzhik [ I ]  or 
Prudnikov, Brychkov, and Marichev [2], although on page 315 of the latter tables, 

a3 
some similar evaluations are given. 

(a): r ( n  + k)r(-n + a + 1) 
- 

k=O 
) T ( a + k + l )  Entry 12 (p. 208). Define F'")(x), n = 2m, where m is a nonnegative integer, by 
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Proof. It is easily checked that (12.1) is valid form = 0, 1. Proceeding by induc- 
that 

Comparing (13.3) and (13.4). we see that we have established (13.2), as desired. 

Entry 14 (p, 265). Let cy , /? 0 with a/? = n *. Then 

It is well known that this Dirichlet L-function can be analytically continued to an 
4r2" entire function. 

find that 

which completes the induction. 1 1 ,  rn - 
cosh(Bn1 4"' '144 

where cr, 6 z 0 and rwb = x2.  From the functional equation (H. Davenport [ I ,  p. 
711) 

First, w 
M (- l ) j  

( : )n  - T ( - I ) ~ ~ ( - J  (')m+j - m)m n+m-(-n) - , eC2j+l lP  - 1 ' 
n! ' " - (rn + j ) !  n=m J =o 

CQ (rn + f 1, Using (14.4) in (14.3), we deduce (14.1). 
I", y ( - ~ ) ~ + j - .  (13.3) 

j =O  J !  Wecorrsldu the next result in a formal sense only. 

Proor. ~ e t  and the value 1 L(1) = ~ / 4 ,  found as (32.7) in Chapter 37, we easily deduce that . . 
- 2 .  w. ( 1  4.2) 

where m is any nonnegative integer. Since (pm (x)} . $ 0  . 5 m 5 j ,  form a basis for 
the vector  spa^^ of ' -- J r d !I 21) for , I 
p(x) = pm(x). With this choice of p(x), the proposed identity becomes 

" = I C  I C  

But 

l Q )  1 
'=\/8';+y,& -a, . (14.3) 
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then, i f r  is an even nonnegative integer, 

and 
- 

d x .  

Ramanujan put no restrictions on r .  He also wrote q r ( n )  and (pr (n )  for +(')(n) 
and (pe:(n j, respeciiveiy. 

Proof. Formally differentiating (15.1) r times, we deduce (i). 
By 3 .  

171, h i  1 [1 v - P 3% 

Entry 17 (p. 339). If I,, denotes the Besselfuncrion o f  imaginary argument o f  
order v ,  then, i fn  is an integer, 

In (2.x ) - I-n (2x1 = 0. (17.1) 

Ramanujan's recording of Entry 17 is incomplete. He writes the difference of 
two series on the left side but does not indicate what this difference equals. The 
series are Bessel functions of imaginary argument, as we have indicated (Watson 
[IS, p. 771). and (17.1) is a well-known, easily proved equality (Watson [IS, p. 
791). 

Entry 18 (p. 350). 

Most of Ramanujan's approximations for exp(-an) arise from modular q u a -  

was empirically derived by some method of successive approximations. 

Formally differentiating r times, we deduce (ii). 

Entry 16 (p. fb I ) .  Ler a, f i  > 0 rmrh @ 11 i 4 .  T h  - - 

On the other hand, 

e-2T = 0.001867442731707 . . . 
m f .  We apply Poisson's summation formula for Fourier sine transforms (Titch- Thus, Ramanujan's approximation agrees to 13 decimal places. 
marsh (2, p. 661, Part I1 [2, p. 2361) to the function x exp (-x2) . Thus, if a, p > 0 

We conclude by briefly mentionin-s m&b 

DC rx 112 that apparently have no precise meanings. 
2 2-  ( 2  + e - 2 n + 2 u 2  = - I )  / xe-" sin ((21 + l)Bx] dr .  

n 
n =O 11=u .A -. Entry 19. 

(Ib.2) 

But (Gradshteyn and Ryzhik [I, p. 529, formula 3.952, no. 11) 

Replace /3 by 28 and use the evaluation above in (16.2). Thus, for a, 0 with 

Since 6 = &/(2fi), we find that the proof of (16.1) is complete. 

. . 

Since Ramanujan does not specify the function (p or the conslants c,,, we are 
unable to offer a definite interpretation of this formula. Possibly, Ramanujan ap- 
plied the Euler-Maclaurin summation formula to the function (p(logx)/x on the 
interval 0. m). A simple change of variable then gives the integral on the right 
side above. The constants cn are therefore those that appear in the Eulcr-Maclaurin 
summation formula, and the series on the right side should probably be interpreted 
as an asymptotic series. 
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Entry 20. 

Since the series on the left side diverges and since the meaning of the "dots" on 

Location of Entries in the Unorganized 
- 

7 Portions of lGmumgm s First N w  
interpretation of this formula. We think that it pertains to material in the first part 
of Chapter 7 of the second notebook. In particular, see Part I [ I ,  p. 1611. 

In Part. IV [4] we provided the locations in the second and third notebooks of all 
entries in the 16 organizedchapters of the first notebook. A small minority of these 

for these results in 14). Like the second notebook, the first notebo~kcontain~much 
unorganized material, in fact, considerably more than in the second notebook. 
m m  
the second notebook than the organized part of the first notebook. In the sequel, 
we indicate where proofs can be found for each correct result in the unorganized 

boldface at the left margin. We assign numbers, in order. to each formula-on each 
page. If the result appears in the second or third notebooks, we indicate where in 
these notebooks, and where in Parts I-V, it can be located. If an enby cannot be 
found in the second or third notebooks, we inform readers where a proof can be 
found in the present volume. 

20 
r 3  [ L P .  431. 

2.,3. These are Corollaries I and 2, respectively, in Section 2 of Chapter 3 [ I ,  
P 461. 

26 
1. This is contained in Entry 10 of Chapter 3 [ l ,  pp. 57-59]. 

46 
].Entry 11Ci)ofChapr IR [QLW~ 
2.,3. The two radical expressions are equivalent to the formulas for G1225 and 

GM1, respectively, given in the table of class invariants in Section 2 of Chapter 
34. 

48 
1.,2. Entries 24 and 2Yi), respectively, of Chapter 14 12, pp. 291-2921. 
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50 o r ?  L J I  r. 1%) J .  ~ 4. Part of Enby 3, Chapter 18 [3, p. 1461, 
[2, p. 1oQl. 

2.,4. Entries 36(iii) and (iv), respectively, of Chapter 11 [2, pp. 1W1011. 68 - 
1 .J. Corollaries 0). (ii), Section 19 of Chapter 18 [3, pp. 185, 1901. 

52 -- 
I. Entry 49, Chapter 12 [2, p. 1841. 70 

A 11 ', - L A ,  re / Ot 
Chapter 1 3 [2, p. 2301. 

54 2.93. Both drawings appear to be versions of a figure of Chapter 18 13, p. 194). 
1 .,2. Entries 2(i), (ii), Chapter 13 [2, p. 1881. 
3. Enby 3, Chapter 13 [2, p. 188). 72 
4.3. Entry 4, Chapter 13 [2, p. 1891. 1. Entry 29, Chapter 5 [ 1, p. 1301. 
6. Entry 5, Chapter 13 [2, p. 1901. 2. Entry 1 of Chapter 39. 

3. Entry 6, Chapter 12 [2, p. 11 11. 
56 

I. Part (i) is the same as Entry 20, Chapter 5 [ I ,  p. 1231. 74 
2. Part (ii) follows from Entries 19(i), (ii), Chapter 5 [I, pp. 122- 1231. The word 1.-3. Entries 21(i), (iii), (iv), Chapter 18 [3, pp. 2 ~ 2 0 1  j. 

"multiple" on page 56 should be replaced by "factor." 

58 I .  Entry q i ) ,  Chapter 6 [ 1, p. 1361. 
1 .  Although this formula is not in the second notebook, it is formula 14 of Table 2.3. Examplcs 1,2 in Section 4 of Chapter 6 [ I ,  p. 1371. 

2. The value of the Bernoulli number B38 can be found in Ramanujan's paper 80 
[I] ,  [lo, p. 51 and on page 53 of his second notebook [9]. 1 .-3. These three s i n p r  . . 35 

3. ~ n i s  deleted eriu-y is a -lit 15 in T w  
above. 82 

60 
1 .-4. Examples 9.4 of Chapter 34. 

1 .-3., 5.-9. The values of the Bernoulli numbers B, , n = 22,24,26,28,30,32, 
5.A. Examples 9.7 of Chapter 34. 
8.- 10- Theorems 9 4  9 3 34, '36 can be found in ~amanujan's paper [I ] ,  [ lo,  p. 51 and sem- i% 

p. 531. 
4. This is formula 12 in Table I, mentioned in our commentary on page 58. 

84 
1. Entry 14, Chapter I5 [2, p. 3321 

62 86 
1. This is a trivial statement about the factorization of polynomials. 
2~ A resu 

. . 1. EnY 1 l(xv), Chapter 20 [3, p. 3851. 
I t  The first two contain n7 -7 en 

9 t 9 r ? $ 1 , J U . l  

unexplained asterisks and are deleted by Ramanujan. The third version is imprecise 
and contains an error term that is not completely specified. See Entry 27(ii) of 

88 

Chapter 7 [I ,  p. 1781 for a correct version of these three formulas. 1. Special case of Entry 11, Chapter 6 [ I ,  p. 1431. 
2-,3. Two a b e h  theorems for power series with no hypotheses. 

T P P  . . 2% - 231 ion ~heorems. 
1 .,2. Entry 1 I, Chapter 1 1 [2, p. 541. 4 3 .  Entries 52 and 51. respectively, of Chapter 36. 
3. This geometrical figure can be found in Section 19 of Chapter 18 [3, p. 1901. 
4 5 Entries 1 ~ ( I v ) ,  (n&respec€lvdy, of C b p ~  18 13. pp . ... . 184, 1811. 90 
p 

66 2. Entry 13(xiv). Chapter 19 13, p. 2821. 
I .  See Section 24 of Chapter 18 [3, p. 21 11. 3. Entry 19(ix), Chapter 19 13, p. 3151. - e 

L. see 3eaion I Y la 13 p Y ~ J .  
- ,, .m -- , . I  &'I. Entry 41, Chapter 56. 
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92 2. See Entry 5 of Chapter 39. 
1. bnuy S(xiX), i3apter 19 -2311. 3. Entry 3400, Chapter 13 [2. p. 2371. 
2. Entry 13(xv), Chapter 19 [3, p. 2821. 
3. Entry 19(x). Chapter 19 (3, p. 3151. 

110 

0~ f 4  p- 1031. 
. *  

94 112 
1 .,2. See Entry 2 of Chapter 39 for comments on these deleted formulas. 

1.,2. Entries 19 and 2.0. 9, r l! [2,p 993. 
3.-5. Entry 14, Corollaries 1,2, Chapter 7 [I, pp. 166-1681. 4.,6. See Entry 3 of Chapter 39. 

5. This is a special instance of Entry 35(ii), Chapter 11 [2. p. 991. 
At 

. . 114 - 
T 6 ,  chapter 13 CZ. p. 1931. 

given in Entries 3S(i)-(iii) of Chapter I1 of his second notebook 2. Entry 10, Chapter 13 [2, p. 2071. 
(Part I1 [2, p. 991). 3.  A more Precise version of this entry can be found in Entry 9 of Chapter I I 
96 [2, p. 51 1. 

1. -33. 
2.-5. These are contained in Theorem 8.7 of Chapter 33. 1.,2. Entries I l(i) ,  (ii), Chapter 13 12, pp. 215-2161. 
6. All of Section 12 of Chapter 33 is devoted to an examination of this claim. 

1111 
1. The entry is deleted and is a forerunner of Entry 7 of Chapter 13 [2, p. 19-51. 

98 
1.,2. Entries 9(iv), (iii), respectively, of Chapter 19 [3, p. 2581. 120 

I. The first statement 

ax -- 1 1. Entry 35, Chapter 9 [I, p. 2941. -- exp 
1 9  ro .. - 1 - u  
I J  LL, IJ. &I 11. */ ~n . . 3. Entry 22(ii), Chapter 14 [2, p. 2781. IS ~ m t .  

4. Corollary, Section 22, Chapter 14 [2, p. 2791. 2. The second claim is a version of Example (i), Section 25, Chapter 13 12, p. 

102 2281. See also Entry 6 of Chapter 39 for a correction to our claim made in Part 11 
r 7.1 

2. Ramanujan, in essence, states a general formula for the multiplication of two 122 
Laurent series. 1. Entry 26(ii), Chapter 13 [2, p. 2291. 

2.,3. Entries 17(iii), (iv), respectively, in Chapter 18 [3, p. 1761. 

1. Entry 19(iv), Chapter 14 12, p. 2731. 
2. See Entry 4 of Chapter 39. 

. I  . E, respectively, In Chapter 16 [3, pp. 21,241. 

126 
106 1. Entry 31, Chapter 10 [2, p. 41). 

1. Entry 20(i), Chapter 14 [2, p. 2741. 2. Entry 7, Chapter 16 [3, p. 161. 
2. Entry 19(i), Chapter 14 12. D. 2711. 
3. Corollary. Section 20, 128 Chapter 14 [2, p. 2741. 
4. Entry 20(iv). Chapter 14 [2, p. 27-51. I. Entry 8, Chapter 16 [3, p. 171. 
5. Corollary of Entry 20iivL Chapter 14 [2, p. 2751. 2. Enby 4, Chapter 16 [3, p. 1 4  
6. Special case of Entries 29(i), (ii), Chapter 13 [2, p. 2311. 130 

I. Version of the corollary in Section 36 of Chapter 13 12, p. 2391. 
-0  .- 13. p. - -  14J. 
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132 152 
nrt 12-m 
7 L'r P. L 1.2. Entry 47, Chapter 12 [2, p. 1791. 

2. Entry 6, Chapter 16 [3. p. 151. 3. Entry 13(i), Chapter 18 [3, p, 1651. 
3. Entry 8, Chapter I3 12, p. 2021. 4. Entry 22(iii), Chapter 18 13, p. 2071. 
A C -,. 5. Deleted by Ramanujan. 

134 154 
1. Entry 9, Chapter 16 13. p. 181. 
2. Entry 15, Chapter 16 [3, p. 301. 2. E n q  9, Chapter 13 (2, p. 2051. 
3. This entry is very vague. It is possibly a less specific version of Entry 16, 3 .  Entry 48, Chapter 12 12, p. 1811. 

Chapter 16 13, p. 311. 7 

136 
1. Corollary (i) in Section 9, Chapter 16 [3, p. 181. 
2. Entry 17, Chapter 16 [3, p. 321. 

1. Entry 2 1, Chapter 13 [2, p. 2241. 

156 
I. Entry 12(ii), Chapter I8 [3, p. 1633. 
2. Entry 22(ii), Chapter 18 [3, p. 207). 

.. ... ., . w, W, Cnapter 18 C3, p. 165). 

158 
2. See Entry 7 of chapter 39 for a proof. 1. Entry 39(i), Chapter 16 13. p. 832 

2. Entry 38(iv), Chapter 16 [3, p. 801. 
140 

3. Entry 1 I(iii), Chapter 19 13. pp. 265-2661. 1.,2. Both entries are versions of Entry 21 of Chapter 13 12, p. 2241, 4. See Entry 8 of Chapter 39. 
142 160 

1. Version of Entry 17, Chapter 13 [2, pp. 2262211. 1. See Part 11 12, p. 1471 for comments. 
2. Deleted by Ramanujan. 

on 15, O a p m  16 15I p. 303. 3. Entry 20, Chapter 13 [2, p. 2241. 3 . 3 ,  Chapter 16 13, p. 141. 
4 . 5  Entries 38(i), (ii), Chapter 16 [3, p. 771. 

144 162 
I .  Deleted by Rarnanuian. w ) ,  Cnapter I p, 1051. 
2.,3. Entries 17(ii), (0, Chapter 18 [3, p. 1761. 2. Corollary 3.4 of Chapter 33. 
4.3. Entry 16 (Second Part) (iv), (ii), respectively, of Chapter 18 [ 3 ,  p. 1741. 3. Theorem 9.9 of Chapter 33. 

A - ~~ 1 l?o or chapter 37. 
I .  Enuy 24, Chapter 12 [2, p. 1391. 5. Theorem 9.10 of Chapter 33. 

2.,3. Entries 45(i), (ii), Chapter 12 [2, p. 171 1. 6. Corollary 3.5 of Chapter 33. 
- 4-ntry lo, chapfer 1 b 13, p. 5lJ. 

5. Entry 7(vii), Chapter 17 13, p. 1061. 8. Theorem 4.5 of Chapter 33. 

148 
I .  Entry 6(viii), Chapter 9 [ I ,  p. 2471. 
2.-11. Entry 14, C h h  
12. Entry 18(iv). Chapter 18 [3, p. 1791. 

255 
1. Corollary, Section 12, Chapter 18 [3, p. 1641. 

164 
1.-3. See Section 21. Chapter 13 [2, p. 2251. 

-ftEmry 13. Cnapter 16 1.3, P. 291. 
5. See Section 13, Chapter 16 (3, p. 28). 

2. Swcial case of Entry 14, chapter 12 [2, p. 121 1. 168 

166 
1.,2. Entries 31(i), (ii), Chapter 13 [2, pp. 233-2341. 
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2. Entry 7(viii), parts (a), (c), and (d), Chapter 17 [3, p. 107). 
186 

170 1 .,2. Entries 36(i), (ii), Chapter 16 13, pp. 65461. 
1. Entry 7(ii), Chapter 17 [3, p. 1051. 
2. Entry 7(ix), Chapter 17 [3, p. 1081. 188 

3. Entry 7(x). Chapter 17 [3, p. 1101. I .  Emry 34, Chapter i2 I;?, p. 1561. 

4. Entry 12(i), Chapter 18 [3, p. 1631. 2. Entry 39, Chapter 12 [2, p. 1591. 

5 . 2 2 ( i ) ,  Chapter 18 [3, p. 2061. 3.,4. Entry 38, Chapter 12 [2, p. 1581. 

6. Entry 7(i), Chapter 17 [3, p. 1041. 
* -- 
1 / A  

I. Entry ~(xii), Chapter I7 13, p. 1 121. 
2.,3. See Entries 79 and 80, res~ectivelv. of Cha~ter  36. 
4. Entry 7(xiii), Chapter 17 [3, b. 1131.- 
5. Entry 7(iv), Chapter 17 13, p. 1051. 

190 
1. Entry 20, Chapter 10 (2, pp. 36-37]. 

12 [2, pp. lCC; 1571. 
3. Entry 27. Chapter 12 [2, p. 1461. 

192 
I .  First part of Entry 35. Chapter 12 [2, pp. 1 5 6 1  571. 
L'tEntdesagaffb37, raqxer 12 [2, p. 15W. 

1. Deleted by Ramanujan. 

r the meaning of the geometrical figure, see Section 7 of Chapter 19 [3, pp. 

182 
1. Quarterly Reports [ I ,  p. 2981. 
2. Entry 23, Chapter 13 [2, p. 226). 

/ rrr MI 14, Chapter 10 13, p. LYJ.  

4. Entry 22(ii), Chapter 13 [2, p. 225). 

184 
1. See Entry 9 of Chapter 39. 
2. See Part i i  [2, eq. (i 7.31, p. 2651. 
3.-5. Examples (i), (ii). (iii). Section 30. Chapter 13 

202 
1. In essence, Entry 28, Chapter 13 12. D. 2311. 
2.,4.-6. See section 24 of chapter 13 [2, pp. 2262271, 
3. Entry 20(iii), Chapter 18 [3, p. 1971. 

I rkitftrer 1 k [2. p. * 
2. See Theorem 7.3 of Chapter 33. 

206 
1 .,2. See Entry 11 of Chapter 39. 
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3. Example 2, Section 12, Chapter I1 [2, p. 581. 4.5. . . .. 13 .. 2~ 
r y.  

2Q8 226 
Except for oneexample, which we establish in Entry 12 of Chapter 39. all results 1 ..3. Deleted by Ramanujan. 

15 [2, pp. 335 3371 

210 4. Entry 7 W ,  Chapter 17 [3, p. 11 I]. 
1. The first five lines on the page continue material from page 208 and can be 

found in Section 15 of Chapter 15. 1. This result is essentially equivalent to the example in Section 37 of Chapter 
2. Theorem 1 1.5 of Chapter 33. 16 and can be found explicitly in (37.7) on page 76 of Part 111 [3]. 
3.,4. Theorems 4.2 and 4.3 of Chapter 33. 
5..6. Theorems 9.5 and 9.6 of Chapter 33. 3. This result follows from Entries 37(i), (ii), Chapter 16 [3, p. 731. 

212 4. Entry 32(v), Chapter 1 l [2, p. 931. 
1.,2. Entries 23(i), (ii), Chapter 18 [3, p. 2081. 230 
3. See Example (iii) in Section 17 of Chapter 9 [2. p. 2661. . ... . . V), @), (11, Chapter i Y  13, p. 2231. 
4. See Theorem 6.4 of Chapter 33. 4 8 .  Entries 17(i), (ii), Chapter 19 13, p. 3021. 

214 5. Entry 9(0, Chapter 20 [3. p. 3771. . . . . -  
I. I nrs IS a aennition. 
2.,3.,5. These are, respectively, Theorems 10.1, 10.3, and 10.2 of Chapter 33. 7. Entry 29 of Chapter 36. 
4. Theorem 9.1 1 of chapter 33 
6.,1. r a n  of I neorem Y.L ot cnapter 34. 

- - 
8. Corollary 2.4 of Chapter 33. 
9. Theorem 10.4 of Chapter 33. 

216 
1. Theorem 11.4 of Chapter 33. 
2. Theorem 11.1 of Chapter 33. 

1. An incomplete version of Enuy 28, Chapter 11 [2, p. 831. 
2. Deleted by Ramanujan. 

234 
1. A deleted v e r n l n n n f  1 1 p, 2, p.8:b 
2. See the fable in Section 2 of Chapter 34. 

3. Theorem 5.6 of chapter 33. 236 
1. Coronary, Section 28, Chapter 11 [2, p. 851. 

218 2. Special case of Entry 30, Chapter l l [2, p. 871. 
1. Theorem 6.1 of Chapter 33. 3. Entry 31(ii), Chapter 11 (2, p. 881. 
2. 5.Tkger-gRI7.1 ~frbpr3,. 
7.,8. Theorems 7.6 and 7.8 of Chapter 33. 238 

9. Deleted by Ramanujan. 1. Entry 30, Chapter 1 l [2, p. 871. 

220 -- ~ 

1. This follows from (2.6) and Theorem 2.10 in Chapter 33. 
2. This is an incorrect version of pan of Enuy 3(i) of Chapter 21 13, p. 4601. 
3. This is a misstatement of the first part of Entry 5(i) of Chapter 21 [3, p. 4671. 
A C T  
*.,A. 1 

222 
1 .-4. Entries 8(it(iv), Chapter 19 13, p a .  
5. See Entry 14 of Chapter 36. 

224 

240 
1. Part of Corollary (ii), Section 3 I ,  Chapter 16 (3, p. 491. 
2. Trivial algebraic identity. - 

10 13, P. 
4 3 .  Corollary, Section 28, Chapter 16 [3, p. 441. 
6. With the use of Entry 22(ii) and (22.4) in Chaptcr 16, it can easily be shown 

Section 3 i , Chapter 16 [3, p. 5 I]. 

242 
1 .  See Theorem 9.3 of Chapter 33. 
2. Entry 9(v), Chapter 19 [3. p. 2581. 
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3. Entry 3 1, Chapter 16 13, p. 481. 2. Entry 33(ii), Chapter 16 [3, p. 531. 
4. Coronary, Section 30, Chapter 16 [3, p. 471. 3- Corollary (i), Section 34, Chapter 16 (3, pp. 57-58]. 

244 
4. C o r o h y  (ii), Section 34, Chapter 16 [3, pp. 59-60]. 

1.  - ' 
. . 

in Section t . - 3 .  31 of Chapter 16, although Ramanujan, in the numerator, neglected to Entries 32(i)-(iii), Chapter 16 [3. pp. 51-52]. 
write the factors (x3; x8),(xS; xn),(xB; x ' ) ~  [3, p. 511. 4. Entry 12(ix), Chapter 15 [2, p. 3261. 

16 13, p. 51). 265 
3. See Entry 81 of Chapter 36. 

5. See Entry 82 of Chapter 36. 
6.,7. Example (ii), Section 31, Chapter 16 [3, p. 501. 

We use the numbering given by Ramanujan. 
I.Entry31,Chapter 12[2,p. 1501. 
2. See Entry 13 of Chapter 39. 
3.,4. Enwies 8(i), (ii), Chapter 17 [3, p. 1141. 

246 5. See Entry 14 of chapter 39. 

1 a .)-. 3 V '+e -m 11. PP. m. 
3.-I 1. Entry 10, Chapter 17 [3, p. 1221. 70). Special case of the preceding entry. 

12.-17. Entries 1 l(i), (iii), (iv), (v), (vi), (viii), Chapter 17 [3, p. 1231. 7(ii). Entry 12(ii), Chapter 4 [I, p. 1071; special case of the corollary of Entry 
1 2  1- - *-&I 
'Xl", 1/. LL 1. 

248 8. See Entry 15 of Chapter 39. 
1. Example (i), Section 6, Chapter 17 13, p. 1031. 
3. Example (iii), Section 6, Chapter 17 [3, p. 1041. 266 

1.-16. See Entry 1 of Chapter 35. 1 .-4. Entries 8(ix), (xi), (xii), (x), Chapter 17 [3, pp. 1 14-1 151. 
5. See Entrv 3 1 of Chanter 36. 

250 6. Special case of Entry 18(i), Chapter 13 12. p. 22u 
IV 
53. 7. We have found no meaningful interpretation of this equality. 

10. Entry 27, Chapter I l 12, p. 801. 
1 1. Deleted by Ramanujan, 9. Entry 9, Chapter 19 13, p. 2571. 

252 
C r- ?.'1> 

1 LJ LL, p. J I I ] .  

2. Special case of Theorem 6.1 of Chapter 15 12, p. 3 101. 

254 
1.,2. See Entries 3 and 4 of Chapter 36. 
3.-5. Entries I3(ii)-(iv), Chapter 15 12, p. 

-I& 

1.-3. Entries 12(ii)-(iv), Chapter 15 [2, p. 
4. Entry 13(i), Chapter I5 [2, p. 3301. 

The numbering is continued from page 265. 
9.,10. Entries 8(iii), (iv), Chapter 17 13, p. 1141. 
I 1. See Entry 32 of Chap- 
12. Entry 24(ii), Chapter 16 [3, p. 39). 

330). 13. See Entry 16 of Chapter 39. 
14. $-try 3 1 (i), Chapter 17 17, 
15.-17. Entries 16(i)-(iii), Chapter 13 (2,  p. 2201. 

3261. 18. Special case of Theorem 11 in Ramanujan's Quarterly Reports 

258 1. Entry 9(i). Chapter 17 13. p. 120L 
- I. 4;Entries E(vt(vi i i  j, Chapter 15 i2, p. ZW. 2. This is an incorrect version of Entry 9(iv) in Chapter 17 [3, p. 120). 

260 3.,4. Entries 13(iii), (iv), Chapter 17 [3, p. 127). 

1 ..2. Entries 35(ii?. (i)? Chapter 16 [3, p. 63. 6 11. 5. Principle of duplication. Chapter 17 [3, p 1251. 
3. Entry 33(i), Chapter 16 [3, p. 521. 269 

1.,2. Entries 13(i), (ii), Chaptcr 17 13, p. 1261. 
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7. Entry 13(viii), Chapter 17 [3, p. 1271. 4. Entry 7, Chapter 18 (3, pp. 154- 1551. 

270 281 
1 .-5. Entries 17(i)-(v), Chapter 17 [3, p. 1381. 1. Example, Section 7, Chapter 18 [3, p. 1561. 
6. Entry 11, Chapter 14 [2, p. 2581. 2. F~ 36 

27 1 3. This is a formal application of the "change of sign" process. 

1 .-4. Entries 17(vi)-(ix), Chapter 17 [3, p. 1381. 4. The principal of "change of sign," as described in Section 13 of Chapter 17 

5. s [3, q q .  
6. See Entry 83 of Chapter 36. 282 

274 ? ,, 6. This is equivalent to the formula for G 3  in the table in Section 2 of Chapter 

I .  Entry 2l(iii), Chapter 14 12. p. 2771. 
2. Entry 34(ii), Chapter 16 (3, p. 561. 7.-9. Entries 5(i), (iv), Chapter 19 13, p. 2301. 
3. See Entry 33 of Chapter 36. 10. See Entry 6 of Chapter 36. 

L I3 

1. Entry 33(iii), Chapter 16 [3, p. 531. 1 .,2. See Entry 7 of Chapter 36. 

bv 1 - B and 6 revlaced bv 1 - cr. , . *% 
a,V 4. In essence, thls IS contained in Entry 5(vi) of Chapter 19 [3, p. 2301; in 

1. Enhy 14, Chapter 14 12, p. 2621. particular, see (5.4) on page 233 131. 
2. Corollary, Section 12, Chapter 14 [2, p. 2601. 5.,6. See Entries 8 ,9  of Chapter 36. 
' l T d  1 - 0  
2. 

284 
277 1. Equivalent to the formula for Gg in the table in Section 2 of Chapter 34. 

I .,2. E m t e r  14 12. p, 2621. 3 -35. 
3. Entry 16(vii), Chapter 17 13, p. 1341. 3. Deleted by Ramanujan. 
4. Entry 12(iii), Chapter 17 [3, p. 1241. 4.4. See Entries 34-36 of Chapter 36. 
5. Entry 9 ( i v ) . t e r  17 [3. p. 120L 7, 3: 

278 8. Second part of Entry 5(i), Chapter 19 [3, p. 2301. 

1.-4. Entries 15(ix)-(xii), Chapter 17 [3, pp. 132-1331, 285 
5.-7. Entries B(viii), (vi), (vii), Chapter 17 [3, p. 1 141. 1. Corollary, Section 23, Chirpter 18 13, p. 2091. 

? A r, 
279 ,-.,-. #-A 

I. Entry 1 I ,  Chapter 15 [2, p. 3231. 3. Ramanujan gives the value l/(p4(e-") = 0.71777, which is correct and can 

2. Entry 21(ii), Chapter 14 [2. p. 2761. be verified using the evaluation of p(ecn) given in Example (i) of Section 6 in 
Chapter 17 [3, p. 1831. 

280 5. See Entry 37 of Chapter 36. 
1. Entry 6, Chapter 18 [3, p. 1531. 6. See Entry 16 of Chapter 36. 
7. ,? See 777 of of 36 7, F-r 19 [3 - 1,w. ... 

9 P. 



1 .-4. Deleted by Ramanujan. 1. Entry S(viii), Chapter 19 [3. p. 23 I]. 
2. Part0fXm-y Iyv- 19 [3 - 9 0 1 1  5. See Theorem 9.2 in Chapter 34. ,)I. & U I I -  

3. Entry 22(i), Chapter 20 [3, p. 439). 
289 4. Equivalent to a formula for G 13 given in the table in Section 2 of Chapter 34. 

1. We have not been able to discern the meaning of this entry. 5. The-r 34. 
2. Deleted by Rarnanujan. 6. Entry 301, Chapter 20 13, p. 3521. 
3. Equivalent to the formula for G I s  in the table in Section 2 of Chapter 34. 7. Part of Enby 5(ix), Chapter 19 [3, p. 2311. 
4.3. See Theorem 9.2 of Chapter 34. 8. p a  - 14 [3, p. 2811. 
6. Definition of a modular equation of degree 7. 9- Entry S(xiv), Chapter 19 [3, p, 2311. 

18. Entry 1 4 0 ,  Chapter 19 [3, p. 2881. 
8. Entry 5(ii), Chapter 19 [3, p. 2301. 1 1. This entry, 
9. This modular equation of degree 1 is trivial since cw = B. r .-. IU.- ea to wme a m u m  equaion nerc, eut mere s W v 4 s i n ( f  v )  Jcos(2v) + 3 sin2+ 

is no equality sign. ~u r th~rno re ,  the degree is not given. The proposed modular 
equation has the unusual feature that, in the first term, cr and appear with no 

290 
VIX), Chapter 19 13, p. ZJIJ. 

2. Part of Entry S(v), Chapter 19 [3, p. 2301. 
3. Entry 19(ii), Chapter 19 [3, p. 3141. 
4. Entry 13(v), Chapter 19 13, p. 2811. 
5.5 SPP En@ 10 afCbap~36. 
6. This modular equation of degree 7 follows from Entry 19(iii) of Chapter 19 

[3, p. 3141 by dividing the first part of Entry 19(iii) by the second part of the same 

8. This modular equation of degree 7 follows from Entry 19(ii) of Chapter 19 
[3. p. 3 141 by dividing the first part of Entry 19(ii) by the second part of the same 
theorem. 

is difficult to read. Although not apparent, by using elementary trigonometry, it vm~nq l q v  
of Chapter I9 [3, p. 31 51. 

1 .-3. kqunalent, rcspectively. to formulas for Gzl, G49, and G225 given in the 
table in Section 2 of Chavter 34. 

4. Part of Entry I ~ ( i i ) ,~cha~ te r  20 [3. p. 3831. 
5. Entry 2(i), Chapter 20 [3, p. 3491. 
6.-10. w i )  P pa-' .. ... 

* \ - I ,  r , 7 -333  . 
294 

1.,3. Entries 2(ii), (iii), Chapter 20 [3, p. 3491. 
%.,rt;Entries 9ivh (~17, Chapter 20 [3, p. 3771. 
5..6. Equivalent to Entry 9(vii), Chapter 20 (3, p. 3771. 
7. Equivalent to the formula for G 169 in the table in Section 2 of Chapter 34: 

see s%Q~on's paper [7, p. 1951. 
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8. Equivalent to thc formula for Glzl in the table of Chapter 34; for moredetails, 7.,8.,11. E n q  24(iii), Chapter 18 [3, pp. 214-2153. 
see Watson's paper 17, p. IWl. Y.,12. See Entries 23 and 24 of Chapter 36. 

9. This entry is difficult to read and is evidently incomplete. We offer some 13.-15. See, respectively, Theorems 7.2,7.7, and 7.5 of Chapter 33. 
comments on it  at the end of Section 8 of Chapter 34. Wl 
295 1.4. See Theorems 10.5-10.10, respectively, of Chapter 33. 

1 .-3. See Entries 18, 19, and 11, respectively, of Chapter 36. 7. Theorem 9.4 of Chapter 33. 
4- $. 9.15 OfCk;teber 33, 
5.-8. Equivalent, respectively, to formulas for G ~ s ,  G I ) ,  G2), and G19 in the 9. This is an incorrect version of Entry 3(iii). Chapter 21 [3. p. 4601. 

table in Section 2 of Chapter 34. 10. This is an incorrect version of Entry S(iii), Chapter 21 [3, p. 4683. 

296 302 
1. Equivalent to the formula for G3] in the table of Chapter 34. 1. Entry 19(i), Chapter 19 [3, p. 3141. 
2. Entry 12(iii), Chapter 20 [3, p. 3971. 2. Entry I N ) ,  Chapter 20 [3, p. 41 I]. 
3. Equivalent to the formula for G I ,  in the table of Chapter 34. 3. ,4. Deleted by Rarnanujan. 
4. -, - 0 * 11 14 . LTr CP, ~w~ 5: > J J I  <2 J-t. a JJI FZ 2 1 .  CT P 

5.,6. Entries 28 and 26, respectively, of Chapter 36. Chapter 36. 
7. Deleted by Ramanujan. 10. Entry 5(ii) of Chaptex 19 [3, p. 2301. 

297 
1.-4. See Entries 12.20, 13, and 25, respectively, of Chapter 36. 
5. Sce Entry 7 of Chapter 35. 
6. Entry 9(iii), Chapter 20 [3, p. 377). 
7.-11. Entries 1 l(i)-(v), Chapter 20 [3, pp. 383-3841. 
12. Part of Entry 19(iv), Chapter 19 [3, p. 31 41. 

298 
I. Entry 18(i), Chapter 20 [3, p. 4231. 
2. This is equivalent to Entry 12(iii) of Chapter 20 [3, p. 3971; the right-hand 

side, K, in the formulation given on page 298 is fi ,  in the customary notation 
for the multiplier m. 

3. See Entry 75 of Chapter 36. 
4. Entry 13(viii) of Chapter 19 13, p. 2811. 
5. See Entry 30 of Chapter 36. 
6. Part of Entry 19(vii), Chapter 19 (3, p. 3141. 

I .  Entry 18(ii), Chapter 20 [3, p. 423). 
2. Entry 4(iv). Chapter 20 [3. p. 3591. 
3.,4. Enhies 17(i), (ii), Chapter20 [3, p. 4171. 
5.-7. Entries 19(i), (iii), (ii), Chapter 20 [3, 0 
8.,9. Entries 17(iii), (iv), Chapter 20 [3, p. 4171. 

300 
r? 1 9 1  1 
LJ? P* LJ'1. 

2. Part of Entry 13(x), Chapter 19 [3, p. 2811. 
3.,4. Part of Entry S(x), Chapter 19 [3, p. 2311. 

I1 - 31 A 1  
I J ,  p. 

303 
A discussion of the material on this page is given in the last part of Section 7 

of Chapter 36. 

304 
1 . . ? away, 

and so the degree of the first modular equation is unknown. However. the form of 
the equation is exactly that of the modular equation of degree 23 in Entry 15(i) of 
Chapter 20 [3, p. 41 I]. 

2.4. Entries 62,63,64,65, and 61, respectively, of Chapter 36. 

305 
1. Incomplete version of Entry 4(ii) of Chapter 21 13, p. 4641, and is deleted by 

all. 

2.-5..7. Eguivalent to formulas for G27, G37, G39. GY7, and G6,, respectively, 
in the table in Section 2 of Chapter 34. 

L u, 

306 
1 .-3. Deleted by Ramanujan. 
4. Part of Entry 19(vi), Chapter 19 [3, p. 31 41. 

6. Part of Entry 5(xi), Chapter 19 [3, p. 2311. 
7. Part of Entry 13(xiii), Chapter 19 [3, p. 2821. 

9. Entry 7(ii). Chapter 20 [3. p. 3631. 
lo. Entry 19(xi), Chapter 19 [3, p. 3 151. 
11 p, * 11 21 bl 

12, jJ- J A W *  
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307 4. Entry 7(iii), Chapter 2 1 [3, p. 4753. 
5-7. Part of Theorem 9.2 of Chapter 34. 

4. Enby 15(v), Chapter 19 (3, p. 2911. 
5.,6. Entry 19(iv), Chapter 20 13, p. 426). 314 
7 0 f i n -  - -  - - - 
I .vO. 0 6 9 ,  -117, -333, b 8 1 ,  b1479 b363,  b2173 ~ 2 0 5 ~  

308 
and G265, respectively. in the table of Chapter 34. 

1.,2. Entries 13(i), (ii), Chapter 20 13, p. 4011. 
3. Entry 5(ii), Chapter 20 [3, p. 3601. 
4. Deleted by Ramanujan. 
5. Entry 15(iv), Chapter 19 13. p. 2911, 
6. Deleted by Rarnanujan, 

309 
I .  Entry 15(iii), Chapter 19 [3, p. 291 1. 
2. Entry 5(i), Chapter 20 13, p. 3601. 
3.,4. Entries 69 and 68, respectively, of Chapter 36. 
5. Entry 73 of Chapter 36. 
6. Entry 1 3 m  of p 401 
7. Entry 1 q i )  of Chapter 20 [3, p. 4081. 
8. Entry 1 l(x) of Chapter 20 [3, p. 3841. 
9. *c 4by . . - 

4.) 

315 
1.-15. A table of valucs for G,,,  n = 57,93,177,85,133,55,65,253, 145.1 17, 

333, 153,77,69,213. See the table of Chapter 34. 

316 
I. This is the definition of g, . 
2.-13. These twelve values for g,, n = 2,6, 10, 16, 18,22,30,58,70,46, 142, 

82, are found in the table of Chapter 34. 
I 3 4  
16. Deleted by Rarnanujan. 
17.-22. These six values for g,, , n = 42,78, 102, 130, 190,34, are found in the 

3 4- 

1.-9. The nine values of G,, n = 289, 121, 169, 105, 165,345,385,273,357, 
are given in the table of Chapter 34. 

10.-13. Entries 72,7471. and 70, respectively, of Chapter 36. 318 
- 

Slu g n , n  - 

L V  26, can be found in the table of Chapter 34. 

2.,3. See Theorems 7.10 and 7.9, respectively, of Chapter 33. 4. See Entry 3.2 of Chapter 34. 
4.-1 I. These singular moduli are given in Theorem 9.2 of Chapter 34. 7. This formula for g 1  1 7 ~  has been deleted by Ramanujan. 

17 -UIn ++ J A Y  

31 1 1.,2.,5.,8.,9. Five values for g,, n = 66,138,238, 154,310, are given. These 

1. Equivalent to the formula for Gin given in the table in Section 2 of Chapter can be found in the table of Chapter 34. 
74 for g154 has 'kxziideleted by ~amanujan, but it is correct, except 
.2 7. 

2.,3. See Entry 8.1 of Chaptcr 34. 
4.5. Entry 9.14 of Chapter 34. 
6.-9. Entries 7-10, respectively, of Chapter 32. 

312 
I .  See Entry 6 of Chapter 35. 
2.-12. See Section 10 of Chaptcr 34. 
13., 14. Deleted by Ramanujan. 
15.,16. Part of Theorem 9.2 of Chapter 34. 

for one misprint; see the table of Chapter 34. 
4. This formula for gl l4 is incorrect; see the table of Chapter 34 for a correct 

r n l U 1 l .  

6.,7.,10. These three values for gn, n = 62,94, 158, are also given in the table 
of Chapter 34, but the formulations are somewhat different. 

1 1 ., 12.,13. Three values for G,, n = 465,777, 1353, are given. Some calcula- 
tions are needed to show that the formula for G ,353 eiven that 
in the table of Chapter 34. 

q 3  ., 1 -4. I ne v a l m o r  G,,  n = 1645, m, 141, 445, 553, are given in the 
I. Equivalent to the formula for G7, in the table in Section 2 of Chapter 34. table of Chapter 34. 
2. Deleted by Ramanujan. 7.,8. The values for g,,, n = 210, 330, arc given in the table of Chapter 34. 
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10. See the introduction to Section 9 of Chapter 34. 6.,7. Entry 18(v), Chapter 20 [3, p. 4231. 

32 1 328 
1 .,2. Entry 1 l(iii). Chapter 19 [3, pp. 265-2661. 1. Theorem 7.1 1 of Chapter 33. 

8. Entry 2, Chapter 18 [3, p. 1451. 329 
Q [I, p. 1571. 1 .-3. Entries 6269,  and 63, respectively, of Ckipkr 25 14, ppLUG%2% 

10. Entry 9, Chapter 18 [3, p. 1591. 4.5. Entries 25 and 26 of Chapter 32. 

322 330 
I .  Entry 18(vi), Chapter 19 13, p. 3061. 1.-4. Entries 51, 49.52, and 50, respectively, of Chapter 32. 
2.,3. Part of Entry 3(i), Chapter 21 13, p. 4601, 
4 . 5  Entry 3(ii), Chapter 21 [3, p. 4601. 331 

1. Entry 21, Chapter 28 [4, p. 3091. 
6.,7. Entry qi), Chapter 21 (3, p. 4631. 
8 E-21 '9 

2.-6. Entrics 48, 14, 19,20, and 21, respectively, of Chapter 32. 
LJ, P. 

9. Part of Entry 5(i), chapter 2 1  [ 3 , p  4671. 

323 
1. Entry 5(ii), Chapter 21 13, p. 4681. 

332 
1. Entry 23 of Chapter 32. 

red by Ramanujan. 

2. Part of E n y  7(i), chapter21 [3, p. 4751. 333 
3. Entry 7(ii), p. 4754751. 7 F]. 
4.-6. Entries 2(vii), (v), (viii), Chapter 20 [3. p. 3491. 
7.-9. Entries 8(i), (ii), (iii), Chapter 21 [3, p. 4801. 334 
10. Entry 9(i), Chapter 21 13. p. 4811. I .  Entry 5 of Chapter 30 [4, p. 3633. 

2. An incomplete version of Entry 34 of Chapter 37. 
324 

1.,2. Entries 9(ii), (iii), Chapter 21 13, p. 48 11. 4. Entry 20, Chapter 28 (4, p. 3091. 
3.,4. Entry qiii), Chapter 21 (3, p. 4641. 5. See Entry 32 of Chapter 37. 
5.-7. Entry I!i), -A5k 

8.-10. Enby l(ii), Chapter 19 [3, p. 2211. 335 
I. See Entrv 33 of Chaoter 37. 

325 2..3. ~ntr ies 6 and 4. &pectivelL !, Chapter29 [4 pp. 338,336j. 
1. The formula for G301 can be found in the table of Chapter 34. 
2.,3.,6.,7. Entries IO(i)-(iv) of Chapter 20 [3, p. 3791. 336 
4 3 .  Entry 21 of Chapter 36. I ..2. Entries 5 and 3, respectivcly, of Chapter 29 [4, pp. 337,3361. 
8. Entry 1, Chapter 19 [3, p. 2211. 3. Entry 18, Chapter 28 [4, p. 3071. 
9. Entry 18(i). Chapter 19 [3, p. 3051. 4. See Entry 27 of Chapter 37. 
lo. Entry 6(iii), Chapter 20 13, p. 3631. 337 

326 
1.-4. Entry 18(i), Chapter 19 13, p. 3051. Note that the definitions of u, v ,  and 

w are different in the first notebook. 
5.-10. Entry 8(ii), Chapter 20 [3, pp. 372-3731. 

1 .-4. Entry 12(i), Chapter 20 13, p. 3971. 

1 .,2. Entry 29 of Chapter 37. 
3. Entry 30 of Chapter 37. 
4. Entry 17, Chapter 28 [4, p. 3061. 
5. Deleted by Rarnanujan; for a correct version see the tables of Gradshteyn and 

Ryzhik [ I ,  p. 546, formula 4.1 13, no. 41. 
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339 

4. A definition. 
5. A trivialitv. 

1.-4. Factors of singular moduli &, n = 7, 15.39, and 55, but for n = 19. 
Rarnanujan left a blank space. See Theorem 9.9 of Chapter 34. 

" - -ally cmies 4.3, and 7, respectrvely, of Cnaprer 
35. ,411 the results on these three pages are found in Ramanujan's paperon Bernodli 

9.-11. Entries 23,24, and22, respectively, of Chapter 25 [4, pp. 154,155,153]. numbers [I], 110, pp. 1-14]. 
e - .- - 

I L. bee  try I I 01 Lnapter jr. 350 

340 

2. Entry 3, Chapter 30 [4, p. 3591. 
3.-8. Enmes 1-6, Chapter 26 [4, pp. 245-2551, 

341 
1.-3. Entries 7-9, Chapter 26 [4, pp. 255-2573. 
4. Entry 4, Chapter 30 [4, p. 3601. 
5. Entry 24, Chaoter 32. 

For comments on Rarnanujan's notes at the top of the page, see Berndt and 
Rankin's book [ I ,  p. 101. 

1. See Entry 18 of Chapter 39, 

351 
1. Ramanujan gives the first 22 digits of a. 
2.-10. These are irreducible p d d -  

G,, n = 3,7,1l, 19,23,27,3 1,43, and 67. See the table of Chapter 34. Ramanujm 
had evidently intended to calculate several further polynomials, as indicated by 
vacant spaces beside c e r t a i n  d n 

342 
1 .-3. Deleted by Kamanujan. 
4. Entry 23 of Chapter 37. 
5. Entry 10, Chapter 26 [4, p. 2.581. 
6. Entry 1, Chapter 29 [4, p. 3351. 

343 
1 .-3. Entries 24-26, respectively, of Chapter 37. 
4. Entry 22 of Chapter 37. 
5. An incomplete entry. We offer some comments on it at the end of Section 8 

of Chapter 34. 
6. The value far G m v e n  UI t h e 2  in Chapter 34  

. .  . 

344 
1. Entry 6 of Chapter 32. 
2. The value of GSos is given in the table of Chapter 34. 
3.-5. Monic irreducible cubic polynomials satisfied by g,, , n = 38,26, and 50. 

See the table in Section 2 of Chapter 34. 
6. Entry 13 of Chapter 32. 

345 
1.-7. Monic irreducible cubic polynomials satisfied by G,, , n = 23,31, 11, 19, 

r 34 

8.-16. Factors of singular moduli 6, n = 3, 5,7,9, 13, 15, 17, 21, and 25. 
However, for n = 21, Ramanujan fails to record any factors. See Theorem 9.9 of 
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1 In the first three volumes, we examined all of the results in the 21 oraa- 
nized chapters of the second notebook. In the fourth book, theorek 
from the 100 unorganized pages in the second notebook and the short. 
33-page third notebook kre-our locus. In this last volume, we continue 
to explore these 133 pages, but we also Investigate the claims made by 
Ramanujan in the unorganized parts of the first notebook that were not 
recorded by him in the second or third notebooks. 

theories of elliptic functions to alternative bases, class invariants, singu- 
lar moduli, explicit values of theta-functions, modular equations, infinite 
series, asymptotic expansions, and approximations. 

- -. - 
Moreover, many of Ramanujan's beautiful theorems will-undoubtedly lead 
to further research. Z 
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